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Abstract In this article, sequential meta-analysis is pre-
sented as a method for determining the sufficiency of
cumulative knowledge in single-case research synthesis.
Sufficiency addresses the question of whether there is
enough cumulative knowledge on a topic to yield convinc-
ing statistical evidence. The method combines cumulative
meta-analysis of single-case experimental data with formal
sequential testing. After describing the underlying statistical
techniques, a strategy for conducting a sequential single-
case meta-analysis is illustrated using a real meta-analytic
database. The sequential methodology may serve as a
valuable tool for behavioral researchers to guide them in
making optimal use of limited resources.
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Sequential meta-analysis

Single-case experimental designs have a long tradition in
behavioral research for testing the effectiveness of behav-
ioral interventions. These kinds of designs are characterized
by repeated observations of the case (usually a human
participant) over different levels of at least one manipulated
independent variable (Onghena, 2005). The experimental
nature of single-case designs and the possibility of testing
causal effects is particularly appealing, but statements about

a treatment cannot be generalized on statistical grounds
beyond the specific case.

In order to explore the generalizability of results from
single-case experiments, meta-analytic techniques have been
proposed for aggregating results over multiple entities (e.g.,
Busk & Serlin, 1992; Van den Noortgate & Onghena, 2003).
Although highly informative for obtaining an estimate of an
overall treatment effect or for identifying case or study
characteristics that moderate a treatment effect, these meta-
analytic techniques fail to answer questions pertaining to the
sufficiency of cumulative knowledge. Sufficiency addresses
the question of whether there is enough cumulative knowl-
edge on the same topic to yield convincing statistical
evidence or, in other words, whether there are enough pieces
to unravel the puzzle. Information on whether or not
sufficiency has been attained could make a unique and
valuable contribution to a research field for two reasons.
First, the decision to initiate a new study should depend on
the expected added value of such a study to the existing
knowledge base. Second, in order to guide evidence-based
practices, it is vital to identify the benefit or failure of a
treatment as early as possible.

Cumulative meta-analysis using group sequential bound-
aries — or sequential meta-analysis (SMA), for short — has
been proposed as a valuable tool for gauging sufficiency when
large-scale studies are synthesized (Pogue & Yusuf, 1997;
Wetterslev, Thorlund, & Gluud, 2008), but its usefulness in
single-case research synthesis remains unexplored. In this
article, we extend the sequential meta-analytic approach to
determine sufficiency when aggregating single-case
experimental results. In doing so, we hope to stimulate
behavioral researchers to use this method in order to decide
whether sufficient cumulative knowledge has already been
obtained to render future studies redundant and to guide
evidence-based practices.
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Sequential meta-analysis

Sequential meta-analysis combines the methodology of
cumulative meta-analysis with the technique of formal
sequential testing.

A cumulative meta-analytic approach entails conducting
separate meta-analyses at interim points by successively
adding study effect sizes (e.g., Borenstein, Hedges, Higgins,
& Rothstein, 2009). When studies are arranged in a
chronological sequence, from the earliest to the latest, such
repeated pooling reveals the evolution of cumulative
knowledge over time. Lau et al. (1992) have proposed using
this methodology to identify the benefit or harm of
interventions across several randomized clinical trials as
early as possible. Unfortunately, because successive analyses
are conducted, the problem of multiple testing is inevitably
associated with cumulative meta-analysis. These multiple
looks as evidence accumulates consequently lead to inflated
Type I error rates.

The issue of inflated Type I errors due to multiple
testing has extensively been addressed in the context of
monitoring individual studies in several disciplines—
particularly, in industrial process control and clinical
trials (Gosh & Sen, 1991; Todd, 2007). Sequential testing
was introduced more than 6 decades ago (Wald, 1947) as
an economical alternative to traditional statistical decision
making. When employing the latter procedure, one
decides to accept or reject a hypothesis on the basis of
an a priori determined number of measurements. In order
to avoid gathering an unnecessary large amount of
measurements, Wald suggested sequentially evaluating
the available evidence at consecutive interim steps during
the data collection. At each interim analysis, an a priori
stopping rule is used to decide whether there is enough
information to reject or accept a posited hypothesis, while
retaining an overall Type I error rate throughout the
interim analyses. If the extant information is insufficient,
the data collection is continued.

Since the introduction of the idea of sequential
analysis over 60 years ago, the methodology has been
further developed. Pogue and Yusuf (1997) proposed
using the technique of group sequential boundaries to
indicate whether sufficiency in cumulative meta-analysis
of group comparison studies has been obtained. The key
feature of group sequential testing (Armitage, 1967) is that
the cumulative data are analyzed at intervals or with a
group of measurements. At each interim analysis, the test
statistic is compared with a boundary point (critical value),
which is chosen such that the overall significance level
does not exceed the desired α. Group sequential testing
was originally designed for an a priori planned number of
equally spaced interim analyses. Afterward, Lan and
DeMets (1983) extended this methodology using an alpha

spending function to construct group sequential bound-
aries when the number of interim analyses is unknown
and/or unequally spaced. Given that there is a fundamental
uncertainty in cumulative meta-analysis about the total
number of studies that will ever be conducted on a certain
topic and given the fact that the amount of information
will differ for each study, the flexible alpha spending
function provides a way to obtain a stopping boundary in
cumulative meta-analysis that controls the Type I error.
The boundary points are characterized by the rate at which
α is spent and by past decision times but are independent
of the number of future decision times. The function itself
is monotone nondecreasing and is indexed by the
accumulating information. The sequential meta-analytic
approach first entails calculating an a priori optimal
information size (OIS). This is the amount of information
required to have a high probability of detecting an a priori
specified effect while minimizing false positive results.
Estimating the OIS for a sequential meta-analysis is thus
very similar to an a priori sample size calculation for an
individual study. The OIS is then used to construct group
sequential boundaries b at each interim analysis q = 1, …,
Q, employing the Lan–DeMets alpha spending function.
These boundaries are compared with the interim standard-
ized test statistic that represents the Z-value of the pooled
effect size at interim step q of a cumulative meta-analysis,
denoted by Zq. Information accumulation is continued as
long as |Zq| < bq.

The technique of SMA for group comparison studies
cannot simply be transferred to determine sufficiency in
single-case research synthesis in case raw data are
combined instead of effect sizes. Also an additional
source of heterogeneity emerges when aggregating across
single-case studies. In this article, we propose adjust-
ments with regard to conducting the cumulative meta-
analysis and estimating the optimal information size. In
the following, a strategy for conducting an SMA of
single-case data is outlined and illustrated using a real
meta-analytic database.

Sequential meta-analysis of single-case data

In the following, cumulative meta-analysis of single-case
experimental data is introduced, and a strategy for adding
group sequential boundaries is presented. We label the
combination of both methods sequential single-case meta-
analysis (SSCMA).

Cumulative meta-analysis of single-case experimental
data To obtain the interim standardized test statistic, Zq, a
cumulative meta-analysis is typically performed by succes-
sively adding effect sizes from group comparison studies at
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each interim analysis. In contrast to group comparison
research, raw data are often available and can be combined
in a single-case research synthesis, which hampers the use
of standard cumulative meta-analytic techniques to obtain
the interim standardized test statistic. To overcome this
problem, we recommend using a cumulative approach to
multilevel meta-analysis of single-case data. Raw data from
several single-case studies, often including multiple cases
within each study, have a multilevel or hierarchical
structure. The repeated measures (level 1) are nested within
the same case (level 2), and cases are nested within studies
(level 3). Van den Noortgate and Onghena (2003) have
proposed using a three-level linear model, which partitions
the variation in outcome variable at three levels, to
synthesize single-case studies.

Variation within participants (level 1) when the treatment
condition is compared with the baseline condition is
described by the following equation:

Yijk ¼ b0jk þ b1jkðTreatmentÞijk þ eijk ð1Þ

The value of the dependent variable at measurement
occasion i for case j of study k, represented by Yijk, is
regressed on a dummy variable treatment. This first-level
predictor equals 1 when the measurement occasion pertains
to the treatment condition and 0 otherwise. While β0jk
represents the expected score for case j from study k during
the baseline condition, β1jk can be interpreted as the
treatment effect for case j from study k. Because the value
for this measure of effect depends on the scale of the
dependent variable, raw scores can be standardized to
permit direct comparison of scores across studies. This can
easily be done by performing an ordinary regression
analysis, with a single predictor that indicates the treatment
condition, for each participant and dividing the scores by
the estimated root mean square error. The regression
coefficient β1jk can now be interpreted as a standardized
mean difference, although not directly comparable to the
standardized mean difference used in group comparison
studies (Van den Noortgate & Onghena, 2008). The first
level of the multilevel model (Eq. 1) can easily be extended
to model trends in the data by including a time predictor in
addition to the treatment predictor and the interaction
between both (Center, Skiba, & Casey, 1985; Van den
Noortgate & Onghena, 2003).

Variation between cases within studies (level 2) is
described as follows:

b0jk ¼ q00k þ u0jk

b1jk ¼ q10k þ u1jk
ð2Þ

Both equations indicate that the expected score for case j
from study k equals a mean score for study k plus a random
deviation from this mean.

Expected scores at the study level (level 3) comprise an
overall score across scores plus random deviations from
this mean:

q00k ¼ g000 þ v00k
q10k ¼ g100 þ v10k

ð3Þ

The multilevel model is a random-effects model that is
equivalent to a three-level extension of commonly used
random-effects models for the meta-analysis of effect sizes
(DerSimonian & Laird, 1986; Hedges & Olkin, 1985; Van
den Noortgate & Onghena, 2008). Apart from estimating and
testing the between-study and between-case variance, this
flexible procedure also allows one to add study or case
characteristics that may moderate the size of the treatment
effect. These predictors are included in the equations that
describe the variation in the effect at the particular level. For
example, to examine gender differences in the treatment
effect, a dummy predictor variable is added to Eq. 2:

b1jk ¼ q10k þ q11kðmaleÞjk þ u1jk ð4Þ

Now θ10k reflects the treatment effect for females in study j,
and θ11k indicates the additional treatment effect for males in
study j. This model is equivalent to a mixed-effects model
commonly used in meta-analysis (Raudenbush & Bryk,
1985).

Analogous to standard multilevel modeling, fixed
parameters of the model (the γs) can be tested using the
Wald test, which compares the difference in parameter
estimate and the hypothesized population value divided by
the standard error with a standard normal distribution. By
performing a cumulative multilevel meta-analysis of single-
case experimental data, the Z-value of the Wald test can be
used as the interim standardized test statistic Zq. It should
be noted that early in the meta-analytic database, when the
number of studies is limited, estimates of population
parameters over studies will be poor, because estimation
procedure and statistical tests in multilevel modeling are
based on large sample properties. The large sample
requirement is most problematic at the highest level (i.e.,
study level). At lower levels, it might be less problematic,
because the number of units is usually larger (by definition
the number of units at lower levels is at least as large as the
number of units at higher levels). If a small sample is used,
fixed parameter estimates will be unbiased, but standard
errors and variance estimates may be biased. Van den
Noortgate and Onghena (2007) have suggested that
combining single-case studies using a multilevel framework
should be postponed until at least about 20 entities are
available at the highest level. Hence, in the context of
SSCMA, we recommended that the initial interim analysis
should at least comprise about 20 single-case studies
including single or multiple cases.

722 Behav Res (2011) 43:720–729



Group sequential boundaries In order to construct group
sequential boundaries, an optimal information size required
to have a high probability of detecting a pooled effect (1- β,
or power) of a presumed effect size while minimizing false
positive results (α) has to be computed a priori. Because the
OIS should at least equal that of a well-designed individual

To compute the OIS, reasonable values have to be
specified for the treatment effect size as well as the Type I
(α) and Type II (1 - β) error rates. Previous meta-analyses
or primary studies in the area on a similar topic can serve as
a source of information to determine a reasonable effect
size, or the smallest effect size deemed to be of practical
significance in a particular context can be used. It should be
noted that the effect size in previous meta-analyses of group
comparison studies cannot directly be compared with effect
sizes in single-case meta-analyses. The comparability of
effect sizes from both designs has been discussed by Van
den Noortgate and Onghena (2008), but as a guideline
researchers could keep in mind that the effect sizes obtained
in meta-analyses of group comparison studies likely reflect
a conservative estimate of the effect in single-case research
syntheses. Although a widely accepted cut-point for
declaration of statistical significance (α) in meta-analysis
seems to be .05, we recommend using at least the more
stringent .01 criterion. In a related vein, we suggest
adopting a more conservative .90 criterion for power,
instead of the commonly used .80 criterion.

Apart from sampling variability (level 1), between-case
(level 2) and between-study (level 3) variability is likely to
emerge in meta-analyses of single-case data. In contrast to
standard sample size calculation, such heterogeneity should
be taken into account when specifying the OIS. In SMA of
group comparison studies, Wetterslev et al. (2008) have
proposed adjusting the OIS according to the amount of
between-study variability expressed by the I2 index, using
the formula OIS/(1 - I2). The I2 index is similar to an
intraclass correlation in multilevel models (Higgins &
Thompson, 2002). Given that in single-case meta-analysis,
between-study and between-case variability should be
accounted for, we propose adjusting the OIS according to
the intracase correlation (ρIntraCase). On the basis of the
formula for estimating an intraclass correlation at the second
level of a three-level model (Siddiqui, Hedeker, Flay, & Hu,
1996) — namely, r ¼ ðs2

v0 þ s2
u0Þ ðs2

v0 þ s2
u0 þ s2

eÞ
�

— the
intracase correlation can be interpreted as the expected
correlation between two randomly chosen measurements of
the same case, taking into account that the two measure-

ments of the same case also belong to the same study. Since
a single-case meta-analysis is a random-slopes model, the
intracase correlation also depends on the value of the
treatment predictor for each of the measurements, which
complicates the expression of the intracase correlation (for
details on the formula, see Goldstein, Browne, & Rasbash,
2002). However, because we are interested in the intracase
correlation conditional upon the treatment condition, the
formula for estimating the expected correlation between two
randomly chosen measurements in the treatment condition
(treatment = 1) of the same case within the same study
reduces to the following:

rIntraCase ¼
s2

v00 þ 2sv01 þ s2
v10 þ s2

u0 þ 2su01 þ s2
u1

s2
v00 þ 2sv01 þ s2

v10 þ s2
u0 þ 2su01 þ s2

u1 þ s2
e

ð5Þ

In case moderators are added as fixed predictors, the residual
intracase correlation can be estimated using the same
formula based on the variance components of the model
including moderators. The residual intracase correlation
reflects the expected correlation between two randomly
chosen measurements in the treatment condition of the same
case within the same study after controlling for the effect of
the moderators.

In line with Wetterslev et al. (2008), a heterogeneity-
adjusted OIS (HOIS) could be computed using the formula
OIS/(1-ρIntraCase), which results in a larger optimal infor-
mation size as between-study and between-case variability
increases. The intracase correlation obtained in the actual
meta-analytic database or in an existing meta-analysis of
single-case studies on a similar topic can be used to
determine a realistic value. When the actual meta-analytic
database contains a limited number of studies and previous
meta-analyses are lacking, we recommend using a conser-
vative value for the intracase correlation that reflects a high
amount of heterogeneity, since an underestimation of the
heterogeneity will fail to render the authoritative evidence
expected from a meta-analysis. Using the classification
proposed for the I2 index (Higgins & Thompson, 2002),
which is similar to an intraclass correlation in multilevel
models, a value of .75 can be used to reflect high
heterogeneity. In a related vein, we recommend using a
medium (.50) amount of heterogeneity as a conservative
value for the residual intracase correlation, because moder-
ators rarely explain all between-case and between-study
variability.

The (H)OIS is then used to construct group sequential
boundaries b at each interim analysis q = 1, …, q using the
Lan–DeMets alpha spending function. The alpha spending
function, denoted α*, allocates the allowable Type I error
through a function based on the information fraction t. In
the context of meta-analysis, the information fraction t (0 ≤
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standard methods of sample size calculation can be used
as a starting point. However, since the aim of meta-analyses
is to provide authoritative evidence (Sutton & Higgins,
2008), we recommend using a more stringent strategy to
determine the OIS in meta-analysis.



t ≤ 1) represents the proportion of the optimal information
size that has been accumulated at a particular interim
analysis, tq = iq/OIS, where iq is the information available at
the qth interim analysis. The spending function α*(t) equals
0 for t = 0 and α for t = 1 and is monotone nondecreasing in
between. This flexible procedure guarantees a fixed
significance level and power when the optimal information
size is achieved. Several functions can be fit into the Lan–
DeMets alpha spending function, including the O’Brien and
Fleming (1979) rules:

a
»ðtÞ ¼ 0

2 1� Φ Za=2=
ffiffi
t

p� �� ��
when t ¼ 0
when 0 < t � 1

ð6Þ

where Φ is the standard normal cumulative distribution
function. The Type I error that is allocated to each interim
analysis through the alpha spending function in turn
determines the boundary point bq as the critical Z-value
that corresponds to the allocated α at interim analysis q.

The interim standardized test statistic at the qth interim
step, denoted by Zq, is the Z-value obtained by performing a
Wald test of the fixed parameters at interim analysis q of the
cumulative meta-analysis. At each interim analysis, the
sufficiency of the cumulative knowledge is evaluated by
comparing Zq with the boundary point bq. As long as |Zq| <
bq, sufficiency is not yet attained, and further studies are
needed to establish convincing statistical evidence. When
|Zq| ≥ bq, the boundary is crossed at interim analysis q,
which indicates that sufficient evidence favoring at least the
specified effect is established. In case the OIS is reached at
the final analysis Q and boundaries have not been crossed,
sufficiency of the cumulative knowledge is achieved, since
the SSCMA is unable to detect the anticipated effect despite
the specified level of power.

Illustration

Themethod is applied to a single-case meta-analytic dataset of
271 participants (116 male and 150 female) from 138 studies
on the effect of contingency management (e.g., reward, praise,
and attention for positive behaviors) of challenging behavior
among persons with intellectual disabilities. Raw scores were
extracted from graphs or retrieved electronically and were
standardized as outlined above. Apart from the overall
treatment effect, the moderating effect of participants’ sex
and the moderator effect of an additional contextual interven-
tion (e.g., informing, educating, and training the environment
or adapting the environment to the person’s needs) were also
estimated. The results of a multilevel meta-analysis of the
single-case studies are presented in Table 1. Analysis revealed
evidence for a significant reduction in challenging behavior
after contingency management, Z = −3.47, p < .0001. There
was also evidence of systematic differences in the treatment
effect between cases, χ2(2) = 6,774.8, p < .0001, and
between studies, χ2(2) = 7.5, p = .0235. Furthermore, the
moderator effect of participants’ sex was nonsignificant,
Z = −0.30, p = .764. The use of a contextual intervention
also did not significantly moderate the treatment effect of
contingency management, Z = −1.10, p = .271. We used
this meta-analytic dataset to illustrate the sequential
single-case meta-analysis employing a four-step ap-
proach. The goal was to determine the sufficiency of
cumulative knowledge with regard to the overall treat-
ment effect and the moderator effects.

Step 1: Compute OIS The OIS required in order to have a
high probability of detecting a prespecified effect while
minimizing false positive results was first computed. We
estimated the OIS assuming that even a small treatment

Notation Parameter Estimate (SE)

Model 1 Model 2

Fixed effects

Mean effect treatment γ100 −2.95 (0.62)

Moderator effect sex γ110 −3.47 (0.42) −0.25 (0.85)

Moderator effect contextual intervention γ120 −0.93 (0.85)

Variance between studies

Intercept σν00
2 3.25 (1.79) 2.87 (1.85)

Effect treatment σν10
2 3.44 (1.85) 3.06 (1.93)

Covariance σν01 −3.31 (1.81) −2.92 (1.88)

Variance between participants

Intercept σμ0
2 43.41 (4.01) 44.49 (4.17)

Effect treatment σμ1
2 37.01 (3.51) 37.93 (3.66)

Covariance σμ01 −39.84 (3.73) −40.82 (3.89)

Residual variance σe
2 1.00 (0.01) 1.00 (0.01)

Table 1 Results of the multi-
level meta-analysis of all single-
case studies (k = 138)
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effect (d = .20) would be worthwhile. Using the freeware
program G*Power (Faul, Erdfelder, Lang, & Buchner,
2007), the OIS required in order to have 90% probability
of accurately detecting a difference between two dependent
means of .20 while minimizing false positive results to 1%
(two-sided) equaled 376 participants. Using the aforemen-
tioned formula, the intracase correlation for the model
without moderators (model 1) based on all included studies
(Table 1) equaled:

rIntraCase ¼
3:25� 6:62þ 3:44þ 43:41� 79:66þ 37:01

3:25� 6:62þ 3:44þ 43:41� 79:66þ 37:01þ 1:00
¼ :46

Given that our dataset comprised a substantial number
of studies, we accounted for about a medium (46%)
amount of heterogeneity. As a result, the HOIS equaled
376= 1� :46ð Þ ¼ 696 participants.

For illustrative purposes, the OIS for the moderator
effect of participants’ sex was computed assuming a
difference in treatment effect between independent groups
of .80, since a smaller effect of sex may have limited
practical significance. This resulted in OIS = 98 partic-
ipants. For the moderator effect of a contextual interven-
tion, a small difference (d = .20) was used because even a
small surplus effect could be of practical importance. This
yielded an OIS of 1,482 participants. The OIS for the
moderator effects was adjusted according to the residual
intracase correlation computed using the variance compo-
nents of model 2 (Table 1). Hence, the HOIS for the
moderator effect of participants’ sex was 182 and for the
moderator effect of a contextual intervention was 2,744
participants.

Step 2: Perform a cumulative single-case meta-
analysis Studies were arranged in a chronological sequence
according to year of publication, and a meta-analysis was
conducted after each year. The restricted maximum likeli-
hood procedure implemented in the MIXED procedure

from SAS was used to fit two models at each intermediate
point, resulting in a cumulative single-case meta-analysis
with 11 interim analyses (Table 1). First, a three-level
model (level 1, within case; level 2, between cases/within
study; level 3, between study) with treatment as the first-
level predictor was fitted to the meta-analytic database.
Second, the two predictor variables were added to the
previous model to examine whether these case character-
istics would moderate the treatment effect. A Wald test was
computed for the overall and moderator effects at each
interim analysis, which represent the cumulative Z-values in
the sequential meta-analyses (Figs. 1, 2 and 3).

Step 3: Construct group sequential boundaries The Lan–
DeMets alpha spending function was used to construct two-
sided group sequential boundaries forα = .01 and power = .90,
using the open-source software package created by Reboussin,
DeMets, Kim, and Lan (2003). The program truncates
boundaries at bq = 8, because it is highly unlikely to obtain
a value greater than or equal to that point due to chance, but
one could compute the exact boundary using the aforemen-
tioned formula. As is presented in Table 2, the information
fraction t at each interim analysis was calculated as the
proportion of the HOIS. Combinations of group sequential
boundaries with cumulative Z-values were used to determine
the sufficiency of cumulative knowledge for the overall
treatment effect (Fig. 1), the moderator effect for sex (Fig. 2),
and the moderator effect for a contextual intervention (Fig. 3).

Step 4: Determine Sufficiency As is presented in Fig. 1, the
boundary for a two-sided α-value of .01, assuming a
treatment effect of .20 and 90% power, was crossed at the
8th interim analysis with the inclusion of 209 cases (99
studies). The absolute cumulative Z-value larger than the
boundary indicates that at that point of the cumulative
meta-analysis, sufficiency was reached and convincing
evidence for at least a small effect contingency manage-
ment for challenging behavior among persons with intel-
lectual disabilities was obtained. With regard to the
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Fig. 1 Sequential single-case
meta-analysis of the overall ef-
fect of contingency management

Behav Res (2011) 43:720–729 725



moderator effect of sex (Fig. 2), the SSCMA indicates that
sufficiency was attained at the 8th interim analysis. Given
that the HOIS was reached at that point and no boundaries
were crossed, there is sufficient evidence to refute at least a
large effect of participants’ sex with 90% power. For the
moderator effect of a contextual intervention, sufficiency is
not attained, because no boundaries were crossed at the final
interim analysis. Given that the HOIS has not been reached,
the SSCMA may still be underpowered (power < 90%) to
detect or reject a small moderating effect. Hence, additional
single-case studies investigating the additional effect of a
contextual intervention are needed to attain sufficiency.

Discussion

Meta-analysis of single-case experimental studies has great
potential to combine results from individual studies.
Unfortunately, formal guidelines on the interpretation of
meta-analytic findings are lacking, which leaves an impor-
tant question unanswered: Is there enough cumulative
knowledge available to draw firm statistical conclusions?
We proposed an adaptation of formal sequential boundaries
to determine the sufficiency of cumulative knowledge in
single-case research synthesis, which we labeled SSCMA.

The first step in conducting an SSCMA is to determine
the amount of information that would be required to draw
convincing statistical conclusions. In line with the high
standards imposed on meta-analysis, we recommended
using conservative, but realistic, criteria to determine this
optimal information size (OIS). After establishing this OIS,
alpha spending functions can be tied with a cumulative
approach to a multilevel meta-analysis of single-case
experimental data. The alpha spending is a flexible
sequential method based on the proportion of the optimal
information size available at a particular interim analysis,
and thus the boundaries are independent of future interim
analyses.

As illustrated in our example on the effect of
contingency management for challenging behavior
among persons with intellectual disabilities, an SSCMA
allows one to determine the sufficiency of the overall
treatment effect and potential moderator effects. So far,
applications of sequential meta-analysis in group com-
parison studies have considered only the overall treat-
ment effect (e.g., Devereaux et al., 2005; Keus,
Wetterslev, Gluud, Gooszen, & van Laarhoven, 2010). Given
that researchers and practitioners are often interested not only
in knowing whether, but also under which conditions a
treatment is effective, it is just as important to gauge the
sufficiency of moderator effects. As holds for our example,
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Fig. 2 Sequential single-case
meta-analysis of the moderator
effect for participants’ sex
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obtaining sufficient evidence for questions pertaining to
moderator effects requires a larger amount of cumulative
knowledge than does establishing firm evidence on the
overall treatment effect. If sufficiency has not been attained,
the optimal information size provides researchers with an
indication of the number of additional case studies needed to
establish convincing statistical evidence.

Using SSCMA will avoid spurious claims of treatment
benefit based on limited cumulative knowledge or poor
statistical grounds. As is presented in Figs. 1, 2 and 3, the
alpha spending function results in very stringent boundaries
at the early stages of the meta-analytics database. As such,
the high nominal p-values are not considered to reveal
sufficiency, since they may reflect systematic error, such as
low methodological quality bias, publication bias, or small
sample size bias or random error due to repeated testing.
Sequential single-case meta-analysis not only provides
researchers with a statistical framework to more consistent-
ly interpret cumulative knowledge, it also suggests a limit
to conducting research on a particular topic.

An SSCMA can be used to determine the sufficiency of
cumulative knowledge in retrospect for an initial or extant
meta-analytic database. By ordering the studies in a
chronological sequence, such applications can be used to
decide whether firm evidence has already been obtained or
whether additional case studies should be initiated. By
extending the approach to determine the sufficiency of
moderator effects, the method can also serve as a tool for
setting up targeted research in order to gather specific
information with regard to moderators for which sufficien-
cy is not yet achieved. In a prospective application, the goal
is to pinpoint the earliest time at which sufficiency is

achieved by updating the dataset as new studies become
available. Some researchers (Chalmers, 2005; Lau et al.,
1992) have proposed systematically putting new research in
the context of the existing cumulative knowledge by
continuously updating a meta-analysis after completing an
individual study. A continuous prospective approach could
be particularly beneficial when additional research is costly
or when obtaining solid evidence is pressing. Others (Pogue
& Yusuf, 1998) have, however, recommended a more
parsimonious and more practical updating after a sub-
stantial amount of additional information has been
obtained (e.g., 20% of the OIS). Regardless of the
retrospective or prospective nature, sequential single-
case meta-analysis would make the accumulation of
cumulative knowledge less haphazard.

Three issues regarding the multilevel approach to
aggregating single-case experimental data should be noted.
First, given that some authors (Bryk & Raudenbush, 1992;
Snijders & Bosker, 1999) have argued that, for the fixed
effects, comparing the parameter estimates divided by the
standard error to a t-distribution yields better results, the
alpha spending function could be adapted to yield critical t-
values for the boundary points at each interim analysis.
Second, when the single-case studies in a meta-analytic
database all include one case, the outlined three-level model
reduces to a two-level model with measurements nested in
cases. Given that each study represents one single case, the
second level can also be interpreted as the study level.
Third, as holds for the standard multilevel approach to
aggregating single-case studies, this method requires at
least 20 studies to perform the analysis comfortably, due to
the large sample size properties of the multilevel strategy.

Table 2 Overview of the sequential single-case meta-analysis

Interim
analysis

Publication Year k Cumulative N Overall Effect Contingency
Management

Moderator Effect Sex Moderator Effect Contextual
Intervention

t Zγ100 t Zγ110 t Zγ120

1 2000 25 60 .086 −5.77 .329 0.91 .022 −1.14
2 2001 40 85 .122 −7.56 .467 −0.46 .031 −0.79
3 2002 52 121 .174 −4.80 .665 0.14 .044 −1.28
4 2003 64 142 .204 −5.34 .780 −0.44 .052 −1.09
5 2004 70 151 .217 −4.93 .829 1.10 .055 −0.24
6 2005 77 154 .236 −5.60 .901 0.95 .060 −0.16
7 2006 86 178 .256 −5.94 .978 0.87 .065 −0.14
8 2007 99 209 .300 −6.92 >1.00 −0.18 .076 −0.71
9 2008 113 228 .378 −7.21 −0.30 .083 −0.97
10 2009 135 268 .385 −8.25 −0.32 .098 −1.11
11 2010 138 271 .389 −8.30 −0.30 .099 −1.10

k=number of studies; t=information fraction; γ100=overall treatment effect; γ110=moderator effect of sex; γ120=moderator effect of contextual
intervention
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To attain sufficiency, even more studies comprising
hundreds of cases may be needed. Nevertheless, in the
present illustration and recently published syntheses of
single-case studies (e.g., Didden, Korzilius, van Oorsouw,
& Sturmey, 2007; Herzinger & Campbell, 2007; Morgan &
Sideridis, 2006), the number of studies would be large
enough to initialize an SSCMA. Although challenging, we
therefore feel that the sample size requirements of SSCMA
are not unrealistic for the field.

Although sequential meta-analysis of single-case exper-
imental studies has great potential to contribute to research,
some issues remain unresolved. First, the outlined alpha
spending function is designed to stop early only if an effect
emerges, but it will not stop early for futility. This means
that in case no effect becomes apparent, as for the
moderator effects in our illustration, the accumulation of
knowledge will be continued until the optimal information
size is reached. Only then will sufficient evidence to refute
a treatment effect of a certain magnitude, despite a
prespecified power, be obtained. The usefulness of other
sequential designs that also stop early for futility, referred to
as the (double) triangular tests (Whitehead, 2002), should
be investigated in the context of single-case research
synthesis. Second, although this method could inform
researchers about the sufficiency of cumulative knowledge,
yields guidelines with regard to the optimal information
size, and allows for a more systematic accumulation of
knowledge, it cannot provide information with regard to the
optimal design of future single-case studies. For example,
should multiple studies with one case be conducted or a few
studies with multiple cases? Or should more information be
gathered on males or females? Third, SSCMA provides a
statistical ground for determining the sufficiency of
cumulative knowledge. It, however, does not provide
information about the generalizability of the cases included
in the meta-analytic database. Given that participants in
single-case studies are often not randomly sampled,
researchers should carefully evaluate the characteristics of
the cases involved when determining sufficiency at a
certain point of the meta-analytic dataset. In our example,
participants were purposefully selected, since cases were
included in the meta-analysis only if they referred to
persons with intellectual disabilities that displayed chal-
lenging behavior for which a contingency management
intervention was initialized. As such, it is clear that any
conclusions with regard to the sufficiency of cumulative
knowledge are not to be generalized to cases that differ
from those included in the meta-analysis. Fourth, adding a
new piece of information may lead to more heterogeneity,
which increases the uncertainty about the treatment effect
estimate, as compared with the previous interim analysis.
Several approaches have been suggested in the statistical
literature for overcoming this problem, such as altering the

boundaries, but none has been thoroughly investigated yet
(Whitehead, 2002).

The sequential methodology for gauging sufficiency in
single-case research synthesis may serve as a valuable
tool for behavioral researchers, to guide them in making
the best use of limited resources. It provides a statistical
framework for enhancing the interpretation of treatment
effects in research synthesis. This kind of information
could serve as a starting point for setting up new single-
case studies if the cumulative knowledge is insufficient,
whereas it may provide scientific underpinning of
clinical practices or a redirection of research goals if
sufficiency is attained.
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