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Abstract
Cognitive systems face a constant tension of maintaining existing representations that have been fine-tuned to long-term 
input regularities and adapting representations to meet the needs of short-term input that may deviate from long-term 
norms. Systems must balance the stability of long-term representations with plasticity to accommodate novel contexts. We 
investigated the interaction between perceptual biases or priors acquired across the long-term and sensitivity to statistical 
regularities introduced in the short-term. Participants were first passively exposed to short-term acoustic regularities and 
then learned categories in a supervised training task that either conflicted or aligned with long-term perceptual priors. We 
found that the long-term priors had robust and pervasive impact on categorization behavior. In contrast, behavior was not 
influenced by the nature of the short-term passive exposure. These results demonstrate that perceptual priors place strong 
constraints on the course of learning and that short-term passive exposure to acoustic regularities has limited impact on 
directing subsequent category learning.

Keywords Category learning · Statistical learning · Audition · Perceptual priors

Introduction

The natural world is structured – rain is nearly always 
accompanied by dark clouds; the words a speaker says are 
temporally aligned with their mouth movements. This struc-
ture is useful to learn because it keeps us from getting caught 
outside without an umbrella and helps us understand what 
someone is saying in a noisy restaurant. Perceptual systems 
are sensitive to input regularities at multiple levels, encoding 
both long-term regularities across a lifetime of experience 
and short-term regularities within individual contexts. This 
enables stability across the long term and flexibility in the 
short term when we encounter regularities that may deviate 
from long-term norms, such as when traveling to a location 

with a novel climate or encountering a new speaker who 
has an accent.

Across the long term, sensory systems efficiently encode 
natural signal statistics in vision (Simoncelli, 2003; Simon-
celli & Olshausen, 2001), audition (Kluender et al., 2013; 
Lewicki, 2002; Ming & Holt, 2009; Smith & Lewicki, 2006; 
Stilp & Lewicki, 2014; Wang, 2007), and across multiple 
modalities (Ernst & Banks, 2002). For example, auditory 
cochlear filters resemble filters optimized to code for the 
regularities of natural sounds (Smith & Lewicki, 2006) and 
human speech recognition is “efficient” in the sense that it 
is supported when signal regularities align with these filters 
(Ming & Holt, 2009).

The sensitivity to long-term sensory statistics, which 
might be understood as priors, introduces observable biases 
in perception. For example, the McGurk effect (McGurk & 
Macdonald, 1976) is observed when spoken instances of syl-
lables (e.g., /ba/ or /ga/) are paired with mouth movements 
that conflict with expectations developed across long-term 
alignment of speech sounds and mouth position. The result-
ing effect is that the visual input biases speech perception 
toward the percept that better matches the prior (e.g., hearing 
/ba/ and seeing /ga/ leads to an intermediate percept of /da/). 
Thus, long-term statistics like the congruency of auditory 
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and visual speech come to be reflected in cognitive and neu-
ral representations of the sensory world.

People are also sensitive to short-term regularities in 
sensory environments. Many studies demonstrate sensitiv-
ity to evolving statistical regularities in the input across 
infants (Adriaans & Swingley, 2017; Aslin et al., 1998; 
Maye et  al., 2002; McMurray et  al., 2009; Toscano & 
McMurray, 2010), adults (Escudero & Williams, 2014; 
Wanrooij & Boersma, 2013), and non-human animals 
(Pons, 2006). Learning of short-term regularities in the 
sensory world involves the rapid learning of novel input 
regularities, which can occur even in a passive manner 
(Barlow & Földiák, 1989; Coen-Cagli et al., 2015; Lu 
et al., 2019; Stilp et al., 2010). Rapid, and putatively effi-
cient, adaptation to short-term statistical regularities has 
been examined in the auditory modality where perception 
appears to be able to rapidly adapt to short-term statistical 
structure over as few as 2 min of passive exposure (Stilp 
et al., 2010; Stilp & Kluender, 2012, 2016).

However, it would not be adaptive for short-term expe-
rience to overwrite long-term representations: perception 
requires maintenance of long-term regularities to support 
stable representations, while also remaining flexible to short-
term regularities that may deviate from the priors developed 
across the long term. Efficient and rapid processing of a 
complex sensory world thus requires balance across long-
term and short-term regularities. However, how short-term 
exposure to novel statistical regularities interacts with long-
term priors is not well understood.

Perceptual category learning provides an excellent test-
bed of the interaction of long-term priors and short-term 
statistical learning, as category learning is influenced by 
prior experience. For example, learning second language 
speech categories is more difficult when categories directly 
conflict with one’s native language (Best et al., 2001; Kuhl 
et al., 2007). Outside of language contexts, existing repre-
sentations of sensory dimensions affect how people learn 
categories based on those dimensions (Ell et al., 2012; Holt 
et al., 2004; Roark et al., 2022; Roark & Holt, 2019b; Schar-
inger et al., 2013). For example, over a lifetime of experi-
ence, we develop perceptual biases and priors in the rep-
resentation of pairs of dimensions as integral or separable 
(Garner, 1974, 1976). Consequently, integral dimensions 
(e.g., saturation and brightness) are difficult to separate into 
their component dimensions, whereas separable dimensions 
(e.g., length and orientation of a line) are difficult to com-
bine and may be separated automatically (Lockhead, 1972; 
Nelson, 1993). These priors influence behavior in short-term 
category-learning contexts – categories that require selec-
tive attention to dimensions are more difficult to learn when 
the dimensions are integral than separable, and categories 
that require integration across dimensions are more difficult 

to learn when the dimensions are separable than integral 
(Ashby & Maddox, 1990; Ell et al., 2012).

In the current study, we investigate the influence of long-
term priors and short-term statistical learning on perceptual 
category learning. Specifically, we use perceptual category 
learning to examine whether representations efficiently adapt 
to short-term regularities or whether long-term priors are 
stably maintained in the face of novel short-term input regu-
larities. We do so by aligning (and misaligning) long-term 
priors with category exemplar distributions in a category-
learning task.

With regard to long-term perceptual priors, we capitalize 
on the observation that spectral and temporal modulation are 
interdependent in auditory representations. Each thought to 
be a fundamental component of sound, spectral modulation 
reflects oscillations in power across the frequency spectrum 
at particular times and temporal modulation reflects oscil-
lations in amplitude across time (Woolley et al., 2005). At 
some level, the neural populations encoding these dimen-
sions are relatively separable (Depireux et al., 2001; Elliott 
& Theunissen, 2009; Langers et al., 2003; Schönwiesner & 
Zatorre, 2009; Visscher et al., 2007; Woolley et al., 2005), 
but their representations may be interdependent. Specifi-
cally, neurons that code high temporal modulation also 
code low spectral modulation (and vice versa; Allen et al., 
2018; Hullett et al., 2016). As a result, the long-term rep-
resentation of these dimensions comprises a prior wherein 
representations are stretched along the negative axis (e.g., 
high temporal modulation is associated with low spectral 
modulation) and shrunk along the positive axis relative to a 
naïve, untrained space (Fig. 1A). A perceptual prior like this 
may influence category learning such that categories aligned 
with the prior (i.e., the distinction between the categories is 
along the negative axis in Fig. 1A) may be easier to learn 
than categories that are misaligned with the prior (i.e., the 
distinction between the categories is along the positive axis, 
Fig. 1A). Another related possibility is that learners may 
demonstrate biases in how much they rely upon each dimen-
sion in making category decisions (Roark & Holt, 2019b). 
We assess this latter possibility using decision-bound mod-
els (Ashby, 1992).

There is limited research on the impact of perceptual 
priors on short-term statistical learning. It is also not well 
understood how short-term statistical learning may influence 
more overt behavior such as category learning. Here, we 
expose listeners to brief (~8 min) exposure to a statistical 
regularity prior to an overt category-learning task involving 
stimuli sampled from the same acoustic space as exposure 
stimuli, with category distributions aligned or misaligned 
with the long-term prior. This allows us to examine three 
hypotheses regarding the intersection of long-term priors, 
statistical learning, and category learning (Fig. 1B).
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The first hypothesis is associated with an efficient cod-
ing perspective. Specifically, there are reasons to expect that 
short-term passive exposure will influence representations 
in a way that will influence behavior. Prior studies have 
shown that even as little as 2 min of passive exposure to a 
correlation between two acoustic dimensions can increase 
discriminability along that correlation (e.g., stretch axis in 
representations) and decrease discriminability orthogonal to 
that correlation (e.g., shrink axis in representations) (Stilp 
et al., 2010; Stilp & Kluender, 2012, 2016) and has been 
linked to efficient coding in single neurons in auditory cortex 
in animal studies (Lu et al., 2019). This is also consistent 
with studies that demonstrate that experience with variabil-
ity along a relevant feature prior to category learning can 
improve learning (Antoniou & Wong, 2016; Holt & Lotto, 

2006). In line with this prediction, we would expect that 
statistical learning experience will stretch whichever axis 
is being experienced and shrink the orthogonal axis. As 
a result of this, category learning will be better when the 
statistical learning distribution is parallel to the category 
distinction that needs to be learned.

In contrast, a second hypothesis predicts the opposite pat-
tern – that statistical learning experience will shrink the axis 
of experience and stretch the orthogonal axis. This hypoth-
esis stems from research that has shown that experience 
with variability along a dimension makes this dimension 
less reliable in subsequent category-learning contexts (Rost 
& McMurray, 2010). That is, the more variability one expe-
riences along a specific dimension, the less informative the 
dimension for behavior. As a result, we would expect that 

Fig. 1  Framework and predictions. Note. (A) Illustration of the inter-
action between long-term prior (relative to naïve physical space) and 
category learning with distributions that are aligned or misaligned 
with the prior. Categories that are Aligned with the prior are more 
distinguishable and should be easier to learn. Categories that are Mis-

aligned with the prior are less distinguishable and should be more 
difficult to learn. (B) Illustration of the different predictions for the 
influence of statistical learning on category learning. Example shows 
statistical learning distribution with positive correlation in gray
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a statistical learning distribution that is orthogonal to the 
category distinction will support category learning.

Our final hypothesis is that long-term priors will override 
any influence of short-term statistical learning. This would 
support an interaction between long-term priors and short-
term statistical learning. In Stilp and Kluender (2016), the 
effects of passive experience on discrimination diminished 
within 128 trials of discrimination testing, suggesting that 
even if statistical learning influences the representational 
space, the impact is quick to revert to alignment with exist-
ing long-term representations. This would predict that short-
term statistical learning will not influence category learning.

In summary, long-term experience (such as native lan-
guage experience) and short-term statistical learning have 
each been linked to perceptual warping of physical input 
space (Feldman et al., 2021; Kuhl, 2000; Kuhl et al., 2007; 
Maye et al., 2008). Yet, it is not yet clear how long-term pri-
ors and short-term statistical learning may independently or 
interactively influence novel category learning. Here, we test 
three competing hypotheses to understand how short-term 
statistical learning interacts with long-term priors and the 
behavioral demands of overt category learning.

Methods

This experiment examines differences in category learning 
in the same two-dimensional acoustic space as a function of 
(1) short-term statistical learning of a regularity between the 
two dimensions and (2) category distribution type is aligned 
or misaligned with long-term priors. We trained participants 
on one of two pairs of category distributions, which were 
identical in their statistical regularities and differed only in 
their orientation in the input space. These categories are 
multidimensional, in that the category identity cannot be 
determined by a single dimension. We refer to the categories 
based on whether the category distinction is Aligned or Mis-
aligned with long-term priors. Stimuli and data are available 
at osf.io/qyg7z/ (Roark & Holt, 2022).

Participants

Participants were 305 (102 male, 201 female, two prefer 
not to answer) Carnegie Mellon University undergraduates 
ages 18–29 years and were given $10 or course credit for 
participating. All participants gave informed consent and 
the experimental protocols were approved by the Institu-
tional Review Board at Carnegie Mellon University. Par-
ticipants were randomly assigned to one of five statistical 
learning conditions (Naïve, Positive, Negative, Spectral, or 
Temporal) and one of two category types (Aligned, Mis-
aligned). In the statistical learning phase, with the exception 
of the Naïve condition, participants passively experienced 

specific statistical regularities in the acoustic space – vari-
ability along either one dimension (Temporal or Spectral 
modulation) or along both dimensions (Positive or Nega-
tive correlation). A power analysis was conducted with the 
WebPower package in R (Zhang & Mai, 2018) and indicated 
that to detect an interaction between statistical regularity 
type and category type with a medium effect size (f = .25), 
a sample of at least 26 participants would be needed in each 
group to obtain statistical power at a .90 level with an alpha 
of .05. We exceeded this target recruitment for each group 
(Table 1), with approximately 30 participants in each of ten 
conditions. Nine additional participants were run, but not 
included due to experimenter or software error.

Stimuli

The stimuli were complex static acoustic ripples varying on 
spectral modulation and temporal modulation. The stimuli 
were generated using a custom MATLAB script. Stimuli 
were defined with the following parameters based on prior 
work (Yi & Chandrasekaran, 2016): duration = 1 s; phase 
= 0°;  F0 = 200 Hz; spectral bandwidth = -3.18; amplitude 
modulation depth = 0 dB; sampling rate = 44.1 kHz.1 Stim-
uli were then root mean square (RMS) amplitude matched at 
70 Hz in Praat (Boersma & Weenink, 2021). Stimuli could 
take on temporal modulation values from 4–12 Hz and spec-
tral modulation values from 0.1 oct/cyc to 2 oct/cyc. Stimuli 
and scripts are available via the Open Science Framework. 
Spectrograms are shown in Fig. 2 and were created using the 
phonTools in R (Barreda, 2015).

Results of a pilot experiment indicated that discriminabil-
ity was equivalent in these ranges across the two dimensions 
and along a perfect positive and negative correlation between 

Table 1  Number of participants in each condition

Exposure condition Category type N

Spectral
Temporal
Positive
Negative
Naïve
Spectral
Temporal
Positive
Negative
Naïve

Aligned
Aligned
Aligned
Aligned
Aligned
Misaligned
Misaligned
Misaligned
Misaligned
Misaligned

29
32
29
29
30
32
31
31
32
30

1 Phase of 0 degrees assures that all elements are positionally aligned 
with one another. Spectral bandwidth is the range of spectral informa-
tion around the median and is related to perception of timbre. Ampli-
tude modulation depth reflects the variability in amplitude modula-
tion, reflecting that amplitude modulation does not change within a 
stimulus.
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the dimensions. In the pilot, participants were 80 (25 male, 
53 female, two prefer not to answer) Carnegie Mellon Uni-
versity undergraduates ages 18–25 years and were given $10 
or course credit for participating. Participants were randomly 
assigned to one of the four distributions (Spectral, Tempo-
ral, Positive, Negative; 20 participants per condition) and 
made same-different discrimination judgments of pairs of 
stimuli along an 18-step continuum (Fig. 3A). Participants 
made judgments across 496 trials (248 same, 248 different), 
with each “different” pair repeated twice. We calculated d’ 
values across all stimuli for each participant using hit and 
false alarm rates using the dprime function in the Psycho R 
package (Makowski, 2018). Discriminability was equivalent 
across the four dimensions, indicated by the fact that d’ val-
ues for the four dimensions were not statistically different, 
according to a one-way ANOVA (F(3, 76) = 1.08, p = 0.36, 
η2 = 0.041; Fig. S2, Online Supplementary Material, OSM).

Stimulus distributions

Statistical learning distributions During the statistical learn-
ing phase participants passively listened to one of four distri-
butions of sounds, according to condition (Positive, Negative, 
Temporal, Spectral). As shown in Fig. 3A, two conditions 
involved variation across both dimensions, with either a posi-
tive or a negative distribution reflecting a perfect (r = 1.0, r = 
-1.0) correlation between the two dimensions. The other two 

conditions involved variance across only one of the acoustic 
dimensions. Eighteen equidistant stimuli defined each distri-
bution. For the positive and negative distributions, one step 
between each of the stimuli varied 0.47 Hz along the tempo-
ral modulation dimension and 0.11 cyc/oct along the spectral 
modulation dimension. Temporal stimuli had a constant mean 
spectral modulation value of 1.05 cyc/oct, with 0.47 Hz per 
step. Spectral stimuli had a constant mean temporal modula-
tion value of 8 Hz, with 0.11 cyc/oct per step.

Category learning distributions Participants learned one 
of two category pairs: Aligned or Misaligned (Fig. 2B). 
Two category pairs were created by sampling a bivariate 
Gaussian distribution using the mvnorm function in the 
MASS R package (Venables & Ripley, 2002). We sampled 
for a single category (100 exemplars) using normalized 
coordinates and then rotated and mirrored that distribu-
tion to create all other categories. Thus, both category 
types possess identical variance and covariance of exem-
plars, and the relationship between the categories is 
equal in terms of overlap (Table 2; Fig. S1, OSM). The 
categories differ in how they are aligned or misaligned 
with the long-term representational prior. Separate test 
distributions (50 exemplars/category) were sampled using 
the same parameters and due to random sampling have 
slightly different means, variance, and covariance than 
the training distributions (Table 2).

Fig. 2  Stimuli spectrograms. Note. Spectrograms for stimuli across grid of temporal and spectral modulation space
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Procedure

During the statistical learning phase, all participants except 
those in the Naïve conditions passively listened to a stream 
of sounds with a particular statistical regularity (Positive, 
Negative, Temporal, Spectral) for approximately 8 min. They 
heard 450 presentations of sounds (25 repetitions each of 18 
sounds), a repetition number that has been shown in another 
stimulus space to affect perceptual discriminability (Stilp 
et al., 2010). Each sound (1 s) was followed by a 50-ms silent 
intertrial interval (ITI). Participants were given markers and 
blank pieces of paper and told to draw whatever they wanted.

Participants next learned the categories in a supervised 
categorization task across eight blocks of training with 48 
trials per block for a total of 384 training trials. On each trial, 

participants heard a single exemplar selected randomly with-
out replacement followed by a screen on which they were 
prompted about whether they believed the sound belonged to 
Category A or Category B. Participants indicated their cat-
egory response with a key-press (u or i), with response keys 
for each category counterbalanced across participants. After 
a response was made there was a 500-ms pause after which 
participants were given feedback about the correctness of 
their response (“Correct!” or “Incorrect!”). Participants also 
saw boxes on the screen that were associated with the indi-
vidual categories. In addition to the written feedback, a red 
X appeared in the box associated with the correct category. 
This red X was presented regardless of the correctness of 
the response. Feedback was displayed for 500 ms before a 
1-s ITI preceding the next category exemplar. Participants 

Fig. 3  Statistical learning and category learning distributions. Note: Stimulus distributions for the (A) statistical learning and (B) supervised cat-
egory learning phases (separately for training and generalization test)

Table 2  Category distribution information

Category M (temporal, spectral) Variance (temporal, spectral) Covariance

Training distributions
Aligned: Category A
Aligned: Category B
Misaligned: Category A
Misaligned: Category B

9.35, 0.83
7.08, 1.37
8.92, 1.37
6.65, 0.83

2.01, 0.10
1.80, 0.11
1.80, 0.11
2.01, 0.10

0.190
0.190
-0.190
-0.190

Test distributions
Aligned: Category A
Aligned: Category B
Misaligned: Category A
Misaligned: Category B

9.23, 0.75
6.73, 1.34
9.27, 1.34
6.77, 0.75

1.34, 0.077
1.37, 0.076
1.37, 0.076
1.34, 0.077

0.15
0.15
-0.15
-0.15
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were told to use feedback to inform future category deci-
sions. Finally, participants completed a test without feed-
back to assess generalization of learning to novel category 
exemplars.

Decision strategies

To understand how participants used the underlying dimen-
sions in category decisions, we used decision bound com-
putation models to assess their decision strategies (Ashby, 
1992; Maddox & Ashby, 1993). These models are derived 
from General Recognition Theory (Ashby & Townsend, 
1986) and applied widely to understand decision strate-
gies during category learning (Ashby & Maddox, 1992; 
Reetzke et al., 2016; Roark & Holt, 2019a, 2019b; Yi & 
Chandrasekaran, 2016).

We fit several classes of decision bound models. Each 
model assumes participants create decision boundaries to 
separate the stimuli into two categories. The four classes 
of models that we fit were: two unidimensional rule-based 
models (one along the temporal modulation dimension and 
another along the spectral modulation dimension), an infor-
mation-integration model in which both dimensions contrib-
ute to decisions, and a random responder model.

The two unidimensional models instantiate a linear deci-
sional bound along one of the two dimensions – temporal 
modulation or spectral modulation. Unidimensional models 
have two free parameters – the decision boundary and the 
variance of noise (both perceptual and criterial).

The information-integration model employs a general 
linear classifier that assumes a linear decision boundary 
but, in contrast to the unidimensional models, uses both 
dimensions. This model is optimal for both kinds of cat-
egories in the current study. For the Positive condition, the 
optimal decision boundary has a positive slope whereas for 
the Negative condition, the optimal decision boundary has 
a negative slope. Both training and test distributions were 
subjected to decision bound modeling to ensure that the true 
optimal model was the one idealized by the experimenter. 
The integration model has three free parameters: the slope 
and intercept of the decision boundary and the variance of 
noise (perceptual and criterial).

To understand if participants were just randomly guess-
ing, we fit a random responder model that assumes equal 
response probability across categories on each trial.

We fit the models separately to each participant’s data 
for each of the training blocks and the generalization test. 
Model parameters were estimated using a maximum likeli-
hood procedure (Wickens, 1982) and model selection used 
the Bayesian Information Criterion (BIC) = r*lnN – 2lnL, 
where r is the number of free parameters, N is the number of 
trials in a given block, and L is the likelihood of the model 
given the data (Schwarz, 1978). BIC applies penalties for 

extra free parameters and the best-fit model was defined as 
the model with the lowest BIC value.

Results

To understand the interaction between priors and statistical 
learning, we examined how statistical learning of different 
acoustic regularities influenced category learning perfor-
mance and decision strategies while learning categories that 
align or misalign with long-term perceptual priors. We tested 
three competing hypotheses: an efficient coding hypothesis 
that suggests that statistical learning experience stretches the 
axis of experience and stretches the orthogonal axis, improv-
ing category learning for categories that make distinctions 
along the axis of experience; a variability hypothesis that 
suggests that experience shrinks the axis of experience and 
stretches the orthogonal axis, improving category learning 
for categories that make distinctions along the orthogonal 
axis; and a long-term prior bias hypothesis that suggests that 
short-term statistical learning experience has limited impact 
on representations and will not impact category learning. 
Instead, according to the long-term prior bias hypothesis, 
the long-term prior may have a substantial and stable impact 
on learning that does not interact with statistical learning 
experience.

Behavioral results

To confirm that the expected long-term bias was present 
for these categories, we examined how participants with no 
exposure prior to categorization (Naïve) learned the catego-
ries (Fig. 4). Naïve participants who learned the Aligned 
categories had significantly better Block 1 accuracy than 
participants who learned the Misaligned categories (Naïve-
Aligned: M = 65%; Naïve-Misaligned: M = 55%; t(49.1) = 
3.23, p = .0022, d = 0.83, 95% CI [3.97, 17.0]). This finding 
supports the assumption that there is a long-term bias across 
learners for better learning of Aligned relative to Misaligned 
categories.

We next examined the influence of short-term statistical 
learning on category learning performance. To minimize 
potential washout effects due to experience in the categori-
zation task (e.g., Stilp & Kluender, 2016), we examined the 
group differences within the first block (Fig. 4B). Using a 
two-way ANOVA, we examined effects of the statistical reg-
ularity (Naïve, Positive, Negative, Spectral, Temporal) and 
category type (Aligned, Misaligned). In line with the per-
ceptual prior, we found an overall advantage for the Aligned 
categories over Misaligned categories (F(1, 295) = 47.3, p < 
0.0005, ηp

2 = 0.14), such that accuracy for Aligned catego-
ries was 9.1% (95% CI: [6.5, 11.7]) higher than Misaligned 
categories in Block 1.
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Short-term statistical learning did not influence category 
learning performance. There was neither an effect of the 
type of statistical regularity (F(4, 295) = 1.38, p = 0.24, ηp

2 
= 0.018) nor an interaction between regularity and category 
type (F(4, 295) = 1.45, p = 0.22, ηp

2 = 0.019).
We also compared learning across all training blocks 

(Fig. 4A), using a mixed-model ANOVA to examine the 
effects of statistical regularity (Naïve, Positive, Negative, 
Spectral, Temporal), training block (1–8), and category type 
(Aligned, Misaligned).2 The effects observed in the first 
block were persistent across all blocks – there was an overall 
advantage for Aligned over Misaligned categories across all 
blocks (F(1, 295) = 126.9, p < 0.0005, ηp

2 = 0.30), exposure 
to different regularities in the statistical learning phase did 
not affect learning across blocks (F(4, 295) = 0.22, p = 0.93, 
ηp

2 = 0.003), and there was no interaction between statistical 
regularity and category type across blocks (F(4, 295) = 1.07, 
p = 0.37, ηp

2 = 0.014).
Participants’ accuracy improved across blocks, indicated 

by a main effect of block (F(5.7, 1666.9) = 25.6, p < 0.0005, 
ηp

2 = 0.080), which was driven by a significant improvement 
from the first to the second block (Bonferroni-corrected p < 
0.0005), with no other subsequent differences among adja-
cent blocks (ps > 0.26). The improvement across blocks 
also had a distinct pattern for those learning Aligned and 
Misaligned categories (F(5.7, 1666.9) = 2.91, p = 0.009, ηp

2 
= 0.10). Aligned categories had more drastic improvement 

from the first to second block, whereas Misaligned catego-
ries had more gradual improvement across blocks. Critically, 
the type of statistical regularity did not impact the pattern 
of learning across blocks (F(22.6, 1666.9) = 0.93, p = 0.55, 
ηp

2 = 0.12), and there was no interaction between block, 
regularity, and category type (F(22.6, 1666.9) = 1.045, p = 
0.40, ηp

2 = 0.014).
Finally, the pattern of results in the generalization test 

was identical to training – generalization of learning was 
better for Aligned than Misaligned categories (F(1, 295) = 
60.0, p < .001, ηp

2 = 0.17), there was no effect of statistical 
regularity type (F(4, 295) = 0.44, p = .78, ηp

2 = 0.0045), 
or an interaction between regularity and category type (F(4, 
295) = 0.49, p = .74, ηp

2 = 0.066).
To summarize, performance during the category-learning 

task was not impacted at any stage (even the earliest stages 
of learning) by short-term statistical learning of acoustic 
regularities via passive exposure. However, there was a 
persistent effect of long-term perceptual priors such that 
Aligned categories requiring distinctions between catego-
ries across the negative axis in spectral-temporal modula-
tion space exhibited a learning advantage over Misaligned 
categories defined by the inverse relationship, even among 
Naïve participants.

Decision strategy results

We restrict our discussion of strategy use to Block 1, as 
we were primarily interested in behavior before participants 
received extensive feedback. Results for the other blocks 
can be found in the OSM. Participants used similar decision 

Fig. 4  Category learning performance. Note. (A) Mean accuracy 
across the eight training blocks and generalization test with chance 
performance (50%) denoted by a dashed line. Error bars reflect SEM. 

(B) Accuracy in the first block with mean and SEM shown in black 
and individual subject variability shown in color for each condition

2 Mauchly’s test of sphericity was significant (p < 0.0005), so we 
report the Huynh-Feldt corrected values.
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strategies, regardless of the type of statistical regularities 
they experienced (Fig. 5). According to Fisher’s exact tests, 
in the first block, there were no significant differences in the 
strategies participants used across the five regularity condi-
tions for the Aligned categories (p = 0.70) or the Misaligned 
categories (p = 0.61). Participants who learned the Aligned 
categories had a roughly even mix between optimal integra-
tion (30%), unidimensional-temporal (42%), and unidimen-
sional-spectral (28%) strategies. Participants who learned 
the Misaligned categories primarily used unidimensional-
temporal (54%) and unidimensional-spectral (39%) strate-
gies. Only 6% of Misaligned category participants used the 
optimal integration strategy.3 No participants were best fit 
by a random responder model.

While short-term statistical learning did not influence 
participants’ strategies, long-term priors did. According 
to Fisher’s exact tests, strategies were significantly differ-
ent for the Aligned and Misaligned categories (p < .001). 
More participants learning the Aligned categories used 
the optimal integration strategy than participants learning 
the Misaligned categories. These differences in strategies 
across categories persisted throughout the rest of the task 
(see Fig. S3, OSM). These results complement the behavio-
ral accuracy data: accuracy was higher for the Aligned than 
the Misaligned categories because individuals learning the 
Aligned categories used optimal integration strategies while 
individuals learning the Misaligned categories used subop-
timal unidimensional strategies.

Discussion

We investigated the interaction of long-term perceptual pri-
ors and short-term statistical learning in a category-learning 
task. Passive statistical learning had no impact on decision 
strategies or overall performance. However, there were large 
and persistent differences between the two statistically iden-
tical category types (Aligned, Misaligned), indicating that 
perceptual priors can place strong constraints on learning. 
Our study extends prior work on the influence of short-term 
statistical learning by examining the influence of this experi-
ence on relevant overt learning behavior. This study is also 
the first to examine the interaction of perceptual priors, sta-
tistical learning, and category learning.

Interaction between short‑term and long‑term 
regularities

Perceptual systems are sensitive to long-term (Ernst & 
Banks, 2002; Lewicki, 2002; Simoncelli & Olshausen, 2001; 
Wang, 2007) and short-term regularities (Aslin et al., 1998; 
Barlow & Földiák, 1989; Pons, 2006; Wanrooij & Boersma, 
2013), which enables stable yet flexible perception in a com-
plex sensory world. The current results suggest that long-
term representations may be robust in the face of short-term 
regularities. These results are consistent with findings from 
the speech category learning literature that suggest that non-
native speech categories that conflict with long-term native 
language representations are much more difficult to learn 
than categories that do not conflict with the native language 
(Best et al., 2001; Kuhl et al., 2007).

Fig. 5  Proportion of participants best-fit by each strategy in Block 1. None of the participants were best fit by a random responder model, so it is 
not shown

3 The values do not sum to 100% due to rounding of percentages.
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Regardless of the nature of the short-term statistical 
learning experience, we observed large and persistent dif-
ferences in the ability to learn statistically identical catego-
ries that differed only in the arbitrary assignment of stimuli 
to categories based on the rotation of the categories in the 
acoustic space. Participants learning Misaligned categories 
performed worse throughout training and used more subop-
timal decision strategies than participants learning Aligned 
categories. These persistent differences indicate that priors 
reflected in the representations of these dimensions may not 
be shifted, moved, or otherwise substantially influenced by 
short-term passive experience. The bias observed in this 
spectral-temporal modulation space may directly relate to 
the long-term representations of these dimensions in audi-
tory cortex (Allen et al., 2018; Hullett et al., 2016). Neu-
rons in these regions may encode a joint representation of 
spectral-temporal modulation that may relate to enhanced 
efficient processing of natural sounds, such as speech.

It is informative to compare the findings of our pilot 
study – which examined discrimination behavior across the 
positive and negative axes – and the main category learn-
ing study. We found no differences in the discriminability 
of sounds varying across the negative and positive axes in 
the pilot study but found that the Aligned categories were 
persistently learned better than the Misaligned categories. 
We believe this difference stems from the nature of these two 
tasks. Specifically, in the pilot study, participants reported 
only whether the sounds were the same or different from 
one another. The positive and negative stimuli differed on 
both the temporal and spectral modulation dimensions. As a 
result, participants could detect differences across either of 
the dimensions. We can contrast this with the requirements 
in the category learning study in which participants learned 
arbitrary labels for categories through feedback. While par-
ticipants were able to detect differences based on temporal 
and spectral modulation along the positive and negative 
axes, as evidenced by the pilot study, they were impaired in 
their ability to assign the stimuli to arbitrary categories when 
the category differences were misaligned with a long-term 
prior. It is possible that more graded measures of behavior, 
such as similarity judgments, may reveal differences across 
the positive and negative axes. Future work should address 
this directly.

The bias in learning category learning distributions 
rotated differently in space was also present in other stud-
ies with different dimensions in both auditory (Roark & 
Holt, 2019b) and visual modalities (Markant, 2018). Spe-
cifically, across our study and this prior work, categories 
that can be distinguished across the negative axis (Aligned) 
were learned better than categories distinguished across the 
positive axis (Misaligned). While these prior studies did 
not address this possibility, these directional biases may 
reflect constraints of existing representations, such that if 

categories do not align with existing representations, learn-
ers will encounter more difficulty than if they align (Holt 
et al., 2004; Roark et al., 2022). Our results suggest that 
other long-term priors should also influence category learn-
ing in predictable ways. For instance, there is an associa-
tion between amplitude modulation (i.e., change in rate of 
modulation over time) and changes in carrier frequency (i.e., 
changes in pitch over time), such that sounds that increase in 
frequency are more likely to be perceived as getting faster 
over time and sounds that decrease in frequency are more 
likely to be perceived as getting slower (Bond & Feldstein, 
1982; Feldstein & Bond, 1981; Henry & McAuley, 2009; 
Herrmann & Johnsrude, 2018). Our results suggest that any 
long-term prior or bias may influence category learning with 
categories that are aligned with the bias being easier to learn 
than categories that are misaligned with the bias.

Regardless of direction, it is possible that the source of 
these biases could be based in hardwired functionality of the 
neural systems or based on the physics of the dimensions 
themselves (e.g., faster temporal modulations can naturally 
accommodate more spectral modulations). The effect could 
also be learned – it is possible that long-term experience 
with distributions in the sensory world that accentuate cer-
tain distinctions contributes to these long-term priors (Roark 
et al., 2022). To understand the source of these biases, more 
will need to be understood about the distributions along 
these dimensions in the natural sensory world and the nature 
of the neural representations.

Cognitive systems face the tension of maintaining exist-
ing representations that have been fine-tuned to the long-
term input regularities and adapting representations to meet 
the unique needs of short-term input that may deviate from 
long-term norms. It would be extremely costly for a system 
to fundamentally change representations that do a good job of 
reflecting stable aspects of the environment when presented 
with novel information. To facilitate speech perception, lis-
teners can rapidly adapt to the novel regularities in foreign or 
artificially accented speech, without overwriting their long-
term representations (Clarke & Garrett, 2004; Idemaru & 
Holt, 2014; Liu & Holt, 2015; Norris et al., 2003; Skoruppa 
& Peperkamp, 2011). Even years of experience with a second 
language may not substantially change stable representations 
developed across the long-term (Idemaru et al., 2012). It is 
sometimes adaptive for the system not to adapt. This experi-
ment demonstrates the robustness of some representations in 
response to short-term structured experience.

Nature of the short‑term experience

There are several components regarding the nature of the 
statistical learning phase that impact the interpretation of 
the findings.
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The experience was passive

The statistical learning phase was completely passive. It is pos-
sible that perceptual systems are sensitive to these regularities 
but that changes to representations or generalizability to broader 
cognitive behavior, such as during category learning, is not pos-
sible with passive exposure alone. Prior research on rapid effi-
cient coding of regularities in sensory systems suggests some 
representational change can occur through passive exposure (Lu 
et al., 2019; Stilp et al., 2010, 2018; Stilp & Kluender, 2012, 
2016). It could be that to see impacts in a categorization context 
or changes to representations when there is a strong prior, more 
active engagement or feedback may be needed.

Supporting this view on the limits of passive exposure, both 
computational modeling and behavioral work have demonstrated 
that general sensitivity to passive exposure to statistical regulari-
ties may not be sufficient to drive learning of complex categories 
and, instead, feedback or prediction mechanisms might play a 
more substantial role (Emberson et al., 2013; Feldman et al., 2013; 
McMurray et al., 2009; Nixon, 2020; Roark et al., 2021; Wade 
& Holt, 2005). Using hybrid passive plus supervised paradigms, 
researchers have demonstrated enhanced perceptual learning, 
relative to passive exposure alone (Wright et al., 2010). Future 
research should address the extent to which representation change 
might occur with passive, active, or hybrid short-term experience.

The experience was brief

Relative to the lifetime of acoustic experience that partici-
pants had before the experiment, the 8 min of exposure to 450 
stimuli is extremely brief. This length of exposure was cho-
sen based on prior work that suggested that even short-lived 
representational change may occur with as little as 2 min of 
exposure (Stilp et al., 2010). It is possible that this amount of 
exposure is not enough to substantially change representations 
or impact behavior, but longer exposure times might. When 
representational changes occur (if they do) with further expe-
rience is an open question for future research.

Statistical learning conflicted with category learning

Finally, it is possible that we were simply unable to see any 
impact of the statistical learning phase because of the way 
that we measured the impact. After the statistical learning 
phase, participants immediately entered a testing environ-
ment with no relationship between the dimensions. During 
passive exposure, participants experienced a regularity, and 
during categorization, they experienced a different regular-
ity – a lack of a correlation between the dimensions. When 
measuring the effect of passive exposure, researchers have 
found that effects rapidly disappear in a transfer task (Stilp 
& Kluender, 2016; after 128 trials). Even across the first 48 

trials, we did not see any effects of short-term passive expe-
rience on categorization. We are unable to conclude whether 
statistical learning failed to occur at all or, alternatively, 
statistical learning occurred but effects disappeared rapidly 
during the categorization task. To disentangle these possi-
bilities, future studies could examine trial-wise behavioral 
or neural representations to examine change at a finer level.

Conclusion

Although organisms are sensitive to the statistical structure in the 
world, the interaction between short-term statistical learning and 
long-term perceptual biases, or priors, is not yet well understood. 
We found that passive statistical learning had limited effects on 
subsequent category learning in an acoustic environment with 
strong perceptual priors. These findings highlight the limits of 
short-term passive exposure on restructuring of perceptual repre-
sentations that influence learning and decision-making processes, 
such as those involved in category learning. The mind does not 
rapidly adapt to all regularities in an environment and the gener-
alizable effects of passive exposure to regularities on subsequent 
behavior are limited. Long-term priors can be quite rigid in the 
face of short-term experience and statistically identical categories 
can be learned very differently based on existing representations.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13423- 022- 02114-z.
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