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Abstract
The maintenance capacity of working memory is known to be severely limited in scope. However, the reason this capacity varies
across individuals remains unknown because it has proven difficult to estimate the maximum capacity of an individual’s “scope
of attention” (SoA) separate from their ability to achieve this maximum capacity due to temporary lapses in “attention control”
(AC). The present study accomplished this separation by using a maximum likelihood framework to extract latent constructs
representing SoA and AC from a whole-report version of the visual-array task. The results of two experiments (N = 145 and N =
189) showed that model fit was significantly greater when the model allowed both AC and SoA to vary across individuals relative
to a model in which only AC was allowed to vary (and SoA was fixed). More importantly, the individual estimates of SoA and
AC derived from this variable model suggested that (1) the observed range of SoA was found to be small across individuals, with
91% able to maintain a maximum of 3 or 4 items; (2) the consistency with which AC could be deployed was only weakly
correlated with the magnitude of SoA; and (3) AC and SoA were both found to be significant predictors of fluid intelligence.
Altogether, the present study clarified the nature of maintenance capacity and suggested that SoA and AC both need to be
included in a mechanistic account of complex cognition.

Keywords Working memory capacity . Attention control . Scope of attention . Visual array task . Fluid intelligence . Latent
variable model

A fundamental goal of cognitive science is to provide a mech-
anistic account of mental abilities. One common approach to
this endeavor has been to specify how complex cognition
arises from more primitive sources (Kyllonen & Christal,
1990). For the past several decades, working memory (WM)
was considered to be one of the most important building
blocks of higher-order cognition (Chuderski, Taraday,
Nęcka, & Smoleń, 2012; Shipstead, Redick, Hicks, & Engle,
2012). In general, WM has been defined as a collection of
processes responsible for temporarily maintaining the mental
representations used in higher-level thought and action
(Oberauer et al. 2018). As this definition suggests, however,

it has become increasingly clear that WM is itself a complex
form of cognition whose functioning is determined by a collec-
tion of more basic mechanisms (Shipstead, Lindsey, Marshall,
& Engle, 2014; Unsworth, Fukuda, Awh, & Vogel, 2014).

For instance, one of the benchmark properties of WM is
that maintenance capacity appears to be severely limited in
scope such that only a small set of approximately three to five
items of information can be actively maintained at any given
moment in time (Cowan, 2001; Oberauer et al., 2018). Two
forms of attention have emerged as potential mechanisms to
account for individual variation in this maintenance capacity.
The “scope of attention” (SoA) reflects individual variation in
the storage capacity of WM (Cowan et al., 2005), whereas,
“attention control” (AC) reflects individual variation in the
ability to engage on information that has been deemed rele-
vant to current goals so as to prevent it from being replaced by
internal or external sources of distraction (Engle, 2018;
Shipstead, Harrison, & Engle, 2016). However, the extent to
which individual variation in maintenance capacity reflects
individual variation in SoA, AC, or both remains unresolved
because it has proven difficult to estimate the maximum
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capacity of an individual’s SoA separate from their ability to
achieve this maximum capacity due to temporary lapses in AC
(see, e.g., Chuderski et al., 2012; Cowan et al., 2005; Luck &
Vogel, 1997; Shipstead, Harrison, & Engle, 2015, for various
perspectives).

Adam, Mance, Fukuda, and Vogel (2015) suggested an
innovative approach to estimate the maximum capacity of an
individual’s SoA separate from temporary lapses in AC (see
below for details). Of critical theoretical importance, they an-
alyzed performance on a whole report version of the visual-
array task (see Fig. 1) and found that a model in which SoA
was fixed at three items was able to account for individual
variation in maintenance capacity sufficiently well so long
as the efficacy of AC was allowed to vary. The notion that
individual variation in maintenance capacity can be accounted
for by a variable AC and fixed SoA suggests that individual
differences primarily reflect differences in the consistency
with which individuals can focus attention to its maximum
extent rather than differences in the magnitude of that extent.
Such moment-to-moment fluctuations in the efficacy of AC
are commonly known as “lapses of attention” (deBettencourt,
Keene, Awh, & Vogel, 2019; Robison & Unsworth, 2019)

and may be driven by fluctuations in arousal/modulatory sys-
tems (Unsworth & Robison, 2017).

However, although Adam et al.’s (2015) model provided
an innovative approach to estimate the maximum capacity of
an individual’s SoA separate from temporary lapses in AC,
their conclusion that SoA was fixed across individuals cannot
be stated with high confidence at the present point in time
because it was based largely on the untested assumptions of
their model. In particular, their conclusion suggesting that
SoA was fixed across individuals was reached without evalu-
ating the extent to which that model was superior to an alter-
native model in which the SoA and AC were both allowed to
vary. This critical model comparison could not be performed
because the parameter estimation procedure used in their mod-
el fitting process was not formalized in an appropriate statis-
tical framework.

Accordingly, the present study measured the maintenance
capacity of WM using two versions of a whole-report visual-
array task and then extracted latent AC and SoA constructs by
formalizing task performance within a maximum likelihood
framework. Our unique formalization allowed us to compare
Adam et al.’s (2015) “fixed model” with an alternative,

Fig. 1 A typical trial shown in the whole-report visual-array task used in
Experiments 1 and 2. Each trial began with a fixation display (1,000 ms),
followed by a stimulus display (250 ms) that consisted of six uniquely
colored squares. The response display appeared following a retention
interval (1,000 ms). The response display consisted of six response grids,
each of which was centered at the location of a colored square shown in
the preceding stimulus display. Each of the response grids consisted of a 3
× 3 array representing the nine possible colors that could have been

shown on each trial. Participants were required to recall, in any order,
the color of each of the six squares by clicking on the appropriate cell of
the array. No feedback was provided. In Experiment 1, the response
display did not visibly change after each recall response (upper response
panel), whereas, in Experiment 2, the 3 × 3 array changed into the select-
ed color following each recall response (lower response panel). The lower
response panel shows the first two of six responses for the illustrated trial.
(Color figure on line)
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“variable model” in which AC and SoA were both allowed to
vary across individuals. Providing an answer to this question
is important because, if the variable model turns out to be the
best-fitting model, then it will provide individual estimates of
AC and SoA, which in turn can be used to clarify three addi-
tional important questions that have not been adequately
addressed.

The first question concerned the characteristics of the SoA
distribution. In particular, SoA is often described as ranging
between three and five items (Oberauer et al., 2018), but are
individuals who have a maximum capacity of five items just
as likely as those who have a maximum capacity of three
items? Or is the distribution of SoA dominated by one or
two types of individuals? The second question concerned
the relation between AC and SoA. In particular, do individuals
who deploy AC more consistently also tend to have larger
SoA, or are these two constructs largely unrelated? Finally,
the third question concerned the extent to which AC and SoA
each predict individual variation in other forms of complex
cognition such as fluid intelligence (Gf), as measured here by
the Raven’s Advanced Progressive Matrices (RAPM) test. In
particular, do both constructs make unique contributions to
complex cognition, or is one construct more important than
the other?

Method

Stimuli and procedure

Two versions of a whole-report visual-array task (Adam et al.,
2015) were used to measure the maintenance capacity of WM
across two experiments in this study. Differences between the
two versions reflected the extent to which individual re-
sponses had to be maintained during recall (see Fig. 1 for
details). The stimulus display consisted of six uniquely col-
ored squares that were randomly selected without replacement
on each trial from the following nine possible colors: red,
green, blue, magenta, yellow, cyan, orange, white, and black.
All stimuli appeared on a gray background. Each square
subtended 0.92° of visual angle and appeared randomly in
any location within the central 9.8° × 7.3° area of the comput-
er screen, under the constraint that each square maintained a
minimum distance of 2.83° of visual angle (center to center)
from the other squares. Viewing distance (57 cm) was
enforced with a chin rest. Participant responses were collected
using the left button of a generic mouse. Participants complet-
ed 10 practice trials followed by 300 experimental trials, di-
vided into 10 blocks of 30 trials. The dependent variable was
the number of correct color–location pairs recalled on each
trial (ranging from 0 to 6).

In addition, participants in Experiment 1 also completed
the RAPM Set II items the day after they completed the

whole-report visual-array task. After completing two practice
problems from Set I, participants were instructed to complete
the full exam, consisting of 36 problems. The participants
were given a maximum of 1 hour to complete this self-paced
exam. The primary outcome on this task was the number of
correct responses (ranging from 0 to 36).

Participants

Justification for sample size is detailed in the Supporting
Information. A total of 159 undergraduate students from the
University of Notre Dame participated in Experiment 1, and a
total of 197 undergraduate students from the same population
participated in Experiment 2 (there was no overlap between
the two experiments). All students participated in exchange
for partial fulfillment of a course requirement or extra credit.
All participants reported normal or corrected-to-normal vi-
sion, and all provided informed written consent prior to the
beginning of the study.

Exclusion of participants

In the present study, an aberrant-response-detection procedure
based on the cumulative sum of the mean-centered trial data
was used to exclude participants who had greater than 20% of
trials violate the tests of cumulative sum (Mason & Young,
2002). Although this procedure excluded participants based
on the consistency of task performance, it was designed to
distinguish between those who exhibited abrupt and lasting
changes in performance over the course of the experiment
versus those who had more temporary fluctuations in task
performance (such as the two participants shown in Fig. 3,
below). This procedure resulted in the exclusion of 10 partic-
ipants in Experiment 1 and eight participants in Experiment 2.
However, the conclusions reported below were identical re-
gardless of whether this exclusion procedure was used or not.

Results

Performance on the whole-report visual-array task was formu-
lated as follows:

Y ij ¼ Y*
ij þ gij; ð1Þ

where Y*
ij is the number of color–location pairs that individual

i remembered correctly on trial j, and gij is the residual term
that represents the additional number of color–location pairs
that this individual guessed correctly on this trial (see
Supporting Information for full derivation of the distribution
of guessing).

We assumed Y*
ij followed a beta-binomial distribution; this

distribution can be thought of as a hierarchical distribution
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where Y*
ij is a binomial random variable in which the number

of possible items that could be maintained is specified by a
parameter representing SoA, and the success probability asso-
ciated with each of those outcomes follows a beta distribution
that is specified by two parameters representing AC. More
specifically, SoA was represented by the Kmax parameter; this
parameter was a discrete variable that ranged from 0 to 6 and
represented the maximum number of color–location pairs that
an individual is able to remember correctly at their peak ca-
pacity. In contrast, AC was represented by the α and β pa-
rameters. The α parameter was a continuous variable that may
range from zero to infinity and represented the lapse rate of an
individual. That is, the α parameter reflected the typical dis-
tribution of the number of correctly remembered items across
all trials and determined the extent to which individuals per-
formed at their peak capacity. Likewise, theβ parameter was a
continuous variable that also represented the lapse rate of an
individual. However, as in Adam et al.’s (2015) original mod-
el,βwas fixed to a value of 1 in the current model. Fixingβ in
this manner limited the distribution of full attention, partial
lapses, and full lapses that could be captured by the model,
but simplified the estimation procedure, which is described in
more detail in the Supporting Information. Thus, individual
variation in AC was captured exclusively by the α parameter
in the current model.

Model comparison

A primary reason for the formalization of the statistical model
was to evaluate the hypothesis that Kmax was more or less
equal across individuals by comparing the quantitative fit of
that fixed model with the fit of an alternative, variable model
in which α and Kmax were both allowed to vary across indi-
viduals. To test these models, we employed the likelihood
ratio test (LRT). Note that the fixed model was nested within
the variable model. Let the log of the likelihood function for

the above model be denoted ll bα;bkmax
� �

; the likelihood ratio

test statistic comparing the fixed model to the variable model
is given by:

LRT ¼ −2* ll bα; bKmax

� �

−ll bα; bKmax;global

� �h i

: ð2Þ

Asymptotically, the LRT statistic for nested models fol-
lows a χ2 distribution with degrees of freedom equal to the
difference in the number of parameters for the two models
(Wasserman, 2013, p. 164). In this case, the variable model
estimates Kmax andα parameters for each person (2 n); where-
as, the fixed model estimates the α parameter for each person,
and then adds a single global Kmax parameter (n + 1). Thus, we
have LRT∼χ2

n−1. Rejection of the null hypothesis would pro-
vide evidence in favor of the variable model indicating that α
and Kmax both varied across individuals.

Figure 2 shows average correct performance on the whole-
report visual-array task plotted as a function of α and Kmax in
Experiments 1 (top row) and 2 (bottom row). The left-hand
column of Fig. 2 shows the results of the variable model,
whereas, the right-hand column shows the results of the fixed
model. Note that the best-fitting global value of Kmax in the
fixed model was equal to three items in both experiments,
which corroborates the researcher-specified value used in the
model reported by Adam et al. (2015).

Figure 2 also shows that average correct performance in-
creased more across smaller α values than across larger α
values, regardless of the value of Kmax. Within the context
of this statistical model, α values reflect the consistency of
AC in that α values reflect the likelihood that Kmax will be
realized on any given trial. For instance, α values less than 1
reflect a positively skewed probability distributions in which
there is higher probability that a participant will underachieve
relative to their Kmax potential, whereas α values greater than
1 reflect a negatively skewed probability distributions in
which there is a higher probability that a participant will
achieve their Kmax potential.

LRT was performed to compare the variable and fixed
models. As can be seen in Fig. 2, the variable model in which
both parameters were allowed to vary accounted for individual
differences in performance on the whole-report visual-array
task significantly better than the fixed model in Experiment
1 (top row), χ2(144) = 2,804.029, p < .001, and in Experiment
2 (bottom row), χ2(188) = 3,825.356, p < .001. To evaluate
model fit, we looked at the proportion of variance accounted
for in the observed sample mean by the model implied mean.
Standardized indices of model fit (e.g., Yuan, 2005) were not
available for latent variable models of this type. Thus, we
evaluated how well each model was able to replicate the sam-
ple mean of all trials via an R2 statistic. The fit of the variable
model in Experiment 1 was R2 = .98, while the fit of the fixed
model was R2 = .92. Likewise, the fit of the variable model in
Experiment 2 was R2 = .98, while the fit of the fixed model
was R2 = .91.

Characteristics of the SoA distribution

Descriptive statistics for the 145 participants in Experiment 1
and 189 participants in Experiment 2 are shown in Table 1.
The frequency of estimated Kmax values (listed from one to six
items) in the variable model of Experiment 1 was 4, 4, 109, 26,
2, and 0; similarly, the frequency of estimated Kmax values in
the variable model of Experiment 2 was 1, 17, 121, 48, 0, and
2. Clearly, a majority of participants in Experiment 1 (75.2%)
and Experiment 2 (64.0%) had Kmax estimates equal to three
items within the context of the variable model, though a sub-
stantial number of participants in Experiment 1 (17.9%) and
Experiment 2 (25.4%) had Kmax estimates equal to four items.
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Thus, the distribution of SoA is dominated by individuals with
Kmax estimates equal to three items.

Relation between AC and SoA

There was a small, positive correlation observed between AC
(α) and SoA (Kmax) in Experiment 1 that did not attain signif-
icance, r = .115 (95%BCI [−0.318, 0.183]). Note that the 95%
nonparametric bootstrap confidence intervals (BCI) were

calculated from 1,000 resampled data sets to account for in-
creased variability due to sampling error of the latent variable
estimates. In contrast, there was a small, negative correlation
observed between AC (α) and SoA (Kmax) in Experiment 2
that did attain significance, r = −.169 (95% BCI [−0.311,
−0.098]). Although the BCI did not include zero in
Experiment 2, the fact that both correlations were opposite
in direction and hovered near zero suggested that the true
relation between AC and SoA is likely small in magnitude.

Table 1 Descriptive statistics for Experiments 1 and 2

Experiment 1
(N = 145)

Experiment 2
(N = 189)

Mean (SD) Skew (kurtosis) Reliability3 Mean (SD) Skew (kurtosis) Reliability3

Items correct/trial 2.92 (0.54) −1.26 (7.58) .99 2.94 (0.48) −0.84 (5.68) .98

Kmax
1 3.14 (0.61) −0.44 (6.92) .87 3.19 (0.65) 0.59 (5.92) .86

α1 3.73 (2.10) 1.63 (6.13) .72 3.50 (1.85) 2.35 (14.04) .73

RAPM2 25.39 (5.67) −0.42 (−0.42) .85 NA NA NA

1Estimate based on the variable model
2 The RAPM numbers are based on 142 participants
3 Reliability for RAPM and items correct/trial is Cronbach’s alpha. Reliability for Kmax and α is estimated as a function of the variance of the scores and
the average of the squared bootstrap standard errors of the scores (see Equation 12 in Wang, Kolen, & Harris, 1997)
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Fig. 2 Average correct performance on the whole-report visual-array task
plotted as a function of α and Kmax in Experiments 1 (top row) and 2
(bottom row). The left-hand column shows the results of the variable

model, whereas the right-hand column shows the results of the fixed
model. The best-fitting global value of Kmax in the fixed model was equal
to three items in both experiments. (Color figure online)
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For both experiments, the integer value and restricted range of
Kmax could potentially cause attenuation in the estimated
correlation.

Do AC and SoA predict Gf?

Linear regression analyses were performed on the data obtain-
ed from Experiment 1 to evaluate the relation between AC,
SoA, and Gf as measured by the RAPM. This procedure treat-
ed the estimated latent variable values as known. The overall
linear model was significant, F(2, 139) = 10.53, p < .0001.
The overall R2 of the model was .132. Individually, both SoA
(b = 2.51, 95% BCI [1.23, 3.76]) and AC (b = 0.58, 95% BCI
[0.073, 0.924]) had confidence intervals for the coefficients
that did not include zero; the partial r2 values for SoA and AC
were .08 and .05, respectively.

General discussion

The present study shed light on the fundamental mechanisms
underlying complex cognition by using a maximum likeli-
hood framework to extract separate latent constructs
representing SoA and AC from a whole-report version of the
visual-array task. The results of two experiments consistently
showed that model fit was significantly greater when the mod-
el allowed both AC and SoA to vary across individuals rela-
tive to a model in which only AC was allowed to vary (and
SoA was fixed at an optimal level). This finding was impor-
tant because it has the potential to clarify three interrelated
issues that have not been adequately addressed by previous
research.

The first issue concerned the characteristics of the SoA
distribution. The distribution of discrete Kmax values was
found to be sharply peaked, such that the vast majority of
individuals (91%) had Kmax values equal to three or four
items. Thus, although individual variation in Kmax was found
to be important, the observed range of this variation was also
found to be small, perhaps explaining why individual varia-
tion in this parameter could be plausibly ignored in previous
studies (Adam et al., 2015).We will return to this issue below.

The second issue concerned the relation between SoA and
AC, which could now be examined within a single task.
According to the variable model, performance was understood
in terms of a binomial distribution in which Kmax represented
the number of possible items that could be maintained and α
represented the success probability associated with those out-
comes. Just as the number of times a coin can be flipped has
no bearing on the success probability of those outcomes, the
magnitude of Kmax had little bearing on the value of α.
Specifically, we observed only small correlations between
Kmax and α, and these correlations fell on either side of zero
across the two experiments, even though there was nothing

inherent in the statistical model that would have precluded
such a relation to be found if it had existed.

The notion that Kmax and α can be largely orthogonal pa-
rameters that jointly determine the entire distribution of the
number of items correctly recalled on the whole-report visual-
array task is important because it has become popular to use
the extreme lower tail of this distribution—the number of
trials in which an individual correctly recalled zero or one
items—as a de facto measure of lapse rate (see, e.g., Adam
& Vogel, 2017; Robison & Unsworth, 2019). Although inter-
pretation of the number of 0s/1s would have been attributed
primarily to variation in lapse rate within the context of the
fixed model in which only AC was understood to vary (Adam
et al., 2015), the interpretation of this number is more refined
within the context of the variable model because the frequency
of these (and all other) response categories are jointly deter-
mined by individual variation in both Kmax and α. Hence, it is
expected that the number of 0s/1s would correlate strongly
with Kmax, α, and the number of correctly recalled items
(even if the number of 0s/1s were excluded from the average;
cf. Robison & Unsworth, 2019). In this view, the relation
between SoA and AC is reflected by the correlation between
Kmax and α, not the correlation between average correct and
the number of 0s/1s (cf. Robison & Unsworth, 2019).

Another manifestation of the separate contribution that
SoA and ACmake to task performance is that two individuals
could attain similar levels of performance on a single visual-
array task for different reasons. For instance, the participant
depicted in the top panel of Fig. 3 averaged 3.64 items correct,
and the participant depicted in the bottom panel averaged 3.63
items correct. However, the former participant had a Kmax

estimate equal to 6 paired with an α estimate equal to 1.30;
whereas, the latter participant had a Kmax estimate equal to 4
paired with an α estimate equal to 3.56.

The present approach thus provides a more refined method
for estimating individual variation in maintenance capacity
than has been provided by average correct performance on
visual array tasks (cf. Shipstead et al., 2014; Unsworth et al.,
2014), whichmay have utility for understanding how SoA and
AC undergird other forms of complex cognition such as Gf—
the third issue to be addressed. Indeed, although SoA and AC
were weakly related to each other in the present study, they
were both found to be significant predictors of Gf. Altogether,
AC and SoA were found to explain approximately 13% of the
variance in Gf—an admittedly modest amount, though this
magnitude was nonetheless in the range of task-level correla-
tions that has been observed between average correct perfor-
mance on the visual-array task and total scores on the RAPM
task in previous studies (Shipstead et al., 2014; Unsworth
et al., 2014).

However, it may be premature to judge the true relation
between SoA and Gf, or between SoA and AC, on the basis
of existing evidence because, in addition to providing a better
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estimate of SoA, the present findings suggested that typical
samples are likely to contain very little individual variation in
SoA. The rarity of extreme Kmax values is an interesting ques-
tion in its own right, but it also suggests that selective sam-
pling techniques are needed to ensure that typical sample sizes
contain adequate individual variation across the entire range
of SoA. Accordingly, we have developed a 5–10 minute
screening measure, based on the present formalization that
enables researchers to identify individuals across the range
of SoA in a timely and efficient manner (qubnk.com/whp/).

However, the strength of these three conclusions is limited
by the relatively narrow scope of the fixed and variable
models as well as by the validity of more general theoretical
assumptions underlying the present approach. In particular,
with respect to scope, the current study was designed to dis-
tinguish between fixed and variable models of visual-array-
task performance, and it did not attempt to address a myriad of
other important theoretical issues that are relevant to task per-
formance, including the binding of colors and locations, the
role of strategic factors, and the influence of long-term mem-
ory processes, to name a few. With respect to theoretical as-
sumptions, the present study addressed the difference between
the fixed and variable models within the framework of dis-
crete capacity models, and it did not attempt to test this as-
sumption against alternative models that assumed continuous-
ly varying memory states.

With these limitations in mind, the present study utilized
the visual-array task to show that individual variation in SoA
exists along with individual variation in AC. In so doing, the
present study provided important new evidence that the mag-
nitude of SoA can be separated from the consistency of AC,
and that both constructs can make unique contributions to a
mechanistic account of complex cognition. Finally, the pres-
ent study has revealed limitations in the range of SoA used in
previous individual difference studies, and it has provided a
means of improving these studies by enabling identification of
those in the tails of the SoA distribution.
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