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Abstract We examine whether judgments of posterior prob-
abilities in Bayesian reasoning problems are affected by rea-
soners’ beliefs about corresponding real-world probabilities.
In an internet-based task, participants were asked to determine
the probability that a hypothesis is true (posterior probability,
e.g., aperson has a disease, given a positive medical test) based
on relevant probabilities (e.g., that any person has the disease
and the true and false positive rates of the test). We varied
whether the correct posterior probability was close to, or far
from, independent intuitive estimates of the corresponding
‘real-world’ probability. Responses were substantially closer
to the correct posterior when this value was close to the intuitive
estimate. A model in which the response is a weighted sum of
the intuitive estimate and an additive combination of the prob-
abilities provides an excellent account of the results.
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Beliefs about the real world can affect reasoning. A well-
known example is the belief bias in categorical syllogistic
reasoning: a logical inference is more likely to be viewed as
valid if the conclusion is believable in light of real-world
knowledge (Evans, Barston, & Pollard, 1983). Here, we reach
a similar conclusion regarding Bayesian reasoning, showing
that this form of reasoning is influenced by a pre-experimen-
tal, intuitive estimate of the posterior probability.
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In a typical Bayesian reasoning problem, participants are
provided with three probabilities in the following form
(adapted from Eddy, 1982; Gigerenzer & Hoffrage, 1995):

The probability that a person has breast cancer is 1 %.

[Base rate, p(H))
If a person has breast cancer, the probability that they

will test positive is 85 %. [True positive rate, p(D|H)]
If a person does not have breast cancer, the probability
that they will test positive is 15 %. [False positive rate,

p(D|—H)]

The participant is asked to determine the posterior
probability:

If a person tests positive, what is the probability they
have breast cancer? [Posterior, p(H|D)]

Bayes’ theorem provides the posterior probability as follows:

p(D|H)p(H)
(D|H)p(H) + p(DI-H)p(—~H)

p(HID) = >

The correct posterior in this problem is 5.4 %. However,
people typically perform very poorly on these problems (Bar-
Hillel, 1980; Kahneman & Tversky, 1972). Even the re-
sponses of medical experts have been shown to be too high
by about an order of magnitude on a similar problem (Eddy,
1982).

As in this example, real-world scenarios are often used as
stimuli. For example, Gigerenzer and Hoffrage (1995) asked
participants to estimate the probability that there is prenatal
damage to a fetus given that the mother had German measles,
and the probability that a child will develop bad posture given
that he or she carries heavy books to school. The starting point
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of the present study is the observation that participants are
likely to have pre-experimental beliefs about these posteriors,
e.g., the conditional probability that a child will develop bad
posture given that he or she carries heavy books. We call these
pre-experimental beliefs intuitive estimates. It is plausible that
Bayesian reasoning, like syllogistic reasoning, is influenced
by how well the inferential conclusion accords with partici-
pants’ beliefs about the real world (Anderson et al., 2015;
Evans, Handley, Over, & Perham, 2002). We hypothesized
that the posterior probabilities that participants provide reflect,
in part, their intuitive estimates of the conditional probabilities
that they are being asked to compute.

To address this question, we presented participants with
Bayesian reasoning problems that shared common base, true
positive, and false positive rates, but differed with respect to
the real-world situation depicted in the problem. The actual
posterior was either believable, i.e., relatively close to the
mean intuitive estimate of the same conditional probability;
unbelievable, 1.e., far from the mean intuitive estimate; or
neutral, 1.e., subjects were not expected to have clear intuitive
estimates.

Because intuitive estimates of the probability of breast can-
cer given a positive test result are typically very high (a mean
of 62 % in the current experiment), the posterior in the prob-
lem above (5.4 %) is unbelievable. However, in the following
example, with the same numerical values, the posterior is be-
lievable, as the mean intuitive estimate of the probability that a
person who is coughing has pneumonia was only 13 %:

The probability that a person has pneumonia is 1 %

If a person has pneumonia, the probability that they are
coughing is 85 %

If a person does not have pneumonia, the probability
that they are coughing is 15 %

For this set, the neutral posterior question was “If an animal
is a cat, what is the probability that it has tri-esterone?”. Our
prediction was that estimated posteriors would be closer to the
normatively correct Bayesian posteriors when the correct pos-
terior was believable than when it was unbelievable.

Method
Participants

Fifty-four people participated through Amazon’s Mechanical
Turk (https:/www.mturk.com/mturk/) and received US $2.00.
Assuming a two-tailed, dependent-measures #test with a=0.05
and d=0.50, 54 participants are needed to achieve a power of
0.95. Participants self-reported as fluent English speakers, in the
United States, and between 18 and 74 years old.

Stimuli

Fifty sets of three Bayesian reasoning problems were initially
generated. The probabilities within each set were identical. The
base rates, true positive rates, and false positive rates for these
problems, hereafter called the rates, were sampled randomly
from uniform distributions in the ranges 0-59 %, 51-99 %,
and 1-49 %, respectively. The correct posterior probabilities
ranged from 5 % to 94 %. The content was selected so that,
within each set, the correct posterior was judged by the
experimenters to be believable in one case, unbelievable in
one case, and neutral in one case. All rate statements were
designed to be plausible.

A norming study with 108 participants (27 in each of four
conditions), carried out on Mechanical Turk via Ibex Farm
(http://spellout.net/ibexfarm/), served to select a subset of these
50 problem sets for use in the main experiment. The norming
study ensured that the believability and plausibility assumptions
were met for the selected items.

In the first condition of the norming study, participants viewed
each of the 50 posterior prompts alone, e.g., “What is the prob-
ability that if a person is coughing they have pneumonia?”, and
were asked to provide an estimate of this probability using radio
buttons that ranged from 0 % to 100 % in 5 % increments, e.g.,
11-15 %, 16-20 %, etc. The center of the response range
(e.g., 13 % for the 11-15 % button) was used in statistical anal-
ysis. For each of the 50 sets, we calculated the mean absolute
difference between the actual posterior and the intuitive estimate
in the believable and unbelievable problems. The 24 sets with the
largest differences between these values were selected for the
main experiment. The mean distances to the actual posterior
for the stimuli in each condition are provided in Table 1
(i.e., | pilHD) — p(HD) |). The mean intuitive estimate is 0.29
closer to the correct posterior for the believable stimuli than for
the unbelievable stimuli. The correlations of the intuitive estimate
to the actual posterior for the selected stimuli in the believable,
neutral, and unbelievable conditions were » = 0.83, 0.10, and
—0.8, respectively.

In the remaining three norming conditions, participants
viewed either the base, true positive, or false positive rate state-
ments, and were asked to “rank the plausibility of this statement”
on a 4-point scale (1 = very implausible, 2 = somewhat implau-
sible, 3 = somewhat plausible, 4 = very plausible).! Fifty intui-
tively implausible rate statements were also included as fillers.
The mean plausibility ratings for the rate statements in each
condition of the 24 items that were selected for inclusion in the
experiment are given in Table 1 (i.e., ppiaus(H); Pplaus(DJH), and
Pplaus(D[7H)). The believable and unbelievable plausibility

! Full instructions for plausibility ratings: imagine that a friend tells you
an interesting fact they just learned. This fact is the probability of a
particular outcome or event. For example, ‘if someone is sneezing the
probability that they have a cold is 55 %’. Your job is to figure out how
plausible the fact is.
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Table 1
posterior for the stimuli in each believability condition

Mean plausibility ratings for each rate statement and mean absolute distance of intuitive estimates and estimated posteriors to the actual

Condition pplaus(H) pplaus(DIH) pplaus(DIﬁH) | plc(mD) *P(HlD) | ‘ pcst(mD) 7P(I{ID) |
Believable 2.94 (0.26) 3.19 (0.40) 2.57 (0.30) 0.21 (0.06) 0.24 (0.20)
Neutral 2.65(0.36) 2.76 (0.35) 2.35(0.27) 0.32(0.12) 0.25(0.21)
Unbelievable 2.80 (0.35) 3.10 (0.41) 2.28(0.37) 0.50 (0.13) 0.32(0.23)

Dpiaus Plausibility rating during the norming study, p;(H]D) intuitive estimate of the posterior during the norming study, p.(H]D) estimate of the posterior
in the main experiment, p(H|D) actual posterior. Plausibility estimates could range from 1 to 4 (1 = very implausible; 4 = very plausible). The differences

could range from 0 to 1. Values in parentheses are standard deviations

ratings for the base rate, #23) = 1.45, p = .16, and the true positive
rate, #23) = 0.85, p = .40, were not statistically different. The
plausibility of the false positive rate was somewhat lower in the
unbelievable condition, #23) = 3.16, p = .004. We note, however,
that the difference was small in absolute terms, and that the false
positive rate in the unbelievable condition did not differ signifi-
cantly from the neutral condition, #23) = 0.71, p = .49.

Three experimental lists were created from the 24 stimulus
sets, so that each participant in the main experiment saw one
problem from each of the 24 sets, with eight in each believ-
ability condition. Lists were created by first ranking the 24
problem sets according to the difference between the believ-
able and unbelievable intuitive estimates. The first list then
consisted of the believable, unbelievable, and neutral versions
from ranked sets 1, 2, and 3, respectively. This cycle then
continued through the remaining sets. The second list
consisted of the unbelievable, neutral, and believable versions
from sets 1, 2, and 3. The third list consisted of the neutral,
believable, and unbelievable versions from sets 1, 2, and 3,
respectively. Participants were assigned randomly to experi-
mental lists. The 24 stimuli used in the main experiment are
provided online (http://blogs.umass.edu/rdcl/resources/).

Procedure

The main experiment was presented on Ibex Farm through
Mechanical Turk. On each trial, a Bayesian reasoning problem
was shown as described above. The participant responded
with an estimate of the posterior by typing a percent from
0 % to 100 %.

Results

All analyses were performed in R (R Core Team, 2016). A
visual summary of the data is provided in Fig. 1. The left,
middle, and right panels are data from the believable, neutral,
and unbelievable conditions, respectively. The x-axis is the
actual Bayesian posterior, and the y-axis is the mean of par-
ticipants' estimated posterior. Each point represents 1 of the 24
problems in the relevant condition. The solid black line is the
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regression line for these estimated posteriors. For reference,
the dashed black line is the regression line for the mean intu-
itive estimates in each condition (points not shown).

Correct Bayesian inference would put all points on the gray
diagonal. There are clear deviations from Bayesian inference
in all conditions, but performance also differs across condi-
tions. The proportion of variance in the mean estimated pos-
terior for each problem that is accounted for by the actual
posterior is 0.66 (r = 0.81) in the believable condition, 0.49
(r = 0.70) in the neutral condition, and 0.01 (» =-0.11) in the
unbelievable condition. The relationship between the estimat-
ed and actual posteriors was significantly stronger in the be-
lievable than in the unbelievable condition (z = 4.55, p <.001)
and was stronger in the neutral than the unbelievable condition
(z=3.91, p<.001; Diedenhofen & Musch, 2015, using z from
Pearson & Filon, 1898).

To quantify this difference in another way, we calculated
the mean absolute distance from the estimated posterior to the
correct posterior for each subject, in each condition. These
data are provided in Table 1 (i.e., | posAH|D) — p(H|D) |).
There was an overall difference across conditions, F(2, 106)
= 16.29, p < .001, 772p = 0.24. Estimated posteriors for the
believable stimuli were closer to the actual posterior than for
the unbelievable stimuli, #(53) =4.92, p <.001, d = 0.61, but
were not significantly closer than for the neutral stimuli, #53)
=0.84, p=.41,d=0.11. The neutral and unbelievable stimuli
also differed, #(53) = 4.47, p < .001, d = 0.67.

We next investigate how intuitive estimates factor into the
judgment process. The simplest possibility is that participants
ignored the rates and simply responded based on their intuitive
estimates. The scatterplots in the top row of Fig. 2 show the
relationship between the intuitive estimate (x-axis) for each prob-
lem and the mean of the estimated posterior judgments (y-axis).
The believable, neutral, and unbelievable conditions are in the
left, middle, and right, columns, respectively. The proportion of
variance in the estimated posteriors accounted for by the intuitive
estimates (R?) is also provided in each panel. There is a high
correlation between the intuitive estimate and the estimated pos-
terior in the believable condition, presumably because these stim-
uli were selected intentionally so that the intuitive estimate was
close to the actual posterior. However, there is little relationship
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in the neutral and unbelievable conditions. Aggregating the three
conditions, the data are not well accounted for by the intuitive
estimates alone (overall R? = 0.21).

Clearly, the rates provided in each problem are likely to
play some role in the reasoning process. In a similar task,
Cohen and Staub (2015) found that, for many participants,
the estimated posterior can be modeled as an additive function
of these rates. First, we applied a simplified model that ig-
nored individual variability, regressing the mean estimated
posterior in each of the 72 problems on the three rates.
Below we explore individual variability. The same four pa-
rameters (three rate coefficients and an intercept) were used
for all three conditions. The predictions of this linear model
are provided in the second row of Fig. 2. This model does a
good job of accounting for the believable and neutral condi-
tions, but not the unbelievable condition. Aggregating the
three conditions, the overall R? = 0.42.

The final model combines the insights of the previous two
models. The estimated posterior is modeled as a weighted
combination of the linear model and intuitive estimates.
There are five parameters (three rate coefficients, an intercept,
and the weight) for the 72 data points. The results are provided
in the third row of Fig. 2. This weighted model does an even
better job of predicting both the believable and neutral condi-
tions. Importantly, it can also now account for a large propor-
tion of the variance in the unbelievable condition, and aggre-
gating the three conditions, the overall R* = 0.69. This result is
particularly impressive given the restricted range of the esti-
mated posteriors in the unbelievable condition. The weights
for the linear model and intuitive estimate were 0.68 and 0.32,
respectively. Interestingly, including the actual posterior in
this weighted model in place of the intuitive estimate provides
no advantage over the linear model alone (R2 =0.42), and, in
this model, the weight on the actual posterior was very close to
0. Thus, the influence of the three rates in the problem appears
to be entirely captured by the linear model. Details of the
models are provided online (http://blogs.umass.
edu/rdcl/resources/).

Given prior evidence of individual differences in use of the
rates (e.g., Cohen & Staub, 2015), these models were also fit
separately to each individual’s 24 observations, allowing all pa-
rameters to vary between individuals. The mean R was 0.36 for
the linear model and 0.45 for the weighted model that includes a
term for the intuitive estimate. The weighted model better ac-
counts for the 72 data points in the aggregated data than it does,
on average, for the 24 data points generated by an individual
participant. This result suggests that there is substantial noise in
individual subject data, with the influence of the intuitive esti-
mate emerging most strongly when participant estimates for each
problem are averaged.

Further inspection of individual participant fits is revealing.
Figure 3 is a histogram of the weights that the weighted model
places on the linear combination of rates, for the 54

@ Springer
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Fig.3 Histogram of the weights on the linear combination of rates across
individual participants

participants.” A value of 0 indicates that all weight was placed
on the intuitive estimate, and a value of 1 indicates that all
weight was placed on the linear combination of rates. A few
clear patterns emerge. First, the mean is 0.68, which is identi-
cal to the weighting on the linear combination of rates in the
averaged data. Second, a majority of participants (69 %) place
more weight on the rates than the intuitive estimate. Third, the
data are clearly bimodal: one group of participants places al-
most no weight on the intuitive estimate, while a second group
shows a more even weighting of the rates and the intuitive
estimate.

Figure 4 further illustrates individual variability in sensitiv-
ity to the intuitive estimate. On the x-axis is the fit of the linear
model without the intuitive estimate, in R%, and on the y-axis is
the fit of the weighted model that includes the intuitive esti-
mate. When a participant’s estimated posteriors are well
modeled as a linear combination of rates, with R> > .6, there
is no benefit at all from inclusion of the intuitive estimate term.
Though some of this phenomenon is a simple ceiling effect
(i.e., little improvement is possible if R? is near 1), it also
suggests that those participants who do combine the rates in
a consistent manner tend to ignore the intuitive estimate. On
the other hand, many subjects who are poorly fit by the linear
model show substantial improvement in fit when the intuitive
estimate is included.

Discussion

This experiment provides evidence that real-world beliefs in-
fluence judgments in Bayesian reasoning problems. Although
there is individual variability, when the normatively correct
posterior is relatively close to the mean intuitive estimate,
responses tend to be close to the correct answer; when the
normatively correct posterior is far from this mean intuitive
estimate, responses tend to be further from the correct answer.

2 Due to local minima and the addition of jitter, some weights were
slightly less than O or greater than 1. Weights have been capped at 0
and 1 in the Fig. 3.
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Indeed, in the latter case, there was no relationship whatsoever
between participants’ estimated posterior and the correct pos-
terior across a range of 24 problems (right panel of Fig. 1). A
statistical model in which the mean estimated posterior in a
given problem is a weighted sum of the mean intuitive esti-
mate and an additive combination of the probabilities in the
problem provides a much better fit to the data (R* = .69) than
does a model based on either the intuitive estimate alone (R* =
21) or the linear combination alone (R> = .42). In particular,
only the former model can account for the data when the
actual posterior is unbelievable.

These results have implications for the interpretation of
previous research using real-world scenarios as stimuli. The
believability of the normatively correct posterior is likely to be
a source of variability in how well subjects do in these prob-
lems, and therefore in how researchers evaluate reasoners’
abilities. If an experiment were to make use only of problems
like our unbelievable problems, the conclusion would likely
be that people cannot do these problems at all, as in this case
there is literally no relationship between the estimated poste-
rior and the correct answer. On the other hand, if an experi-
ment were to make use only of problems like our ‘believable’
problems, the conclusion would likely be that people are quite
good at Bayesian reasoning, as the correlation between the
correct answer and the estimated posterior is about 0.81.
Neither of these conclusions would be warranted. Relatedly,
experiments that contain a mix of believable and unbelievable
problems may involve unanticipated item effects. Looking
forward, the present results lead to the recommendation that
researchers who are investigating Bayesian reasoning per se
either take beliefs about real-world posteriors into account, or
design problems with no real-world content (as in Cohen &
Staub, 2015).

Turning to more theoretical implications, these results dem-
onstrate that real-world beliefs contaminate abstract reasoning
in a Bayesian context. The idea that two kinds of information
are combined in the reasoning process has been previously

suggested for both logical (e.g., Beller & Spada, 2003;
Evans, 2007; Evans & Stanovich, 2013) and Bayesian (e.g.,
Evans et al., 2002) reasoning. For example, a model that com-
bines the output of decontextualized logical reasoning and
prior knowledge provides a good account of a set of condi-
tional reasoning results (Klauer, Beller, and Hutter, 2010). The
study most similar to the present one is that by Evans et al.
(2002), who explored the role of multiple sources of informa-
tion in Bayesian reasoning. They found that personal beliefs
can be used by participants when they are not supplied by the
experimenter, and that these beliefs are weighted more heavily
than provided information. Thus, both the Evans et al. (2002)
results and the current results suggest that reasoners may dis-
count information provided in Bayesian reasoning problems
and instead rely on real-world beliefs.

It is important to note, however, that we diverge from
Evans et al. (2002) in our underlying model of how reasoners
perform these problems. Evans et al. (2002) assume that rea-
soners do perform essentially Bayesian reasoning, but with
potentially non-normative weights on the rates. We have ar-
gued (Cohen & Staub, 2015) that reasoners combine the pro-
vided rates additively, and that most subjects actually take into
account only one or two of the rates. In the present study we
find yet another departure from normatively correct Bayesian
reasoning, in which the posterior that is arrived at based on an
additive combination of rates may be adjusted based on an
intuitive estimate of that posterior. Normatively correct
Bayesian reasoning plays no role in our model.

There are connections between the current emphasis on
posterior intuitive estimate and work showing that knowledge
of causal relations can influence probabilistic reasoning (e.g.,
Ajzen, 1977; Hayes, Hawkins, Newell, Pasqualino, & Rehder,
2014; Krynski & Tenenbaum, 2007; McNair & Feeney, 2015;
Tversky & Kahneman, 1980). For example, telling partici-
pants that the presence of a cyst can cause a positive mammo-
gram can improve performance on the standard medical diag-
nosis problem described above. One way to interpret the
“unbelievability” of a posterior, then, is that a causal model
may be lacking. For example, participants may not believe
that a positive test is only mild evidence for breast cancer
because they are not aware of the other factors that can cause
a positive result. If unbelievability is understood in these
terms, it is possible that providing a causal model results in
an improvement in reasoning because it makes the correct
posterior believable. That is, the believability of a posterior
may be viewed as a matter of having an appropriate causal
model, and the improvement in Bayesian reasoning
performance that comes about when a causal model is
provided may be viewed, in part, as an effect on the
believability of the posterior.

Finally, we note that we have not addressed critical ques-
tions about exactly how real world beliefs about the posterior
influence the reasoning process. If it is interpreted as a process
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model, the weighted model assumes, in effect, that intuitive
estimates do not influence the reasoning process per se, but
rather bias the response. One component of the weighted mod-
el additively combines the three rates; the output of this com-
ponent is weighted, and is combined with the intuitive
estimate. Dube, Rotello, and Heit (2010) have made an anal-
ogous claim regarding the belief bias in syllogistic reasoning.
Dube et al. (2010) argued that the tendency to judge a syllo-
gism with a believable conclusion as valid is due to an effect
of believability on the response criterion, rather than an effect
on the perception of the argument's strength (cf., Trippas,
Handley, & Verde, 2013). We acknowledge that further re-
search is clearly needed to explore this issue in the context
of Bayesian reasoning. It may turn out that, while the statisti-
cal model we have employed does a reasonably good job in
explaining the variance in the data, it is inadequate as a pro-
cess model of how intuitive estimates are actually used.
Indeed, the fact that this statistical model does a better job at
the aggregate level than when fitting individual participant
data may be seen as circumstantial evidence in favor of this
position. Regardless, the present research has demonstrated a
tendency for reasoners to take into account beliefs about real-
world conditional probabilities in Bayesian reasoning situa-
tions. This result adds yet another example to the catalogue
of all-too-human departures from normative principles of
reasoning.
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