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Abstract The motor theory of speech perception has experi-
enced a recent revival due to a number of studies implicating
the motor system during speech perception. In a key study,
Pulvermiiller et al. (2006) showed that premotor/motor cortex
differentially responds to the passive auditory perception of
lip and tongue speech sounds. However, no study has yet
attempted to replicate this important finding from nearly a
decade ago. The objective of the current study was to
replicate the principal finding of Pulvermiiller et al. (2006)
and generalize it to a larger set of speech tokens while apply-
ing a more powerful statistical approach using multivariate
pattern analysis (MVPA). Participants performed an articula-
tory localizer as well as a speech perception task where they
passively listened to a set of eight syllables while undergoing
fMRI. Both univariate and multivariate analyses failed to find
evidence for somatotopic coding in motor or premotor cortex
during speech perception. Positive evidence for the null hy-
pothesis was further confirmed by Bayesian analyses. Results
consistently show that while the lip and tongue areas of the
motor cortex are sensitive to movements of the articulators,
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they do not appear to preferentially respond to labial and al-
veolar speech sounds during passive speech perception.
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There has been a recent resurgence of the motor theory of
speech perception (MTSP), the idea stemming from the work
of Liberman and colleagues (Liberman, 1957; Liberman,
Cooper, Shankweiler, & Studdert-Kennedy, 1967; Liberman
& Mattingly, 1985), arguing that the way we understand
speech is by mapping the sounds of speech to the movements
associated with producing those sounds (Galantucci, Fowler,
& Turvey, 2006).

One study substantially contributing to the revival of this
idea is a functional magnetic resonance imaging (fMRI) study
by Pulvermiiller et al. (2006), which showed that the lip and
tongue areas of the premotor/motor cortex (PMC) differential-
ly responded to the perception of lip and tongue sounds during
passive listening. This paper has received over 368 citations
(Google Scholar) since its publication nearly a decade ago,
indicating the considerable influence it has had on the field.
While several studies have since demonstrated an effect of
transcranial magnetic stimulation (TMS) applied to the lip
and tongue areas of PMC on discrimination tasks during
speech perception (e.g., D’Ausilio et al., 2009; Moéttonen &
Watkins, 2009), no fMRI study that we are aware of has yet
replicated the specific automatic motor-somatotopic effect re-
ported by Pulvermiiller and colleagues.

The objective of the current study was to replicate and
extend the findings of Pulvermiiller et al. (2006), which
showed that the lip and tongue areas of the PMC respond
differentially to the passive perception of the phonological
feature known as place of articulation (PoA; the location at
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which the articulators approach one another to form a speech
sound, such as the lips to form a labial consonant).

In the original study, the lip and tongue areas of the
motor cortex were first “localized” in 12 participants via
a motor task (lip and tongue movements) and an articula-
tion task (silently mouthing the syllables [pI], [p], [tI],
and [te]). The peak voxels in the central sulcus, which
were most strongly activated by the localizers, were select-
ed as the centers of 8-mm radius regions of interest (ROIs)
for each area, and additional precentral ROIs were also
selected. In the perception portion of the study, participants
listened to the previously listed speech sounds presented
by a single female voice. They were instructed to passively
listen to the sounds during two 24-minute blocks without
engaging in any motor movements. Spectrally adjusted
signal-correlated noise stimuli were also presented to
participants.

Mean fMRI activation estimates for the noise stimuli were
subtracted from each syllable type and then subjected to a 2
(place of articulation: labial/lip and alveolar/tongue) x 2 (mo-
tor cortex location: lip and tongue) analysis of variance
(ANOVA) in both the precentral and central ROIs. Results
showed a significant interaction of PoA and motor cortex
location only in the precentral ROIs, F(1, 11) = 7.25, p =
.021. The authors concluded that articulatory phonetic fea-
tures are accessed during both passive speech perception and
production within the precentral gyrus. They further conclud-
ed that the findings were consistent with aspects of the MTSP
and that “the different perceptual patterns corresponding to the
same phoneme or phonemic feature are mapped onto the same
gestural and motor representation” (Pulvermiiller et al., 2006,
p. 7868).

In a recent study (Arsenault & Buchsbaum, 2015), we used
multivoxel pattern analysis (MVPA) to identify areas of the
cortex whose distributed activity patterns were associated with
phonological features including voicing, manner, and PoA.
Although we found robust phonological feature decoding in
the bilateral superior temporal area, we did not find significant
decoding in PMC. However, in our previous study we did not
use an articulatory localizer to identify lip and tongue regions
of the PMC and therefore could not claim to directly replicate
or refute Pulvermiiller et al.’s (2006) results.

The present study used an articulatory localizer and a
passive speech perception task to conceptually replicate
the findings of Pulvermiiller et al. (2006). In addition to
the ROI-based univariate approach adopted by the original
authors, we also use more sensitive MVPA to identify
shared distributed patterns of neural activation between
speech production and speech perception in the PMC. If
articulatory features are indeed mapped to PMC during
passive listening of speech sounds, MVPA ought to be
more sensitive to these shared representations than tradi-
tional univariate methods.
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Materials and methods
Experimental methods
Participants

Thirteen healthy young adults (mean age = 27.5 years, SD =
3.9 years; six females) were recruited from the Baycrest
Health Sciences research database. All were right-handed flu-
ent English speakers with normal hearing, no known neuro-
logical or psychiatric issues, and no history of hearing or
speech disorders. All participants gave written informed con-
sent according to guidelines established by Baycrest’s Re-
search Ethics Board.

Stimuli and experimental methods

Stimuli consisted of the eight syllables listed in Table 1 and
were perfectly balanced across the phonological features of
PoA, manner of articulation, and voicing.

Each participant completed two separate scanning sessions
within the span of approximately 1 month (but at least 48 hours
apart). The first scanning session consisted of a speech per-
ception task, while the second session consisted of a silent
speech production (overt articulation without vocalization;
speech miming) task. A third session was also conducted,
but this data will not be presented herein. Speech perception
was always first so as not to influence the perception of sounds
with the associated motor movements (the same protocol was
used in Pulvermiiller et al., 2006). Before each session, all
participants completed a brief practice session outside of the
scanner. Each experimental session consisted of either 9 or 10
runs (six and seven participants, respectively) of 27 trials each,
with each syllable plus a blank trial appearing three times in
each run. Each run was approximately 4.5 minutes in length.
Each action trial (either perception or miming, depending on
the session) consisted of five stimulus repetitions separated by
a 500 ms interstimulus interval (ISI; see Fig. 1). Action trials
were interspersed with blank trials, which lasted for 4 s and
were visually represented by three dashes (—). All stimuli
were presented using Eprime 2.0 and made visible to partici-
pants through a mirror mounted on the head coil.

Speech perception session

Auditory recordings were taken from the standardized Univer-
sity of California, Los Angeles, version of the Nonsense-
Syllable Test (Dubno & Schaefer, 1992). Each syllable was
produced by a female voice (two different speakers; three
exemplars of each syllable per speaker) and was root mean-
square normalized and adjusted to be 620 ms in length, with a
10 ms rise and fall at the beginning and end of the sound
(presented within a 1,000 ms window to allow adequate
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Table 1  Phonological feature distribution of stimuli used in current
study

Syllable Place Manner Voicing
ba labial stop voiced
pa labial stop voiceless
va labial fricative voiced
fa labial fricative voiceless
da alveolar stop voiced
ta alveolar stop voiceless
za alveolar fricative voiced
sa alveolar fricative voiceless

loading time). The sounds were played at a comfortable vol-
ume for participants through electrodynamic MR-Confon
headphones. During this session, participants were asked to
keep their eyes open while passively listening to speech
sounds. To ensure that participants were paying attention, they
were asked to make a button press during every blank trial.
Responses indicate that participants were attentive throughout
the experiment (see Supplementary Material).

Speech miming session

Trials in this silent session included an initial visual pre-
sentation of the syllable to be mimed in large black font in
the center of the screen, followed by five crosshairs sepa-
rated by an ISI. In time with each of the crosshairs, partic-
ipants were asked to mime the syllable appearing in the
initial slide as if they were saying the syllable but without
actually producing any sound. Thus, they mouthed the syl-
lable five consecutive times during each action trial and
rested during blank trials. Participants were trained to keep
their heads as still as possible and not to exaggerate the
mouthing movements.

Imaging methods
MRI set-up and data acquisition

Participants were scanned with a 3.0-T Siemens
MAGNETOM Trio MRI scanner using a 12-channel head coil
system. High-resolution gradient-echo multislice T1-
weighted scans (160 slices of 1 mm thickness, 19.2 x
25.6 cm field of view) coplanar with the echo-planar imaging
scans (EPIs) as well as whole-brain magnetization prepared
rapid gradient echo (MP-RAGE) 3-D T1 weighted scans were
acquired for anatomical localization, followed by T2*-weight-
ed EPIs sensitive to BOLD contrast. Images were acquired
using a two-shot gradient-echo EPI sequence (22.5 x
22.5 cm field of view with a 96 X 96 matrix size, resulting
in an in-plane resolution of 2.35 x 2.35 mm for each 0of 26 3.5-
mm axial slices with a 0.5-mm interslice gap; repetition time =
1.5 s; echo time = 27 ms; flip angle = 62 degrees).

MRI preprocessing

Functional images were converted into NIFTI-1 format,
realigned to the mean image of the first scan with AFNI’s
(Cox, 1996) 3dvolreg program, corrected for slice-timing off-
sets and spatially smoothed with a 4-mm (full-width half-max-
imum) Gaussian kernel. To facilitate comparison of fMRI data
acquired in the speech perception and speech miming ses-
sions, the EPI images from the second session (miming) were
aligned to the reference EPI from the first session (speech
perception).

Structural MRIs were warped to MNI space using symmet-
ric diffeometric normalization as implemented using Ad-
vanced Normalization Tools (ANTS; Avants, Epstein,
Grossman, & Gee, 2008). Each subject’s structural MRI was
also parcellated into ROIs using FreeSurfer’s (Dale, Fischl, &
Sereno, 1999) automated automatic anatomical labeling
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Fig. 1 One action trial each for a) speech perception and b) speech miming. Participants were asked to simply listen to the sounds during speech
perception and to silently mouth the syllables during each of the five crosshairs for speech miming
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method (“aparc 2009~ atlas; Destrieux, Fischl, Dale, &
Halgren, 2010).

Data analysis
Univariate analyses

We first attempted to narrowly replicate the findings from
Pulvermiiller et al. (2006) by using their exact precentral
ROI MNI coordinates (lips: -54, -3, 46; tongue: -60, 2, 25)
surrounded by a 10-mm spherical mask. We estimated BOLD
activity for each syllable using the general linear model
(GLM) with a set of eight regressors of interest, one per syl-
lable, derived by convolving the SPM canonical hemodynam-
ic response function with the event onset vector (e.g., the
times at which each syllable was mimed or perceived). An
additional set of five orthogonal polynomial nuisance regres-
sors were entered into the model and used to model low-
frequency drift in the fMRI time series.

Using the GLM regression weights, averaged over the
spherical mask, for two of our eight stimuli — [pa] and [te]
— we performed a 2 (stimulus type: labial and alveolar) x 2
(motor location: lip and tongue) within-subjects ANOVA. We
also investigated PoA sensitivity in these coordinates using all
eight stimuli (four labial, four alveolar) with one-way ¢ tests.

We followed this with a general test of PoA sensitivity in
PMC during speech perception using subject-specific
somatotopic localizers. To isolate the lip and tongue areas of
the PMC, we contrasted regression weights for labial and al-
veolar PoA using all eight syllables during the speech miming
task and yielding voxelwise ¢ statistics. For each participant,
we identified the peak positive (labial > alveolar contrast) and
negative (alveolar > labial contrast) voxel in both the left and
right PMC (see Fig. 2a and Supplementary Material Table S1
for individual coordinates). We then created 10-mm radius
spheres around each of the peak voxels to use as lip and
tongue masks. Because of the close physical proximity of
these locations, we ensured that the lip area was not included
in the tongue mask and vice versa by removing any voxels in
each participants’ mask that contained negative (alveolar >
labial) values for the lip ROIs and positive (labial > alveolar)
values for the tongue ROIs. We used these lip and tongue
ROIs to extract regression weights from the speech perception
data to assess the extent to which the passive perception of
labial and alveolar sounds is associated with elevated activa-
tion in the lip and tongue areas, respectively. We conducted
paired ¢ tests of labial versus alveolar sounds within each ROL

Multivariate analyses
MVPA identifies patterns of activation that are distributed

across a region and can be used to reliably classify brain pat-
terns according to experimental condition, cognitive state, or
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other variables (Norman, Polyn, Detre, & Haxby, 2006). Here
we used MVPA to test whether the auditory perception of
speech sounds selectively activates the distributed motor speech
representations involved in the production of those same sounds.
This is a more general test of the conclusions reached by
Pulvermiiller and colleagues (2006), who stated that the
“perception of speech sounds in a listening task activates spe-
cific motor circuits in precentral cortex, and [these] are the same
motor circuits that also contribute to articulatory and motor pro-
cesses invoked when the muscles generating the speech sounds
are being moved” (p. 7868). Thus, we used the articulation task
as a method of training a pattern classifier that could be used to
test the reliability of PoA encoding in the PMC during silent
articulation and, more importantly, during passive perception.

To achieve this, we first trained a multivariate classifier on
the miming data (sparse partial least squares implemented in
the R package “spls”: https://cran.r-project.org/web/packages/
spls; Chun & Keles, 2007) in each of six FreeSurfer subject-
specific anatomical PMC ROIs (the left and right precentral
gyrus, central sulcus, and postcentral gyrus; see Fig. 2b) to
discriminate between alveolar and labial tokens in the full set
of eight syllables. To carry out an MVPA analysis, one must
first estimate activation magnitudes for each trial in the exper-
iment. Thus, we first ran new GLM analyses for both the
perception and articulation data sets in which each trial was
modeled with an individual regressor that was time-locked to a
single experimental event. This analysis yielded a beta coeffi-
cient image for every trial in the experiment, resulting in two
sets of 216 beta images (216 speech perception; 216 speech
miming; note, for subjects with 10 runs, the number of trials
were 240 perception and 240 miming. For the sake of simplic-
ity, we will use the more conservative values of nine runs /216
images to describe the methods). The set of 216 beta images
from the miming task was used to train a pattern classifier to
discriminate between the labial and alveolar beta images.

To assess the performance of this PoA classifier, we used a
cross-validation approach where trial-wise activation images
from eight runs (192 trials) were used as a training set and the
remaining data (24 trials) were used as a hold-out test set (see
Arsenault & Buchsbaum, 2015, for similar approach). This
process was then repeated such that the beta images for each
run were used as the heldout test set for one iteration of the
cross-validation procedure. The results of this internal cross-
validation of the classification accuracy on the speech miming
data established our ability to reliably discriminate between
labial and alveolar articulations during miming of syllables
(see Fig. 4). We then fit a final model on all 216 speech mim-
ing trials and stored the fitted model for later use (see below).

To test whether the classifier trained on the speech miming
beta images could also be used to accurately classify speech
perception beta images, we adopted a “cross-decoding” ap-
proach (Kriegeskorte, 2011). This involves training a pattern
classifier on one condition (i.e., speech miming) and testing
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the fitted model on another condition (i.e., speech perception).
The cross-decoding approach has been used successfully in
vision literature, for example, to reveal overlapping patterns of
activation between perceptual data and visual imagery
(Stokes, Thompson, Cusack, & Duncan, 2009; St-Laurent,
Abdi, & Buchsbaum, 2015). If speech miming and speech
perception share a representational code in PMC, then the
PoA classifier trained on speech miming data should be able
to reliably classify PoA in the speech perception data. Above-
chance classification from miming to speech perception
would indicate that the classifier generalizes from speech ar-
ticulation to speech perception, and thus the two neural states
are related by a common pattern of activity. We applied the
stored speech miming classification model to the set of 216
beta images derived from the perception data and calculated
the classification accuracy of the recorded output. Two-tailed ¢
tests were computed to test if the classification accuracy in
each hemisphere was significantly different than chance
(0.5), and were corrected for multiple comparisons using a
false discovery rate (FDR; Benjamini & Hochberg, 1995).

Finally, we trained a second model using the speech per-
ception data alone to assess whether reliable patterns of acti-
vation associated with PoA exist in PMC that are driven by
acoustic input without the constraint that the evoked patterns
are topographically related to the patterns evoked during
speech miming. To evaluate this possibility, we used the same
cross-validation procedure as described above, except that this
time the classifier was trained and tested on the speech per-
ception beta images instead of being trained on the speech
miming beta images. To distinguish this analysis from the
cross-decoding approach presented above, we refer to it as a
direct-decoding analysis. We then examined performance of
this classifier within the PMC ROIs using only the auditory-
speech data and used two-tailed ¢ tests to assess whether per-
formance in each ROI was significantly different from chance
0.5).

Bayesian hypothesis testing

Bayesian hypothesis testing was used throughout this report to
assess the relative statistical evidence for the null hypothesis
compared to the alternative by taking the reciprocal of the
Bayes factor (1/Bayes Factor; Rouder, Speckman, Sun,
Morey, & Iverson, 2009). Bayes Factors represent the relative
weight of evidence in the data favoring one hypothesis over
another given appropriate prior distributions. Here we used
the implementation of Bayesian ¢ tests in the R package
“BayesFactor” (https://cran.r-project.org/web/packages/
BayesFactor/). The alternative hypothesis was specified
using a Cauchy distribution such that 50 % of the true
effects sizes are within the interval (-0.7071, 0.7071). This is
a reasonable choice in the present case where we wish to

compare the null hypothesis to an alternative in which the
effect size is small to medium (see Rouder et al., 2009).

Results
Univariate results
Previously reported coordinates

A two-way within-subjects ANOVA was performed to test for
an interaction of motor areas (lip and tongue) and stimulus
type (/p/ and /t/) within the MNI coordinates reported in
Pulvermiiller et al. (2006). While the effect was significant
for the speech miming task, F(1, 12) = 17.99, p < .001, we
did not find a significant interaction for speech perception,
F(1, 12) = 0.57, p = .46. These coordinates also failed to
produce a significant difference in an overall test of PoA con-
trast (labial > alveolar) using all eight syllables for speech
perception in our participants—lip area: #(12) = 0.10, p =
.92, 1/Bayes Factor = 3.58; tongue area: #(12) = 0.22, p =
.83, 1/Bayes Factor = 3.52. Bayesian hypothesis tests suggest
that evidence for the null hypothesis (that lip and tongue areas
of PMC do not selectively respond to labial and alveolar
speech sounds) is approximately 3.5 times larger than for the
alternative (that lip and tongue areas do selectively respond to
labial and alveolar sounds).

Functionally derived coordinates

We next used our participants’ individually localized bilateral
lip and tongue ROIs to test for somatotopic activation during
passive speech perception. We were able to identify in the
articulatory localizer data significant lip and tongue PMC
ROIs in all 13 subjects (all single-subject ps < .0001; see
Fig. 2a for evidence of high spatial overlap). We conducted
paired ¢ tests to test for a difference in activation between
labial and alveolar articulations in both the lip and tongue
ROIs. These tests confirmed that labial and alveolar move-
ments produced significantly different activation values dur-
ing the speech miming task in both the lip area (Mjapja =
0.526, SD = 0.285; M,jyeolar = 0.299, SD = 0.269); #(12) =
10.08, p < .0001, 95 % ClIs [0.179, 0.277], d = 0.824, and
the tongue area (Mjapia1 = 0.119, SD = 0.329; Myjycotar = 0.349,
SD = 0.34); #(12) = -9.43, p < .0001, 95 % CIs [-0.283, -
0.177], d =-0.687, which is to be expected because the ROIs
were selected on the basis of a labial > alveolar GLM contrast.
As can be seen in Fig. 3, however, no evidence was found for
a significant difference between the auditory perception of
labial and alveolar sounds in either the lip area (Mjapja =
0.035, SD = 0.064; M_jycotar = 0.031, SD = 0.05); #(12) =
0.251, p = .805, 95 % ClIs [-0.027, 0.034], or the tongue area
(Miapiar = 0.026, SD = 0.088; M,jyeolar = 0.027, SD = 0.072);
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Fig. 2 ROIs used in the current study projected onto inflated brain
surface. a Average of each participant’s peak lip (red) and tongue

(green) voxels, plus 10-mm spherical mask, derived from the localizer
task. Color bars indicate percentage of overlap between participants. b

#(12) = -0.112, p = 913, 95 % Cls [-0.026, 0.003]. Further-
more, Cohen’s effect size suggests low practical significance
during the speech perception task for both the lip (d = 0.062)
and tongue (d = -0.016) ROIs, and the overall interaction of
PoA and ROI was not significant, F(1, 12) = 0.492, p = 0.496.
Comparable effect size data is unfortunately not available
from Pulvermiiller et al. (2006).

This finding was not affected by hemisphere as no signif-
icant differences were found when the left and right ROIs
were investigated separately (see Supplementary Figure S1).

Multivariate analyses

We trained a sparse partial least squares (Chun & Keles, 2007)
pattern classifier in three PMC ROIs to classify PoA on the
speech miming data and tested the performance of this classi-
fier on both the speech miming and the speech perception
data. Figure 4 shows classification accuracy for the left and
right precentral gyrus, central sulcus, and postcentral gyrus,
averaged across participants. The results show that when our
speech miming classifier was tested on the held-out speech
miming data, it produced highly significant classification ac-
curacy (mean accuracy: 0.86, ranging from 0.81 to 0.92 across

Activation of Motor Cortex during Speech Perception
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Fig. 3 Univariate analysis of speech perception task, showing average
activation values within each participants’ lip and tongue area for labial
and alveolar speech sounds. Error bars represent between-subjects
standard error of the mean
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FreeSurfer ROIs corresponding to precentral gyrus (cyan), central sulcus
(pink), and postcentral gyrus (lime green). Red and green dots indicate
approximate location of Pulvermiiller et al.’s (2006) lip and tongue
coordinates, respectively. (Color figure online)

ROIs; chance accuracy: 0.5; all participants’ average accura-
cies > 0.75; all ps < .0001). When this model was used to
predict PoA for the speech perception task, however, it failed
to reliably classify PoA in any of the ROIs (ps > 0.5; see
Table 2 for statistical results). This suggests again that the
passive perception of labial and alveolar speech sounds does
not recruit the same motor patterns as the corresponding artic-
ulatory movements. Our Bayesian hypothesis tests revealed
that across ROls, evidence for the null hypothesis (that clas-
sifier accuracy is equal to 0.5) is 2.3 to 3.6 times larger than for
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Fig. 4 Classification accuracy for a classifier trained on speech miming
data and tested on both speech miming and speech perception (cross-
decoding). Chance performance = 0.5. a Left hemisphere FreeSurfer

ROIs. b Right hemisphere FreeSurfer ROIs
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Table2 MVPA cross-validation, cross-decoding, and Bayes factor results. Bayes factor results represent how much more likely the null hypothesis is

compared to the alternative

ROI Miming Mean Miming # value (df = 12) Perception Mean Perception ¢ value (df = 12) 1/Bayes Factor
Left precentral gyrus 0.8123 10.5995* 0.5003 0.0291 (ns) 3.59
Left central sulcus 0.9238 34.0952* 0.4997 -0.0369 (ns) 3.59
Left postcentral gyrus 0.8569 18.5625% 0.4907 -1.0115 (ns) 233
Right precentral gyrus 0.8284 11.0143* 0.5014 0.1961 (ns) 3.53
Right central sulcus 0.9054 25.8642%* 0.4982 -0.2387 (ns) 3.51
Right postcentral gyrus 0.8362 16.8201* 0.4882 -0.9795 (ns) 2.39

* <.0001; all p values adjusted for multiple comparisons with false discovery rate correction

the alternative hypothesis (that classifier performance is great-
er than 0.5).

Direct decoding

In a final analysis, we investigated cross-validated classifica-
tion accuracy for just the speech perception data to assess
whether there were neural patterns in the PMC that could
discriminate the speech tokens without the requirement that
these patterns be congruent with the corresponding speech
miming patterns (and thus would not have been detected dur-
ing cross-decoding). Classification accuracy for this analysis
was not significantly different than chance in any region after
adjusting for multiple comparisons, although there is marginal
effect in the left postcentral gyrus at an uncorrected threshold
(mean across ROIs = 0.504, chance = 0.5, ps > 0.1; see Fig. 5
and Table 3).

Discussion

The objective of the current study was to replicate and extend
the results of Pulvermiiller and colleagues (2006), which
showed that the passive auditory perception of labial and al-
veolar consonants differentially activated areas of PMC that

Direct-Decoding Classification Accuracy

OPrecentral Gyrus @Central Sulcus BOPostcentral Gyrus

0.60 -
&
= 5 0.55 A
387 :
L=
2 8 T I
@ < 4 I t I
o] 0.50 T I 1 T T
0.45
Left Right
Hemisphere

Fig.5 Direct-decoding performance in motor cortex ROIs for a classifier
that was trained and tested on speech perception data

are involved in their silent production. We attempted to gen-
eralize the finding to a larger set of speech tokens and also to
apply a more sensitive MVPA analytic approach searching for
somatotopic representations in PMC during passive speech
perception. Using a silent articulation localizer, we were able
to correctly classify brain patterns evoked during the silent
production of labial and alveolar sounds at up to 92 % accu-
racy at the single trial level. However, both univariate and
multivariate analyses failed to find evidence for articulatory
representations during passive speech perception in either pre-
viously reported, functionally derived, or anatomically de-
fined ROIs within the PMC.

Although it does not appear that PMC selectively maps
PoA during speech perception, a large body of research sug-
gests that other areas of the brain — particularly the superior
temporal lobes — are sensitive to phonetic properties and spe-
cifically encode phonological features such as PoA, voicing,
and manner of articulation (Agnew, McGettigan, & Scott,
2011). Recent research by Arsenault and Buchsbaum (2015)
used fMRI and MVPA to show overlapping but distinct rep-
resentations of each feature throughout the auditory cortex,
indicating that pattern classification of such perceptual fea-
tures is indeed possible. These findings were recently largely
replicated by Correia, Jansma, and Bonte (2015; see below).
Lawyer and Corina (2014) have used fMRI-adaptation to
show that voicing and PoA are processed in separate but ad-
jacent areas of the superior temporal lobes in a large stimulus
set with multiple consonant and vowel combinations. Similar-
ly, using electrocorticography (ECoG), Mesgarani, Cheung,
Johnson, and Chang (2014) showed that electrodes through-
out the superior temporal gyrus (STG) selectively respond to
particular features during continuous speech, although the na-
ture of ECoG did not allow for the PMC to be assessed in that
study.

On the other hand, there have been a number of TMS
studies that have suggested that the PMC does have some
influence on the perception of speech sounds. D’Ausilio and
colleagues (2009) administered TMS to lip- and tongue-
relevant motor areas during the discrimination of lip- and
tongue-articulated speech sounds and found a double
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Table 3  Means (chance = 0.5) and ¢ values of direct-decoding classification accuracy in PMC ROIs during speech perception; adjusted for multiple
comparisons using false discovery rate correction. Bayes factor scores represent evidence in favor of the null hypothesis

t value (df = 12)

Corrected p value 1/Bayes Factor

ROI Mean

Left precentral gyrus 0.4997 -0.025
Left central sulcus 0.4958 -0.2997
Left postcentral gyrus 0.5283 2.5849
Right precentral gyrus 0.5052 0.4103
Right central sulcus 0.5009 0.1319
Right postcentral gyrus 0.4967 -0.2593

0.98 3.59
0.98 3.46
0.143 0.35
0.98 3.34
0.98 3.57
0.98 3.49

dissociation in reaction time performance. More recently,
Schomers, Kirilina, Weigand, Bajbouj, and Pulvermiiller
(2014) delivered facilitory TMS to lip and tongue areas of
the motor cortex during a word-to-picture matching task in
order to measure comprehension effects. It was found that
words with an alveolar PoA were matched faster following
TMS to the tongue area of the motor cortex than to the lip
area, although the reverse was not found for labial PoA, and
no differences in accuracy were observed.

How can we account for these seemingly contradictory
findings? One important caveat to consider when interpreting
PMC contribution is the nature of the task (Scott, McGettigan,
& Eisner, 2009). For example, Burton, Small, and Blumstein
(2000) found that inferior frontal gyrus (IFG) activation was
associated with same—different judgements of spoken words
only when segmentation — separating an individual sound
from the whole stimulus — was required to complete the task.
Similarly, a TMS study by Krieger-Redwood, Gaskell,
Lindsay, and Jefferies (2013) attempted to disentangle
decision-making tasks by using real-word stimuli that differed
in only one phoneme (i.e., carp vs. cart). They asked partic-
ipants to make either a semantic or phonological judgement
and concluded that PMC is involved in phonological, but not
semantic, judgements, demonstrating a lack of participation of
PMC in speech comprehension. More recently, Méttonen,
Van de Ven, and Watkins (2014) used TMS and MEG to
measure the impact of attention on auditory-motor processing.
They found that in the absence of a task, TMS to motor cortex
resulted in nonspecific modulations of auditory cortex;
articulator-specific effects of TMS were only seen during a
working memory task. This line of research suggests that the
above TMS studies, which did not have control tasks, can be
explained by their use of phonological categorization (but see
Schomers et al., 2014, for their interpretation of the Krieger-
Redwood study). It is currently unclear how fMRI-adaptation
approaches, which have shown greater effects of phonemic
category (e.g., Chevillet et al., 2013), can be reconciled with
MVPA approaches such as ours, which show little or no sen-
sitivity to phonological categories in motor cortex.

Recent lesion work also supports the notion that the motor
cortex is not critical for passive perception but rather supports

@ Springer

explicit categorization. Stasenko and colleagues (2015) pre-
sented evidence that a stroke patient with damage to his left
IFG has intact perceptual discrimination but impaired phone-
mic identification, once again suggesting that the role of the
motor system in speech perception has more to do with task
demands than speech processing.

The original Pulvermiiller et al. (2006) study did not, how-
ever, require any judgement on the part of the participant — the
task was simply to passively listen, as was done in the current
study. Obviously, this type of design would not be practical for
a TMS study, but it is noteworthy that much of the recent
support for the MTSP comes from TMS, rather than fMRI,
studies. Many fMRI studies support the idea that the speech
motor system may aid in speech perception under adverse
listening conditions (i.e., Osnes, Hugdahl, & Specht, 2011;
Hervais-Adelman, Carlyon, Johnsrude, & Davis, 2012). Du
etal. (2014) demonstrated PMC recruitment during a syllable-
identification task that exceeded the contribution from the
STG only when speech was presented in white noise. This
highlights a difference between our study and the
Pulvermiiller et al. (2006) study, in that Pulvermiiller et al.
used a sparse-sampling fMRI paradigm, reducing the level
of background scanner noise during the study, while we did
not. According to previous literature, the background scanner
noise in our study should actually have increased the role of
the PMC in speech perception, yet we still failed to find a
significant somatotopic effect in our task.

Another important aspect of the original Pulvermiiller et al.
(2006) study is the fact that even they did not find overlap
between lip and tongue areas identified by the localizer tasks
and the perception of labial and alveolar sounds. Rather, the
only significant findings reported in their study were in the
precentral ROIs, which were placed anteriorly to the ROIs
defined by the localizers, but still within the ROIs we exam-
ined (see Fig. 2).

One recent fMRI study used MVPA to show decoding of
place of articulation in somatosensory cortex of the inferior
postcentral gyrus during passive listening (Correia et al.,
2015). It is important to note that this effect was observed
using a “direct decoding” approach using acoustic speech
stimuli, similar to our second MVPA analysis presented in
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Fig. 5. Indeed, our finding of marginally significant direct
decoding of PoA in left postcentral gyrus during speech per-
ception may be viewed as a partial replication of the finding in
Correia et al. (2015). We did not, however, find that the
postcentral gyrus or the other PMC ROIs contained neural
pattern information that could be cross-decoded from the
speech miming condition, which is the critical test of motor
theories of speech perception.

In the current study, we tested the hypothesis that PMC
maps articulatory features of speech sounds in areas that are
associated with the production of such sounds, as well as
within anatomically defined ROIs and in the coordinates spec-
ified by Pulvermiiller et al. (2006). We did not find any evi-
dence of articulatory feature mapping for PoA in the PMC
during passive speech perception and therefore failed to con-
firm the earlier finding.
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