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Abstract It is well-known in numerical cognition that
higher numbers are represented with less absolute fidelity
than lower numbers, often formalized as a logarithmic map-
ping. Previous derivations of this psychological law have
worked by assuming that relative change in physical magni-
tude is the key psychologically-relevant measure (Fechner,
1860; Sun et al., 2012; Portugal & Svaiter, Minds and
Machines, 21(1), 73–81, 2011). Ideally, however, this prop-
erty of psychological scales would be derived from more
general, independent principles. This paper shows that a
logarithmic number line is the one which minimizes the
error between input and representation relative to the prob-
ability that subjects would need to represent each number.
This need probability is measured here through natural lan-
guage and matches the form of need probabilities found in
other literatures. The derivation does not presuppose any-
thing like Weber’s law and makes minimal assumptions
about both the nature of internal representations and the
form of the mapping. More generally, the results prove
in a general setting that the optimal psychological scale
will change with the square root of the probability of each
input. For stimuli that follow a power-law need distribution
this approach recovers either a logarithmic or power-law
psychophysical mapping (Stevens, 1957, 1961, 1975).
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A fundamental challenge faced by cognitive agents in the
world is that of mapping observable stimuli to internal rep-
resentations. In human and animal cognition such mappings
are mathematically regular, following a systematic relation-
ship between stimulus and representation. This mapping
is perhaps most studied in the case of the approximate
number system (Dehaene, 1997), which is used to form non-
exact representations of discrete quantities. Notably, this
system of numerical representation is found across ontogeny
(Xu& Spelke, 2000; Lipton & Spelke, 2003; Xu et al., 2004;
Xu & Arriaga, 2007; Feigenson et al., 2004; Halberda &
Feigenson, 2008; Carey, 2009; Cantlon et al., 2010), age
(Halberda et al., 2012), culture (Pica et al., 2004; Dehaene
et al., 2008; Frank et al., 2008), and species (Brannon
& Terrace, 2000; Emmerton, 2001; Cantlon & Brannon,
2007).

The approximate number system has been characterized
two ways in prior literature. One formalization assumes that
number gets mapped to a linear psychological scale where
the fidelity of representation decreases with increasing
numerosity (Gibbon, 1977; Meck & Church, 1983; Whalen
et al., 1999; Gallistel & Gelman, 1992). If, for instance, the
standard deviation of a represented value n is proportional
to n, this model can explain the ratio effect in which the
confusability of x and y depends on x/y. An alternative to a
linear mapping with variable noise is a logarithmicmapping
with constant noise (Dehaene, 2003; Dehaene & Changeux,
1993). In this model, a number n is mapped to a represen-
tation ψ(n) given by ψ(n) ∝ log(n). Properties such as
the psychological confusability of numbers are determined
by distance in the logarithmically-transformed psychologi-
cal space. Because log x−log y = log(x/y), this framework
can also explain the ratio effect. Some work has argued
for the neural reality of the logarithmic mapping by show-
ing neural tuning curves that scale logarithmically (Nieder
et al., 2002; Nieder &Miller, 2004; Nieder &Merten, 2007;
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Nieder & Dehaene, 2009), although other behavioral phe-
nomena appear less well described by either model (Verguts
et al., 2005) (see Prather (2014) for deviations from both
models).1

The present paper aims to investigate why cognitive sys-
tems may represent higher numbers with decreasing fidelity
in the way that they do. To answer this question, we will
derive a general form of an optimal representation of a con-
tinuous quantity in a bounded psychological space. To make
this derivation tractable, we assume that the noise is con-
stant and then show that the optimal mapping will change
with the square root of the input probability. This derives
a logarithmic psychophysical function for a plausible input
distribution for natural number. The approach of optimiz-
ing a representation function relative to constraints may be
generalizable to also deriving the linear mapping with scalar
variability2 or other psychophysical domains.

In principle, the cognitive system supporting number
could likely implement a large number of mappings (though
see Luce, 1959). It is easy to imagine other possibilities,
such as where the input stimuli are mapped to representa-
tional space according to other functions like exponentials,
power-laws, or polynomials. Several of these examples are
shown in Fig. 1a, where numbers 1, 2, . . . , 100 are mapped
into a bounded psychological space, arbitrarily denoted
[0, 1]. Here, the distance between numerosities in psycho-
logical space (difference along the y-axis) is meant to quan-
tify measures such as confusability or generalization among
particular representations (in the sense of Shepard, 1987).
Thus, representations which are given high fidelity are fur-
ther away from their neighbors; close numbers such as the
higher numbers are more likely to be confused because they
are nearby in psychological space. This figure illustrates
the key challenge faced by a cognitive system: the psy-
chological space for any organism is bounded—we do not
have infinite representational capacities—so our cognitive
system must trade-off fidelity among representations. One
cannot increase fidelity for one stimulus without paying the
cost of effectively decreasing it for another.

1Other work has criticized logarithmic scaling by arguing that it pre-
dicts nonlinear addition and subtraction (Stevens, 1960; Livingstone
et al., 2014), since ψ(x)+ψ(y) = log x + log y �= x +y. This critique
erroneously assumes that addition in numerical space of x+y must cor-
respond to addition in the psychological space (e.g. ψ(x) + ψ(y)). In
actuality, numerical addition can be correctly implemented in psycho-
logical space using other functions (e.g. f such that f (ψ(x), ψ(y)) =
ψ(x + y)) and such functions have long been worked out in computer
science (e.g. Swartzlander & Alexopoulos, 1975).
2A satisfying analysis might try to derive the two-dimensional function
g(x, v), giving the probability that a psychological representation of x

would be at value v, where the conditional distribution of v given x is
a Gaussian centered at x, with a width proportional to x.

The logarithmic mapping in this setup makes higher
numbers closer in psychological space (e.g. | log 98 −
log 99| < | log 4−log 5|), reserving higher fidelity for lower
numbers. Other mappings would not have this property—
for instance, the mapping ψ(x) = tan 1/x which reserves
almost all fidelity for the very lowest cardinalities (e.g. 20
and 21 are about as confusable as 98 and 99), or the expo-
nential curve in Fig. 1a which actually reserves fidelity for
higher cardinality (e.g. 98 and 99 are less confusable than 4
and 5).

The below derivation explains why the mapping for
numerosity appears to be at least close to logarithmic,
building on prior derivations as well as work arguing for
information processing explanations in perception more
generally (e.g. Wainwright, 1999). The derivation presented
here shows that a logarithmic mapping is an optimal psycho-
logical scaling for how people use numbers. The derivation
is similar in spirit to Smith and Levy (2008), who derive
the logarithmic relationship between reading time and prob-
ability in language comprehension. The present derivation
shows that the logarithmic mapping is optimal relative to
the probabilities with which different numerosities must
be represented, the need probabilities. This approach dif-
fers from that undertaken previous by, for instance, Luce
(1959), who created a set of psychophysical axioms—such
as how the representation should behave under rescaling
of the input—and studied the laws permitted by such a
system. Building on recent work by Portugal and Svaiter
(2011) and Sun et al. (2012), we formalize an optimiza-
tion problem over a broad class of possible psychological
functions, and show that solution of this optimization yields
the logarithmic mapping in the case of number. In deriv-
ing the optimal representation for number, we show how
power-law mappings may also be derived, for distributions
similar in parametric form to the number need distribu-
tion. Thus, much as other accounts have attempted to
unify or collapse logarithmic and power-law psychophys-
ical functions (MacKay, 1963; Ekman, 1964; Wagenaar,
1975; Wasserman et al., 1979; Krueger, 1989; Sun et al.,
2012), the present work demonstrates that both are opti-
mal under different situations, starting from the same base
assumptions. This work therefore provides an alternative to
previous derivations of powers laws based on aggregation
(Chater and Brown, 1999). We begin with an overview of
previous derivations of the logarithmic mapping.

Previous derivations of the logarithmic mapping

In psychology, the most well-known derivation of the loga-
rithmic mapping is due to Fechner (1860). Fechner started
by assuming the validity of Weber’s law, which holds
that the just noticeable difference in a physical stimulus
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Fig. 1 a Several logically possible representation systems for approx-
imate number with with ψ(1) = 0 and ψ(100) = 1. Each mapping
takes an input cardinality (n) to a representation (ψ(n)). The real puz-
zle is not which of these five example curves is chosen, but which

out of the infinite number of possible mappings is chosen. b Loga-
rithmic and power-law mappings: the red lines represent power laws
with α = 1.7, 1.85, 2.15, 2.3. Power-law mappings (reds) closely
approximate a logarithmic mapping (blue) for α ≈ 2

is proportional to the magnitude of the stimulus. Fechner
then showed how this property of just noticeable differences
gives rise to a logarithmic mapping, although his mathe-
matics has been criticized (Luce and Edwards, 1958; Luce,
1962); more recent formalizations of Fechner’s approach
have used conceptually similar methods to the functional
analysis we present here (Aczél et al., 2000). As argued
by Masin et al. (2009), Fechner’s approach of presuppos-
ing Weber’s law has led to the persistent misperception
that Weber’s law is “the foundation rather than the impli-
cation” of the logarithmic mapping. Indeed, it makes much
more sense to treat Weber’s law as a description of behav-
ior and to seek independent principles for explaining the
psychological system that gives rise to this behavior.

In this spirit, Masin et al. (2009) review two alterna-
tive derivations which do not rely on Weber’s law. One
by Bernoulli (1738) predates Fechner by over a century
and operates in the setting of subjective value; another,
by Thurstone (1931) makes assumptions very similar to
Bernoulli but is framed in terms of intuitive economic
quantities like “motivation” and “satisfaction.” While these
examples importantly illustrate that a logarithmic mapping
can be derived from principles other than Weber’s law,
they—without full justification—stipulate equations that
lead directly to the desired outcome. Bernoulli, for instance,
assumes that an incremental change in subjective space
should depend inverse-proportionally on the total objec-
tive value. Any other relationship would not have yielded a
logarithmic mapping.

However, there is a more important disconnect between
modern psychology and the derivations of Fechner, Thur-
stone, and Bernoulli. Their work predated an extremely
valuable methodological innovation: rational analysis (e.g.

Anderson & Milson, 1989; Anderson, 1990; Anderson &
Schooler, 1991; Chater & Oaksford, 1999; Geisler, 2003).
From the perspective of rational analysis, the question of
why there is a logarithmic mapping can only be answered
by considering the context and use of the approximate num-
ber system. Any derivation that does not take these factors
into account is likely to be missing an important aspect of
why our cognitive systems are the way they are. As it turns
out, a logarithmic mapping is well-adapted specifically to
the observed need probabilities of how often each cardinal-
ity must be represented or processed. A strong prediction
of this type of rational approach is that the mapping to psy-
chological space would be constructed differently (either
throughout development or through evolutionary time) if
we typically had to represent a different distribution of
numerosities.

Recent work by Portugal and Svaiter (2011) and Sun
et al. (2012) has moved studies towards an idealized ratio-
nal analysis. Both studies assume that in representing a
cardinality, the neural system maps an input number n to
a quantized form n̂, and that the “right” thing to do is
minimize the value of the relative error of the quanti-
zation (Sun and Goyal, 2011), given by En

[|n − n̂|2/n2
]

(for history and related results, see Gray & Neuhoff, 1998;
Cambanis & Gerr, 1983). This is not the same as assum-
ing Weber’s law, but rather assumes an objective function
(over representations) that is based in relative error. Por-
tugal and Svaiter (2011) show that a logarithmic mapping
is the one that optimizes the worst-case relative quantiza-
tion error. Sun et al. (2012) show that under a particular
power law need distribution, the logarithmic mapping is
the one which minimizes the expected relative quantization
error.
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Formulating the optimization problem in terms of relative
error is very close—mathematically and conceptually—to
assuming Weber’s law from the start, since it takes for
granted that what matters in psychological space are rel-
ative changes. Such an assumption is also how Stevens
(1975) justified the power law psychophysical function. He
wrote that a power law resulted from a cognitive system
that—apparently—cares about relative changes in magni-
tude rather than absolute changes. Of course, such explana-
tions are post-hoc. At best, they show that if an organism
cares about relative changes, it will go with either a power
law or logarithmic mapping. But why should an organ-
ism care about relative changes in the first place? One of
our goals is to show from independent principles why rel-
ative changes might matter to a well-adapted psychological
system.

We also aim to move beyond several other of the less
desirable assumptions that Portugal and Svaiter (2011)
and Sun et al. (2012) required. Their work is primarily
formulated in terms of quantized representations (though
see Sun et al., 2012, Appendix A), meaning that they
assume that the appropriate neural representation is a dis-
crete element or code. However, individual neurons are
gradiently sensitive to numerosity (Nieder et al., 2002),
meaning that a more biologically plausible analysis might
consider the representational space to be continuous. Addi-
tionally, though Sun et al. (2012) show that logarithmic and
power-law psychophysical functions can both be achieved
by the same framework with slightly different parame-
ters on the need distribution, they do not establish that
the empirically-observed need distribution is the same one
that leads to the logarithmic mapping. Indeed, the present
results indicate that the most plausible input distribution
does not lead to a logarithmic mapping under Sun et al.’s
analysis.

Our goal is to address all of these limitations with a
novel analysis. Most basically, we do not assume from the
start that relative changes are what matter to the psycho-
logical system. Instead, we begin only from the assump-
tion that cognitive systems must map numerosities from
an external stimulus space to an internal representation
space. We assume that the form of the mapping is opti-
mized to avoid confusing the most frequently used repre-
sentations. This setup allows us to derive a general law
relating need probabilities to a mapping into psychologi-
cal space: the rate of change of the mapping should be
proportional to the square root of the need probability.
The analysis shows that this derives exactly the logarith-
mic mapping for the need distribution of number, and
more generally, a power law mapping (Stevens, 1957, 1961,
1975) for other stimuli which follow a power-law need
distribution.

Optimal mappings into subjective space

We use ψ to denote the function mapping observable stim-
uli to internal representations. Thus, an input n will be
mapped to a representation ψ(n). For simplicity, we will
assume that both the internal and external domains are con-
tinuous spaces. This can be justified by imagining that the
representational system handles enough numbers that they
well-approximate a continuous function—unless, of course,
the system for approximate discrete numbers is identical
with the system for continuous magnitude/extent.

The analysis requires some very basic properties of ψ

(c.f. Luce, 1959): (i) the range of ψ must be bounded,
(ii) ψ is monotonically increasing and (iii) ψ is twice-
continuously differentiable. Boundedness comes from the
assumption that psychological space has a limited represen-
tational capacity. For this, we assume that ψ(n) ∈ [0, 1]
with ψ(1) = 0 and ψ(M) = 1, where M is the largest car-
dinality that people can represent. Monotonicity means that
the mapping from external cardinality to internal number
is “transparent,” not requiring sophisticated computations,
since a larger external magnitude always maps to a larger
internal one. It also guarantees that the mapping will be
invertible, so we can always tell what real-world numeros-
ity a representation stands for. Finally, (iii) is a technical
condition meaning that ψ is well behaved enough to have
a well-defined rate of change (first derivative) and second
derivative. This rules out, for instance, step functions with
sharp corners. There are many functions that meet these
criteria—including, for instance, all in Fig. 1a—and our
analysis aims to find the “best” ψ out of the infinitely many
possible alternatives.

Figure 2 illustrates the setup. It cannot be the case that
continuous representations are stored with perfect fidelity
since that would require infinite information processing.
Instead, we assume that any represented value ψ(n) may
be corrupted by representational noise from an arbitrary3

distribution N , independent of the value of ψ(n). It is
reasonable to suppose that N is, for instance, a Gaussian
distribution as is observed in number and typical of noise,
although our derivation does not require this. In our setup
(Fig. 2), an input cardinality n is mapped to a representa-
tion ψ(n) ∈ [0, 1]. This value may be corrupted by noise
to yield ψ(n) + ε, where ε ∼ N . We assume the noise N
is constant over psychological space (ie. isotropic) in order
see what properties arise without building in biasing factors
into the structure of psychological space itself. A similarly

3We require three technical requirements on N : it must have a
bounded absolute error, so that if ε ∼ N , Eε |ε| < ∞, it must be inde-
pendent of location in psychological space, and the typical error must
be small relative to 1/ψ ′(n).
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Fig. 2 The general setup of our analysis: an input n is mapped to a
representation ψ(n), which may then be corrupted by noise ε. We seek
to minimize the amount by which this noise “matters” on the original
input scale, given by ψ−1(ψ(n) + ε) − n. We compute ψ−1(n) using
a linear approximation (see text)

uniform internal space is also an implicit assumption of
psychological space models like that of (Shepard, 1987).

A rational goal for the system will then be to minimize
the absolute difference between what a corrupted value rep-
resents (which is ψ−1(ψ(n) + ε)) and what we intended to
represent (which is n). This expected difference is then,

E
n
E
ε

∣∣∣ψ−1(ψ(n) + ε) − n

∣∣∣ . (1)

Here, there is one expectation over n meaning that we
should try to minimize the error for typical usage, thus
more accurately representing the most frequently used num-
bers. There is also an expectation over ε, meaning that we
try to minimize error, averaging over the uncertainty we
have about how much the representations may be corrupted
(as quantified by ε). Informally, by finding ψ to mini-
mize (1), we are choosing a mapping into representational
space such that when the represented values are altered by
noise, the absolute amount in physical space that the change
corresponds to is minimized.4

The difficulty with Eq. 1 is that it is stated in terms of
ψ and its inverse, ψ−1, making analytic analysis hard. We
can, however, make a linear approximation to ψ near n

(see Fig. 2), and use the linear approximation to compute
the inverse ψ ′ near ψ(n). This approximation is valid so
long as the noise ε is small, relative to 1/ψ ′(n). In a lin-

4The following derivation therefore uses the norm | · |p for p = 1, but
analogous derivations will work for others, giving rise to a different
exponent at the end, including the squared error p = 2.

ear approximation we use the differentiability (iii) of ψ and
write

ψ(x) = ψ ′(n) · (x − n) + ψ(n), for x ≈ n. (2)

Then, the inverse function ψ−1 is

ψ−1(x) = (x − ψ(n)) · 1

ψ ′(n)
+ n, for x ≈ n. (3)

Using this approximation, we can rewrite Eq. 1 as,

E
n
E
ε

∣∣∣ψ−1(ψ(n) + ε) − n

∣∣∣

= E
n
E
ε

∣∣∣∣(ψ(n) + ε − ψ(n))] · 1

ψ ′(n)
+ n − n

∣∣∣∣

= E
n

1

ψ ′(n)
· E

ε
|ε|, (4)

where we have used the fact (ii) that ψ is monotonically
increasing, so ψ ′ is positive. Writing out the expectation
over n explicitly, this becomes,

E
ε
[|ε|] ·

∫ M

1

p(n)

ψ ′(n)
dn. (5)

To summarize the derivation so far, we are seeking a func-
tion ψ mapping observed numbers into an internal repre-
sentational space. Under a simple approximation that holds
for relatively low internal noise, any potential ψ can be
“scored” according to Eq. 5 to determine the amount by
which noise corrupts the representation relative to the need
distribution on numbers p(n) and the internal noise ε.

To actually optimize (5), we first express the bound (i) in
terms of ψ ′ rather than ψ . If ψ(M) = 1, then
∫ M

1
ψ ′(n)dn = 1. (6)

Now we have stated an objective function (5) and a con-
straint (6) in terms of the rate of change of ψ , which is
ψ ′. It turns out that optimization of Eq. 5 subject to Eq. 6
over functions ψ is possible through the calculus of vari-
ations (see Fox, 2010; Gelfand & Fomin, 2000). This area
of functional analysis can find minima or maxima over a
space of functions exactly as standard calculus (or analysis)
finds minima and maxima over variables (for similar appli-
cations of functional analysis to psychophysics, see Aczél
et al., 2000). In our case, we write a functional F—roughly,
a function of functions5—that encodes our objective and
constraints,

F [ψ] = E
ε
[|ε|]·

∫ M

1

p(n)

ψ ′(n)
dn+λ

(∫ M

1
ψ ′(n)dn−1

)
. (7)

5Other examples of functionals include, for instance, the functional
for differential entropy, which takes a distribution and returns a num-
ber. Shannon (1948) for instance provides a simple functional analysis
proof using similar techniques that normal distributions maximize
entropy relative to a fixed mean and variance.
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Equivalently,

F [ψ] =
∫ M

1
L(n, ψ(n), ψ ′(n))dn (8)

where

L(n, u, v) = E
ε
[|ε|] · p(n)

v
+ λ

(
v − 1

M − 1

)
. (9)

This equation has added the constraint multiplied by the
variable λ (providing the functional analysis analog the λ

in the method of Lagrange Multipliers). Roughly, the λ

allows us to combine objective function and constraints into
a single equation whose partial derivatives can be used to
compute the function ψ that maximizes F [·] (for more on
the theory behind this techinique, see Gelfand & Fomin,
2000).

The Euler-Lagrange equation solves the optimization in
Eq. 8 over functions ψ , providing the optimal ψ by solving

Lu(n, ψ(n), ψ ′(n)) − d

dn
Lv(n, ψ(n), ψ ′(n)) = 0, (10)

whereLu is the partial derivative ofLwith respect to its sec-
ond argument, u, and Lv is the partial derivative of L with
respect to its third argument, v. That is, Eq. 10 states that we
compute two partial derivatives of L and evaluate them at
the appropriate values (n, ψ(n), and ψ ′(n)), yielding a dif-
ferential equation that must be solved to find the optimal ψ .
In Eq. 10, Lu = 0 since u does not appear in L, and

Lv(n, ψ(n), ψ ′(n)) = −Eε [|ε|] · p(n)

(ψ ′(n))2
+ λ (11)

so by Eq. 10 we seek a solution of

d

dn

(
Eε [|ε|] · p(n)

(ψ ′(n))2
− λ

)
= 0. (12)

Integrating both sides yields

Eε [|ε|] · p(n)

(ψ ′(n))2
− λ = C (13)

for some constant C, meaning that

ψ ′(n) =
√

p(n) · Eε [|ε|]
C + λ

. (14)

Here, λ is chosen to satisfy the bound in Eq. 6, so the con-
stants are essentially irrelevant. More simply, then, we can
write the optimal ψ as satisfying,

ψ ′(n) ∝ √
p(n). (15)

This result indicates that the optimal mapping in terms of
minimizing error relative to the need probabilities makes the
internal scale change proportional to the square root of the
need probability p(n).

Logarithmic and power-law mappings are optimal
for power-law needs

The previous section showed that the optimal mapping into
psychological space is proportional to the square root of
the need distribution p(n). In most cases, such as those
reviewed by Stevens (1975), the need distribution p(n) is
not so clear: how often people need to encode the partic-
ular heaviness or velocity of a stimulus? Sun et al. (2012)
examine the case of loudness and that the need distribu-
tion appears roughly log-normal or power-law distributed in
intensity, or normally-distributed in decibels.6 In the case of
number, however, there is one plausible way to measure the
need probability: we can look at how often typical speakers
of a language encode specific cardinalities as measured by
number word frequencies. This provides a measure for how
often cognitive processing mechanisms exactly encode each
number.

Figure 3 shows the distribution of number words in the
Google Books N-gram dataset (Lin et al., 2012) on a log-
log plot for three relatively unrelated languages, Italian,
English, and Russian. First, the overall data trend is linear
on this log-log-plot, indicating that number words follow
something close to a power law distribution7 (Newman,
2005):

p(n) ∝ n−α (16)

for some α. This type of power law distribution is famously
observed more generally in word frequencies (Zipf, 1936;
1949), although the cause of these frequencies is still
unknown (Piantadosi, 2014).

There is one important point about the particular power
law observed: the exponent—corresponding to the linear
slope in the log-log plot—is very close to α = 2. The actual
exponent found by a fit depends strongly on the details of
fitting (see Newman, 2005)—in particular, how apparent
outliers like “one” in Italian, and the decades are treated.
Rather than obsess over the details of fitting, we have sim-
ply shown a power-law distribution with α = 2 in red,
showing that the trend of the data across languages and his-
torical time, as well as for decades and non-decades, closely
approximates this particular exponent α = 2. Both this gen-
eral pattern in number word distribution and the exponent
α ≈ 2 according with other analyses of language (Dehaene
and Mehler, 1992; Jansen & Pollmann, 2001; Dorogovtsev
et al., 2006). For instance, in a detailed cross-linguistic num-
ber word comparison, Dehaene and Mehler (1992) show
that this type of distribution generally holds, although there

6Log-normal distributions are notoriously hard to distinguish from
power laws (Malevergne et al., 2011) and result from similar genera-
tive processes (see Mitzenmacher, 2004)
7A power law is linear on a log-log plot: the log-log linearity implies
that logp(n) = C − α · log n for some C, α, so p(n) ∝ n−α .
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Fig. 3 The distribution of number word frequencies across Italian,
English, and Russian according to the Google Books N-gram dataset
(Michel et al. 2011). This reveals a strong power-law distribution
across time, language, and for both decades (“ten”, “twenty”, etc.) and

non-decades. On these plots, the linear trend of the data corresponds
to the exponent in the power law distribution. The red line shows a
power-law distribution with α = 2

are interesting complications for numbers like unlucky 13 in
some languages, or decades. The power law exponent that
they report is α = 1.9. This empirical fact about number
usage could be called the inverse square law for number
frequency.

The detailed patterns exhibited by these plausible number
word need probabilities are also interesting. For instance the
“decades” (“ten”, “twenty”, “thirty”, etc.) have substantially
higher probability than non-decades of similar magnitude,
likely due to approximate usage (Dehaene & Mehler, 1992;
Jansen & Pollmann, 2001). Additionally, in English words
over 20 (log 20 ≈ 3) are somewhat less probable than might
be expected by the frequency of the teens, although it is
not clear whether this is somehow a corpus/text artifact of
these words typically being written with a hyphen. Inter-
estingly, even within these types of deviations, the decades,
non-decades, and English words over 20 all follow a power
law with exponent roughly 2, as evidenced by their slope
similar to the red line’s slope.

Importantly, if the need probabilities p(n) reflect “real”
needs—not, for instance, some artifact of modern culture—
they should be observed throughout historical time. The
gray points show data for books published before 1850,
demonstrating an effectively identical distribution. Indeed,
the Spearman correlation of individual number word fre-
quencies across the two time points is 0.96 in Italian (p 	
0.001), 0.98 in English (p 	 0.001), and 0.88 in Rus-
sian (p 	 0.001), indicate a strong tendency for consistent
usage or need.

The significance of the exponent α = 2 is that it predicts
precisely the logarithmic mapping when the optimal ψ is
found by solving equation (15). In general, when p(n) is a
power law, the optimal mapping from Eq. 15 becomes

ψ ′(n) ∝ n−α/2. (17)

So, when α = 2,

ψ ′(n) ∝ 1

n
. (18)

Integrating ψ ′ yields

ψ(n) ∝ log(n) + C, (19)

a logarithmic mapping. Note that since we scale and shift
the function so that it lies in psychological space [0, 1],
the constant C can be ignored. This explains why the map-
ping for number is at least approximately logarithmic.8

Alternatively, when α �= 2, Eq. 17 becomes

ψ(n) ∝ n−α/2+1, (20)

yielding the power law psychophysical functions argued for
by Stevens (1957), Stevens (1961), and Stevens (1975).

What we have shown, then, is that the power-law and
logarithmic mapping both fall out of the same analysis,
resulting from different exponents on the need distribu-
tion. This reveals a deep connection between these two
psychophysical laws: both are optimal under different expo-
nents of the same form of distribution (as also argued by Sun
et al., 2012). Indeed, because of the similarity between log-
normal distributions and power-law distributions, we should
expect functions very much like power-law mappings for
a log-normal p(n). Previously, this need distribution has
been used to explain properties of number in other cognitive
paradigms (Verguts et al., 2005).

Critically, the present analysis rests on the assumption
that natural language word frequencies provide an accu-

8It is useful to compare this finding with Sun et al. (2012), who argue
that the best representation will scale with n−(α−1)/3−1. So in their
analysis they require an exponent of α = 1 to recover the logarithmic
function. This exponent does not match with the above data suggesting
that for number, α ≈ 2.
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rate “need” distribution for how often each number must
be represented.9 To fully explain number, p(n) must be
a power law across evolutionary time and likely devel-
opmental time. Note that use of this power law is only
justified if the power law in language reflects a need dis-
tribution, and is not itself a consequence of a logarithmic
mapping. In principle, this question could be investigated in
other species that engage in numerical processing without
language. However, there are independent reasons beyond
these corpus results why need probabilities are likely to be
power law distributed. Anderson and Schooler (1991) find
power laws need distributions across several domains in
human memory; power laws are also very generally found
in complex systems, resulting from a wide variety of statisti-
cal processes (see Mitzenmacher, 2004). In general, though,
further work will be required to test the need distribution
in common environments and determine whether this need
distribution under (15) adequately models representational
mappings.

This analysis did not require any strong assumptions
about the error distribution N in psychological space. This
is important because one might expect that the noise is gen-
erated according to other optimizing principles which may
vary by domain. Indeed, our approach is consistent both
with the approximately Gaussian noise observed for num-
ber (Nieder et al., 2002; Nieder & Miller, 2004; Nieder
& Merten, 2007; Nieder & Dehaene, 2009), and even
other kinds of confusability/generalization gradients such
as exponentials also found throughout cognition (Shepard,
1987; Chater & Vitányi, 2003).

Curiously, one interpretation of these findings is that
if the mapping is optimized as we suggest, it is very
unlikely that the mapping is truly logarithmic: α is almost
surely not exactly equal to 2, so the optimal mapping is
almost certain to be a power law. However, these possi-
bilities are not different in any interesting sense: Fig. 1b
shows the logarithmic mapping and power law mappings,
appropriately bounded as in (i), for α near 2. What these
illustrate is that the optimization we describe is “contin-
uous” in that small changes to α do not lead to large
changes in ψ , even though the written form of the func-
tion changes. In this sense, it is not a productive question
to study whether the law is truly logarithmic or truly a
power law, because the two are just part of the same contin-
uum of functions. This may also be true in other perceptual
domains.

9Note that Sun et al. (2012) find similar results in their derivation,
although the exponent they require for logarithmic mapping is α = 1
rather than the above empirically observed α ≈ 2.

Conclusion

It is worth summarizing the results in general terms. We
imagine that an input n is mapped to a psychological rep-
resentation ψ(n), which may then be corrupted by noise, to
give a corrupted representation ψ(n)+ ε. In physical space,
the amount by which this noise ε “matters” can be quan-
tified by 1/ψ ′(n), one over the rate of change (ψ ′) of ψ

at n. Our analysis sought to minimize the average effect
of this noise, subject to bounded representational resources.
When this optimization is performed over a wide range of
functions ψ , we find that ψ should change according to the
square root of the need probability p(n) in order to min-
imize the effect of errors. This is a general fact about the
optimal psychological mapping.

A plausible need distribution for number robustly fol-
lows a power-law need distribution, with a particular expo-
nent α = 2 such that making ψ change according to
the square root of p(n) yields a logarithmic mapping.
Other domains that follow a power law need distribu-
tions with α �= 2 will give rise to power-law mappings.
In the case of number, these results explain why relative
changes in magnitude (e.g. Weber’s law) are what mat-
ter psychologically: a psychological system has bounded
representational resources and, subject to this constraint,
the system with minimal absolute error uses a logarith-
mic mapping. Thus, unlike derivations where the logarithm
comes from assuming relative changes are the relevant ones
(Fechner, 1860; Sun et al., 2012; Portugal & Svaiter, 2011)
or those explaining the law from lower-level architectural
considerations (Stoianov & Zorzi, 2012), the present results
derive this fact from a rational analysis of effective infor-
mation processing. The logarithm arises in our approach
because of the particular need distribution actually observed
for number; a different distribution would have resulted in
a different optimized mapping and the general form of this
optimization is provided in Eq. 15.

As such, this approach is in principle applicable to
other psychophysical domains such as brightness, loud-
ness, and weight (Stevens, 1957). The challenge is that in
these domains the need distribution is not as easily quan-
tified. For acoustic loudness, Sun et al. (2012) show that
their derivation recovers a plausible, near-logarithmic psy-
chophysical function from a log-normal need distribution,
and numerically solving Eq. 15 for log-normal distributions
yields similar relationships for the analysis.10 This indicates

10As standard symbolic math programs cannot perform the required
integration for log-normal distributions, it is likely that the optimal
mapping for log-normal distributions has no closed form. The non-
existence of a closed-form solution may be possible to prove with, for
instance, Liouville’s theorem, but no proof is attempted here.
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that this approach of optimizing functional mappings in
the way we describe may plausibly explain psychophysics
of other modalities, once future work determines plausible
need distributions across these domains. In general, then,
the results illustrate how core systems of representation
(Feigenson et al., 2004; Carey, 2009) may be highly-tuned
to environmental pressures and functional optimization over
the course of evolutionary or developmental time.
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