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Abstract For decades sequential sampling models have
successfully accounted for human and monkey decision-
making, relying on the standard assumption that decision
makers maintain a pre-set decision standard throughout
the decision process. Based on the theoretical argument
of reward rate maximization, some authors have recently
suggested that decision makers become increasingly impa-
tient as time passes and therefore lower their decision
standard. Indeed, a number of studies show that compu-
tational models with an impatience component provide a
good fit to human and monkey decision behavior. However,
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many of these studies lack quantitative model compar-
isons and systematic manipulations of rewards. Moreover,
the often-cited evidence from single-cell recordings is not
unequivocal and complimentary data from human sub-
jects is largely missing. We conclude that, despite some
enthusiastic calls for the abandonment of the standard
model, the idea of an impatience component has yet to be
fully established; we suggest a number of recently devel-
oped tools that will help bring the debate to a conclusive
settlement.

Keywords Decision-making - Drift diffusion model -
Collapsing bounds - Reward rate maximization -
Single-cell recordings

Introduction

Most modern accounts of human and monkey decision-
making assume that choices involve the gradual accumu-
lation of noisy sensory evidence from the environment in
support of alternative courses of action. When the evidence
in favor of one response option accrues to a threshold quan-
tity a decision is reached and the corresponding action is
initiated (Ratcliff & Smith, 2004). This successful class
of models is referred to as sequential sampling models.
In the popular random dot motion task (Britten, Shadlen,
Newsome, & Movshon, 1992), for example, the decision
maker is presented with a cloud of pseudo-randomly mov-
ing dots that give the impression of coherent motion to the
left or right, and the decision maker must determine the
direction of movement. In this example, the models assume
that noisy evidence for rightward and leftward motion is
integrated over time until the decision threshold for a “right”
or “left” response is crossed.
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Sequential sampling models are most simply instantiated
as random walk models, which assume that evidence and
time are measured in discrete steps (Ashby, 1983; Edwards,
1965; Heath, 1981; Stone, 1960). The generalization of
the random walk to continuous evidence and time leads to
a class of models with more favorable mathematical and
empirical properties known as drift diffusion models (DDM,;
Ratcliff, 1978, Ratcliff & McKoon, 2008). These models
make predictions for the response times and accuracy rates
for each of the possible actions (Smith, 1995).

For almost 40 years, the DDM has successfully
accounted for data from a vast range of perceptual decision-
making paradigms. In almost all of these applications,
the DDM assumes that decision makers set the height of
the decision threshold before a decision trial commences,
and that this threshold is constant throughout the decision
process. This assumption implies that the decision maker
requires the same amount of evidence to trigger a deci-
sion regardless of how long the decision takes; the decision
criterion does not change over time. With this assump-
tion, the standard DDM has explained not only behavioral
output of the decision-making process, namely response
time and decision accuracy, but also physiological mea-
sures related to gradually accumulating evidence from the
environment such as EEG, MEG, and fMRI in humans
(Ratcliff, Philiastides, & Sajda, 2009; Philiastides &
Sajda, 2006; Mulder, Wagenmakers, Ratcliff, Boekel, &
Forstmann, 2012) and single-cell recordings in monkeys
(Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves, 2007,
Huk & Shadlen, 2005; Purcell et al., 2010, 2012).

Recently, the assumption of a fixed threshold in the
standard DDM has been challenged. It has been pro-
posed that decision makers become increasingly impa-
tient as the decision time increases, and therefore steadily
decrease the amount of evidence required to trigger a deci-
sion. Such a decreasing decision criterion can be imple-
mented in the DDM in two ways: decision thresholds could
decrease over time (Bowman, Kording, & Gottfried,
2012; Ditterich, 2006a, b; Drugowitsch, Moreno-Bote,
Churchland, Shadlen, & Pouget, 2012; Gluth, Rieskamp,
& Biichel, 2012, 2013a; Milosavljevic, Malmaud, & Huth,
2010), or the incoming evidence could be multiplied by an
urgency signal that increases in strength over time (Cisek,
Puskas, & El-Murr, 2009; Deneve, 2012; Hanks, Mazurek,
Kiani, Hopp, & Shadlen, 2011; Thura, Beauregard-Racine,
Fradet, & Cisek, 2012, 2014), thus increasingly ampli-
fying moment-to-moment fluctuations in evidence. Both
approaches increase the likelihood of the accumulated evi-
dence crossing one of the decision thresholds as time passes.
The similarities in the predictions of these two extensions
to the DDM outweigh their differences, but both differ
markedly to the standard DDM (Hawkins, Wagenmakers,
Ratcliff, & Brown, 2015). We will therefore discuss both

extensions together and refer to this class of models as those
implementing a dynamic decision criterion as compared
to the standard DDM, which implements a static decision
criterion.

Here, we review the theoretical motivations for dynamic
decision criteria and the behavioral and neural evidence in
support of these proposals. Dynamic DDMs have received
some empirical support (Churchland, Kiani, & Shadlen,
2008; Ditterich, 2006b; Gluth et al., 2012, 2013a; Hanks
et al.,, 2011; Milosavljevic et al., 2010) and have been
incorporated as a standard assumption in some neural net-
work models of decision-making (Standage, You, Wang, &
Dorris, 2011; Huang & Rao, 2013; Rao, 2010). Neverthe-
less, empirical and theoretical questions that might have a
profound impact on the generality of the dynamic decision
criterion have not been adequately addressed. Model-based
studies of perceptual decision-making have provided strong
support for the existence of a dynamic criterion in a range
of experimental tasks, but the evidence is less clear in other
situations. Future research must determine how to quantify
the amount of support the data lend to models with dynamic
compared to static decision criteria in situations where the
evidential support is currently ambiguous.

Collapsing thresholds and urgency gating

Dynamic diffusion models assume that the amount of evi-
dence required to trigger a decision fluctuates over time.
Across modeling frameworks such as neural networks and
mathematical models, the mechanisms underlying dynamic
decision criteria are generally implemented in one of two
forms: collapsing thresholds or urgency gating (Fig. 1).

Models with collapsing thresholds assume that deci-
sion thresholds move inward as decision duration increases
(Bowman et al., 2012; Drugowitsch et al., 2012; Gluth et
al., 2013a, b; Milosavljevic et al., 2010). This results in a
shortening of the slow decisions in cases where only little
information is provided by the environment, thus reducing
the right tail of the response time distribution in comparison
to the standard DDM with static decision criteria (Ditterich,
2006a).

Models with an urgency gating mechanism assume a
static decision threshold but that the incoming evidence is
multiplied by an urgency signal that increases in strength
over time (Cisek et al., 2009; Deneve, 2012; Huang & Rao,
2013; Niyogi & Wong-Lin, 2013; Rao, 2010; Standage et
al., 2011; Thura et al., 2012; Thura & Cisek, 2014). Sim-
ilar to collapsing thresholds, urgency signals predict faster
decisions when the environment only weakly informs the
decision. At the same time, the urgency signal increasingly
enhances moment-to-moment fluctuations in accumulated
evidence as time passes, leading to more variability in the
final decision compared to the standard DDM.
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Fig. 1 Three versions of the drift diffusion model for a two-alternative
forced choice paradigm, such as the random dot motion task. The
upper decision threshold corresponds to a “right” decision and the
lower threshold corresponds to a “left” decision. The drift rate is pos-
itive in this example (the evidence process drifts upward) indicating
that the correct response is “the dots are moving to the right”. The left
panel shows the standard DDM with static decision thresholds where a
choice is made when the accumulated evidence reaches one of the two
thresholds. The middle panel shows a DDM with collapsing thresh-
olds that gradually move inward so that less evidence is required to

One variation of the urgency gating model uses an addi-
tive gain mechanism; the evidence is added to, rather than
multiplied by, an urgency signal (Hanks et al., 2011, 2014).
The predictions of the additive urgency model are very sim-
ilar to those of the collapsing thresholds model because the
additive urgency signal speeds up decisions if only little
information is provided by the environment, resulting in a
shortened right tail of the response time distribution.

Why a dynamic component?

In the early history of sequential sampling models, dynamic
evidence criteria were introduced to improve model fit to
data. For example, models with a dynamic decision criterion
were required to account for fast but erroneous responses
in discrimination tasks with high time pressure (Swens-
son & Thomas, 1974), detection tasks with stimuli rapidly
presented against noisy backgrounds (Heath, 1992) and, in
some cases, trading decreasing decision accuracy for faster
responses (Pike, 1968). Although some modern arguments
for dynamic decision criteria are grounded in improving
model fit to data (Ditterich, 2006b), most are supported by
elaborate theoretical considerations.

Maximizing reward rate

One motivation for dynamic decision criteria is that deci-
sion makers strive to maximize the total reward gained or,
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trigger a decision as time passes (blue lines). This decision policy pre-
dicts shorter decision times than the DDM with static thresholds when
faced with weak evidence (i.e., a low drift rate) as it partially trun-
cates the negatively skewed distribution of response times. The right
panel shows a DDM with an urgency gating mechanism. The accu-
mulated evidence is multiplied with an urgency signal that increases
with increasing decision times (blue line). This decision policy again
predicts shorter decision times than the DDM with static thresholds
but also increased variability as moment-to-moment variations in the
accumulated evidence are also multiplied

equivalently, minimize losses, across a sequence of deci-
sions. For instance, in deferred decision-making tasks the
observer sequentially purchases discrete units of informa-
tion that provide evidence in favor of one or another course
of action. With a known maximum number of units that
can be purchased, and each additional unit bearing a larger
cost than the previous unit, expected loss is minimized with
a decision criterion that decreases as the number of pur-
chased evidence units increases (Rapoport & Burkheimer,
1971), and humans appear to qualitatively employ this strat-
egy (Pitz, 1968; Busemeyer & Rapoport, 1988; Wallsten,
1968).

Reward has also been a motivating factor in recent
dynamic DDMs, often in the form of maximizing reward
rate, that is, the expected number of rewards per unit of
time (Gold, Shadlen, & Sales, 2002). For instance, when
the decision maker is rewarded for a correct choice, under
some environmental conditions reward rate is maximized
by adopting decision criteria that decrease over time (Thura
et al., 2012; Standage et al., 2011). Rather than maximiz-
ing reward rate per se, related approaches have considered
maximization of the expected total sum of future rewards
(Huang & Rao, 2013; Rao, 2010) and trading the reward
obtained for a correct decision with the physiological cost
associated with the accumulation of evidence (Drugow-
itsch et al., 2012). Physiological costs are assumed to
increase with decision time, leading to a growing urgency to
make a decision and hence a decreasing dynamic decision
criterion.
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Interestingly, most studies proposing that maximizing
reward rate gives rise to a dynamic decision criterion do
not experimentally manipulate or control rewards and/or
punishments. For example, in one study human partici-
pants’ remuneration was independent of their performance
in a random dot motion task, yet the model the authors
aimed to support assumes that humans maximize reward
rate by considering the physiological cost of accumulat-
ing additional sensory evidence (Drugowitsch et al., 2012).
Similarly, another study used an expanded judgment task
(Vickers, 1979) where coins stochastically flipped from a
central pool to a left or a right target, and the participant was
to decide whether the left or the right target accumulated
more coins (Cisek et al., 2009). In the experiment by Cisek
et al., participants were informed that the experiment would
continue until a preset number of correct responses had
been achieved; this instruction may have led participants to
minimize time on task (and hence maximize reward rate).
Although Cisek et al. reported data that were qualitatively
consistent with predictions of a dynamic DDM, the lack of
an experimental manipulation of reward rates leaves it open
whether it was indeed reward rate maximization that caused
the decision maker to adopt a dynamic decision criterion.

Reward rate maximization in environments with stable
signal-to-noise ratio

Empirical support that decision makers can maximize
reward rate when the task structure encourages such a strat-
egy primarily comes from fits of DDMs with static decision
criteria. These studies demonstrate that participants set their
decision criteria in a manner consistent with the thresh-
old settings that maximize reward rate (Balci et al., 2011;
Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Simen
et al., 2009). However, two studies also found evidence that
some participants, at least when not fully acquainted with
the decision task, favored accuracy over reward rate max-
imization by setting their criterion higher than the optimal
value for reward rate maximization (Bogacz et al., 2006;
Balci et al., 2011; Starns & Ratcliff, 2010, 2012). These
findings suggest that humans might maximize a combina-
tion of reward rate and accuracy rather than reward rate per
se (Maddox & Bohil, 1998). Furthermore, the fact that both
studies used a static DDM means that it remains unclear
how close human decision makers’ static criteria were to the
threshold settings that maximize reward rate compared to a
model with dynamic criteria. This seems particularly impor-
tant since the gain in reward rate obtained with a dynamic
compared to a static criterion might be small (Ditterich,
2006b).

Reward rate maximization in environments with variable
signal-to-noise ratio

Whether humans and monkeys do indeed optimize reward
rate or implement dynamic decision criteria might depend
crucially on the signal-to-noise ratio of the decision envi-
ronment, often described as the difficulty of the decision
(e.g., coherence in the random dot motion task, or word
frequency in a lexical decision task). In particular, deci-
sion makers might rely on a dynamic criterion when the
signal-to-noise ratio is poor. With a weak signal one must
accumulate evidence over an extended period to make an
accurate decision. To avoid the prohibitively high costs
associated with extended accumulation, decision makers
could adopt a dynamically decreasing decision threshold
(Drugowitsch et al., 2012; Hanks et al., 2011). As decision
duration increases, decision makers should be increasingly
willing to sacrifice accuracy for a shorter decision time, so
they can engage in a new decision with a potentially more
favorable signal-to-noise ratio and hence a better chance of
obtaining a reward.

When the signal-to-noise ratio varies from one decision
to the next, setting a static criterion prior to decision onset is
suboptimal because the occurrence of a weak signal would
lead to prohibitively long decision times (i.e., the decision
criterion is too high) or an unacceptably high error rate
(i.e., the signal-to-noise ratio is too low; Shadlen & Kiani,
2013). Relatively few studies have tested this issue empir-
ically. For example, it has been demonstrated that when
signal strength varies across trials from pure noise to very
strong signals, dynamic DDMs provide a better account of
human and monkey behavioral data than models with static
decision criteria (Bowman et al., 2012; Drugowitsch et al.,
2012; Hanks et al., 2011, 2014). However, a recent meta-
analysis suggests that models with dynamic decision criteria
do not necessarily provide the best account of behavioral
data obtained in environments with variable signal-to-noise
ratios across decisions.

Behavioral evidence for static and dynamic criteria in drift
diffusion models

When quantitative models are proposed they are typically
tested against only a few data sets as proof-of-concept
evidence for the validity of the model. This approach is
a prerequisite for theoretical progress but it necessarily
restricts the generality of the model by testing it across
only a narrow range of experimental tasks, procedures, and
even species. Recently, we quantitatively compared static
and dynamic DDMs in a large-scale survey of behavioral
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data sets that spanned a range of experimental paradigms
and species, and across independent research laboratories
(Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown,
2015). Whether quantitative model selection indices indi-
cated that humans or non-human primates used static or
dynamic decision criteria depended on specific experimen-
tal procedures or manipulations. For instance, decision mak-
ers were more likely to adopt dynamic decision criteria after
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extensive task practice (e.g., left column in Fig. 2) or when
the task structure imposed a delayed feedback procedure
(delay between stimulus onset and the timing of rewards for
correct decisions, middle right column in Fig. 2). Further
targeted experimentation combined with rigorous quanti-
tative model comparison is required to clarify when and
why decision makers employ static or dynamic response
thresholds.
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Fig. 2 DDMs with static and dynamic decision criteria fitted to four
data sets (subset of results reported in Forstmann, et al., 2015). Col-
umn names cite the original data source, where example data sets
from non-human primates and humans are shown in the left two and
right two columns, respectively. The upper row shows the averaged
estimated collapsing (solid lines) and static (dashed lines) thresholds
across participants. The second, third and fourth rows display the fit of
the static thresholds, urgency gating, and collapsing thresholds models
to data, respectively. The y-axes represent response time and x-axes
represent probability of a correct choice. Green and red crosses indi-
cate correct and error responses, respectively, and black lines represent
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model predictions. Vertical position of the crosses indicate the 10th,
30th, 50th, 70th, and 90th percentiles of the response time distribu-
tion. When the estimated collapsing and static thresholds markedly
differed (first and third columns), the DDMs with dynamic decision
criteria provided a better fit to data than the DDM with static criteria.
When the collapsing thresholds were similar to the static thresholds
(second and fourth columns), the predictions of the static and dynamic
DDMs were highly similar, which indicates the extra complexity of the
dynamic DDMs was not warranted in those data sets. For full details
see Hawkins, Forstmann, et al., 2015
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Inferring optimal decision criteria from the signal-to-noise
ratio

The suggestion that dynamic decision criteria maximize
reward rate in environments with a poor signal-to-noise
ratio implicitly raises the question of how decision makers
infer the current signal strength. If the signal remains con-
stant throughout the decision process, a simple solution is
to incorporate elapsed time as a proxy for signal strength
into the decision variable (Hanks et al., 2011), because more
time will pass without the decision variable crossing one of
the two thresholds. There is even some evidence that cer-
tain neurons in the lateral intraparietal (LIP) area provide
a representation of elapsed time that can be incorporated
into the formation of the decision variable (Churchland et
al., 2008, 2011; Janssen & Shadlen, 2005; Leon & Shadlen,
2003). It is less clear how the brain handles signals that
change in strength throughout the decision process. The
decision maker would need to maintain and update an esti-
mate of the instantaneous rate of information conveyed
by the information source. A Bayesian estimate might be
obtained from changes in the firing rates of neurons repre-
senting the evidence in early visual areas (Deneve, 2012).
Empirical investigations of how such an estimate of the sig-
nal strength is obtained and incorporated into the decision
variable are lacking.

How should a time-variant signal-to-noise ratio inform
threshold settings? A static decision criterion is highly
insensitive to signals that vary throughout a trial, increas-
ing the probability of an erroneous decision. A sensible
approach might be to place greater weight on informa-
tion presented later in the decision process, which can be
achieved with a dynamic decision criterion. The distance
between a dynamic decision threshold and the decision vari-
able will decrease as more time passes, irrespective of the
current state of the evidence accumulation process. This
increases the likelihood of momentary sensory evidence
leading to a threshold crossing (Cisek et al., 2009; Deneve,
2012; Thura et al., 2012).

In support of this proposal, evidence that varies through-
out a trial can induce prominent order effects. For example,
when a bias for a response option appears early in a trial
it does not influence human and monkey decision times
(Cisek et al., 2009; Thura et al., 2012, 2014; although one
study found an influence of early evidence Winkel, Keuken,
Van Maanen, Wagenmakers, & Forstmann, 2014), but leads
to faster and more accurate decisions when it is presented
later in the decision process (Sanders & Ter Linden, 1967),
meaning that later evidence had a larger influence on the
final decision. Notably however, recency effects are not
a universal response to a variable signal. Rather, some
participants show the opposite reaction, placing increased

weight on early information (Usher & McClelland, 2001;
Summerfield & Tsetsos, 2012; Resulaj, Kiani, Wolpert,
& Shadlen, 2009). The interpretation of studies finding a
recency effect is further complicated by the fact that these
studies did not compare environments with variable ver-
sus static signals. Therefore, it remains unclear whether
variation in the signal causes decision makers to adopt a
decreasing dynamic criterion.

Taken together, formal analyses indicate that whether
static or dynamic decision criteria are the optimal deci-
sion strategy depends critically on whether two components
of the decision environment are fixed or variable within-
and between-trials: the reward for a correct choice and the
signal-to-noise ratio. When both the reward for a correct
decision and the signal-to-noise ratio are constant across tri-
als, the static thresholds DDM maximizes reward rate (for
an extensive review see Bogacz et al.,, 2006). When the
reward for a correct decision is constant over trials and the
signal-to-noise ratio varies between trials, a dynamic deci-
sion criterion maximizes reward rate (Drugowitsch et al.,
2012; Miller & Katz, 2013; Thura et al., 2012, 2014; Dit-
terich, 2006a). Finally, when the reward varies between or
even within trials (as is often the case in economic decision-
making), dynamic decision criteria are optimal (Rapoport &
Burkheimer, 1971; Frazier & Yu, 2008).

It remains unclear however, whether human and monkey
decision makers actually use the optimal threshold settings
under the different environmental conditions. Although
there is some evidence that humans can optimize reward
rate there does not seem to be a consensus yet as to whether
reward rate maximization is the only goal. Most studies
that suggest reward rate as the cause of a dynamic deci-
sion criterion do not actually manipulate or even control
rewards. However, a number of studies that systematically
manipulated rewards showed that increasing sampling costs
can cause a dynamic criterion (Pitz, 1968; Busemeyer &
Rapoport, 1988; Wallsten, 1968). Another consideration is
that it is complicated to establish a link between a dynamic
criterion and reward rates across species. While behavioral
studies in humans abound, equivalent data from monkeys
is scarce, and the two sets of findings are not necessarily
comparable.

Decision-making in the brain

Even though sequential sampling models make elabo-
rate assumptions about the processes underlying decision-
making, behavioral studies — the most common source of
data for model comparison — cannot take advantage of this
wealth of discriminating information. In fact, different mod-
els often make indiscernibly similar behavioral predictions
and thus only data on the physiological implementation
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of the decision process (Fig. 3) might allow researchers
to discriminate amongst models with dynamic and static
decision criteria (Ditterich, 2010; Purcell et al., 2010; Jones
& Dzhafarov, 2014).

There is considerable evidence for the neural implemen-
tation of DDMs, for instance from single-cell recordings
of monkeys performing experimental decision-making tasks
(Forstmann, Ratcliff, & Wagenmakers, in press). Neurons in
area LIP (Churchland et al., 2008; Gold & Shadlen, 2007,
Hanks et al., 2011, 2014; Huk & Shadlen, 2005; Roitman
& Shadlen, 2002; Shadlen & Newsome, 2001; N. W. D.
Thomas & Paré, 2007) and FEF (Hanes & Schall, 1996;
Heitz & Schall, 2010; Purcell et al., 2012, 2012), amongst
others (Ratcliff et al., 2011), show patterns of activity that
closely resemble the evidence accumulation process pro-
posed in DDMs, and even correlate with the monkeys’
observed decisions. For instance, when non-human primates
made decisions in a random dot motion task with a variable
signal-to-noise ratio across trials, a DDM with a dynamic
compared to static decision criterion provided a better fit to
the distribution of response times (Ditterich, 2006b; Hanks
et al., 2011, 2014) and the firing patterns of individual neu-
rons (Ditterich, 2006a; Hanks et al., 2014; although other
studies show good correspondence between physiologically
informed DDMs with a static decision criterion and behav-
ioral data; Purcell et al., 2010, 2012, Heitz & Schall, 2012).
Simulation-based studies of neuronal networks have pro-
vided convergent evidence: dynamic decision criteria lead
to greater stability in biologically plausible networks (Cain
& Shea-Brown, 2012; Miller & Katz, 2013; Niyogi &

q )

w0 _ »w o
o~ LS
S
B gu'o':
L 0 | So
® < &0
=
9]
= >o
o~
X <=
]
o
o

3

Wong-Lin, 2013) and the stereotypical time course of neural
activity in LIP neurons (Niyogi & Wong-Lin, 2013).
Another method of contrasting DDM decision pro-
cesses with physiological data relies on measurements
of the aggregated activity of large neuron ensembles in
human subjects, such as EEG, MEG, and fMRI. This
line of research is motivated on the assumption that the
activity of neuron populations control behavior, not sin-
gle neurons (Deco, Rolls, & Romo, 2009; Lo, Boucher,
Paré, Schall, & Wang, 2009; Smith, 2010; Wang, 2002;
Zandbelt, Purcell, Palmeri, Logan, & Schall, 2014). There-
fore, such measures of aggregated neuronal activity might
provide more insight into the decision criterion underlying
human decision-making. However, due to the noisy nature
of non-invasive measures such as EEG and fMRI, it is chal-
lenging to directly identify physiological correlates of the
evidence accumulation process (Kelly & O’Connell, 2013;
O’Connell, Dockree, & Kelly, 2012; Wyart, de Gardelle,
Scholl, & Summerfield, 2012). An indirect way of obtaining
EEG measures of the current state of the decision-making
process might be to monitor the accumulated evidence
as it is propagated down the processing stream toward
motor output structures (Donner, Siegel, Fries, & Engel,
2009; Siegel, Engel, & Donner, 2011; Heekeren, Marrett, &
Ungerleider, 2008). The activity of these motor structures
can then easily be identified in motor related potentials
(Leuthold & Jentzsch, 2002; Lang et al., 1991). For exam-
ple, human participants making decisions under either high
or low sampling costs showed a faster increase in motor-
related EEG activity if sampling costs were high, a pattern
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-2000 ~1000 0 1000

750 1250 1750 250
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Fig. 3 Behavioral and physiological variables used in the evalua-
tion of DDMs. The left panel shows a response time distribution, the
classic behavioral variable against which DDMs are tested. The mid-
dle panel shows activity patterns of individual neurons (bottom) and
the average firing rates of such a neuron population (top). The right
panel shows an averaged EEG waveform, which reflects the aggre-
gate activity of large neuron ensembles in the human cortex. Model
comparisons based on behavioral outcomes such as response time dis-
tributions are limited in their ability to discriminate between models
with different process assumptions but similar behavioral predictions.
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Physiological measurements such as single-cell recordings in primates
and EEG recordings in humans allow for thorough evaluation of the
process assumptions underlying candidate models. A question that still
remains unanswered is how physiological measurements at different
levels of aggregation (i.e., single neurons vs. large neuron populations)
relate to each other, and the degree to which they constrain process
models (full behavioral and EEG data reported in Boehm, Van Maa-
nen, Forstmann, & Van Rijn, 2014; single-cell data were generated
using a Poisson model)
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which was best accounted for by a model with a dynamic
decision criterion (Gluth et al., 2013a, b; although other
studies reported a good fit between EEG data and a DDM
with a static decision criterion, Cavanagh et al., 2011, Mar-
tin, Huxlin, & Kavcic, 2010, Van Vugt, Simen, Nystrom,
Holmes, & Cohen, 2012). A related fMRI study showed
similar results (Gluth et al., 2012).

Taken together, physiological evidence from monkeys,
and to a lesser extent from humans, supports the sugges-
tion of a dynamic decision criterion. As time passes, less
evidence is needed for decision commitment because an
urgency signal increasingly drives neural activity toward
the decision threshold. However, comparisons of such neu-
ral activity patterns and generalizations across species are
complicated because measurements differ in a number of
ways. Not only is the mapping between primate and human
brain activity uncertain (Mantini et al., 2012; Orban, Van
Essen, & Vanduffel, 2004; Petrides, Tomaiuolo, Yeterian,
& Pandya, 2012) but neural activity is often measured with
different temporal and spatial resolution and on vastly dif-
ferent scales. While single-cell recordings in monkeys are
obtained with great temporal resolution and spatial resolu-
tion, physiological recordings in humans usually represent
a tradeoff between either high spatial resolution with low
temporal resolution (i.e., fMRI), or high temporal reso-
lution with low spatial resolution (i.e., EEG). Moreover,
the activity of individual neurons may or may not impose
strong constraints on activity patterns observable at the
level of neuron populations. Ensembles of individual neu-
rons that can be adequately described by a DDM with a
static decision criterion exhibit combined activity patterns
that are best described by a DDM with a static decision
criterion, as shown in recent theoretical work (Zandbelt et
al., 2014). However, similar theoretical studies outlining the
constraints individual accumulators with a dynamic deci-
sion criterion impose on the combined activity of neuron
populations are lacking.

Summary and future directions

Sequential sampling models are one of the most prominent
and comprehensive frameworks for understanding human
and monkey decision-making. For nearly four decades,
decision behavior has been successfully explained by a
standard model that assumes decision makers set a qual-
ity criterion before engaging in the decision process and
maintain the same criterion throughout. In recent years this
assumption of a static criterion has been challenged and
a number of authors have suggested that decision makers
become increasingly impatient as decision time increases,
gradually lowering their quality criterion.

Models with a dynamic decision criterion have been
motivated on two grounds. Firstly, decision makers aim-
ing to maximize their reward rate should theoretically adopt
a dynamic decision criterion in dynamic environments.
Indeed, studies in which the signal-to-noise ratio or the
reward for correct decisions varied between or within deci-
sions have shown that models with a dynamic decision
criterion can account for the behavior of humans and pri-
mates. However, the conclusion that dynamic environments
automatically imply a dynamic decision criterion is not
uncontested. Many studies purporting such a conclusion did
not systematically manipulate the variability of the decision
environment. Moreover, quantitative comparisons of how
well models with dynamic and static decision criteria can
account for data are often missing.

The second main motivation for models with a dynamic
decision criterion are single-cell recording studies in behav-
ing monkeys and EEG studies in humans showing patterns
of neural activity that are most consistent with a dynamic
decision criterion. However, the currently available evi-
dence is equivocal. Neural data from human decision mak-
ers are sparse, and theoretical and empirical work linking
neural activity at different scales and behavioral outcomes
is still missing.

To conclude, the recent developments have led to some
enthusiastic responses that have called for models with
an impatience component to replace the standard model
(Shadlen & Kiani, 2013). Our review of the available
evidence indicates that such impatience models certainly
provide exciting new impulses for the understanding of
decision-making. Nevertheless, the standard model remains
a firmly established hallmark of the field and future research
efforts will need to delineate more clearly the domain of
applicability of each class of models. We now discuss two
approaches that will help achieve such a distinction.

Careful experimentation and quantitative analysis

Future progress in establishing a solid evidence base for
models with dynamic decision criteria will critically hinge
on careful experimentation in combination with rigorous
theoretical analysis. Behavioral and electrophysiological
studies will need to systematically manipulate the degree
to which a decision environment is dynamic, closely con-
trolling the costs and rewards for decisions and carefully
varying the range of signal-to-noise ratios of stimuli. Such
environments should be presented to both humans and
monkeys, and their behavioral and physiological responses
should be compared to models with static and dynamic deci-
sion criteria using Bayesian model comparison techniques,
which allow researchers not only to determine the best fit-
ting model but also to quantify the uncertainty associated
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with their conclusions (Jeffreys, 1961; Vandekerckhove,
Matzke, & Wagenmakers, 2015). Furthermore, meticulous
theoretical analyses will need to quantify the surplus in
reward rate obtained by models with dynamic compared to
static decision criteria in different environments, thus sub-
stantiating often made but rarely tested claims of a general
dynamic decision criteria.

A recently developed experimental approach that mit-
igates the need for computationally intense model fitting
(Hawkins, Forstmann, et al., 2015, but see Zhang, Lee,
Vandekerckhove, Maris, & Wagenmakers 2014 for a
promising new method to fit collapsing thresholds DDMs)
are expanded judgment tasks (Vickers, 1979). In these
tasks the evidence presented to participants remains avail-
able throughout the decision process so that their history
of perceptual processing need not be reconstructed com-
putationally but can be easily read out on a moment-to-
moment basis. More specifically, the standard experimental
paradigm, the random dot motion task, requires participants
to extract and accumulate the momentary net motion sig-
nal from a noisy stream of information. One consequence
of this is that memory leaks might potentially influence the
accumulation process, and assumptions about such memory
leaks will influence the inferred amount of evidence at deci-
sion commitment (Ossmy et al., 2013; Usher & McClelland,
2001), thus complicating comparisons between dynamic
and static models. A second consequence is that, as par-
ticipants are required to extract a motion signal, estimates
of the momentary net evidence need to take into consid-
eration the structure of the human visual system (Kiani,
Hanks, & Shadlen, 2008; Britten, Shadlen, Newsome, &
Movshon, 1993), which even for simplistic approxima-
tions amounts to a computationally rather intense problem
(Adelson & Bergen, 1985; Watson & Ahumada, 1985).
Expanded judgment tasks, on the other hand, allow
researchers to reasonably assume that memory leaks play a
negligible role because the accumulated evidence is avail-
able to participants at all times. Moreover, it is reasonable
to assume that participants process information more com-
pletely as the rate at which new information is presented
is much lower in expanded judgment tasks; indeed, the
presented information may be assumed to be analyzed opti-
mally (Brown, Steyvers, & Wagenmakers, 2009). Finally, as
expanded judgment tasks usually require numerosity judg-
ments (i.e., decisions as to which part of the visual field con-
tains more items), rather than the extraction of a net motion
signal, physiological constraints play a minor role and can
easily be approximated by very simple psychophysical laws
(Hawkins, Brown, Steyvers, & Wagenmakers, 2012b), so
that the participants’ decision criterion can be estimated
directly (Brown et al., 2009; Hawkins, Brown, Steyvers, &
Wagenmakers, 2012a, b, ¢). Expanded judgment tasks thus
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allow the researcher to explicitly test whether the quantity
of evidence in the display at the time of response — the deci-
sion criterion — decreases as a function of elapsed decision
time.

Linking physiological data on different scales to models

Physiological data will play a pivotal role in discrimi-
nating models. Sequential sampling models often make
different assumptions about the processes giving rise to
decision-making yet predict very similar or even iden-
tical behavior (Ditterich, 2010; Purcell et al.,, 2010;
Jones & Dzhafarov, 2014). Physiological recordings allow
researchers to directly evaluate such assumptions by com-
paring the hypothesized evidence accumulation process to
neural activity on different scales. On the level of neu-
ron populations, a recently isolated EEG component in
humans, the centro-parietal positivity (CPP; O’Connell et
al., 2012) holds particularly great promise for physiology-
based model comparisons. The CPP seems to be a direct
reflection of the evidence accumulation process (Kelly &
O’Connell, 2013; O’Connell et al., 2012) and might there-
fore allow for much more stringent tests of theoretical
assumptions than conventional paradigms that attempt to
track the accumulated evidence as it is passed on to down-
stream motor output structures. The CPP might furthermore
facilitate comparisons and generalizations across species. In
particular, the CPP bears close resemblance to the P3b com-
ponent (Sutton, Braren, Zubin, & John, 1965), the neural
generators of which are most likely located in temporal-
parietal areas (Jentzsch & Sommer, 2001; Brdazdil, Roman,
Daniel, & Rektor, 2003; Polich, 2007), and might thus over-
lap with areas associated with evidence accumulation in
monkeys (Shadlen & Kiani, 2013; Gold & Shadlen, 2007;
N. W. D. Thomas & Paré, 2007; Forstmann et al., in press).
If EEG-fMRI co-recording studies could indeed link the
CPP to the neural generators of the P3b, researchers could
obtain recordings with high temporal and spatial resolu-
tion of the physiological representation of the accumulated
evidence in humans. Comparable recordings in monkeys
could then be used not only to establish a correspondence
across species, but also to link the evidence accumulation
process on the single neuron level to the activity of neu-
ron populations. Such a link could be further corroborated
by theoretical work outlining the limitations on the phys-
iological activity patterns at the population level that are
consistent with individual accumulators with a dynamic
decision criterion.

In sum, the idea of increasing impatience in decision-
making has been suggested sporadically throughout the
history of sequential sampling models but has seen a
tremendous surge in interest over the last years. Although
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theoretical arguments make a compelling case for impa-
tience, the empirical support from monkey and human data
is less clear. Future studies will have to address this problem
further and recent developments promise a more conclusive
settlement to the debate sooner rather than later. For the time
being, we conclude that the idea of impatience has provided
novel theoretical impulses, yet reports of the demise of the
standard drift diffusion model are greatly exaggerated.
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