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Abstract In a recent report, Winkel, Keuken, van Maanen,
Wagenmakers & Forstmann (Psychonomics Bulletin and Re-
view 21(3): 777–784, 2014) show that during a random-dot
motion discrimination task, early differences in motion evi-
dence can influence reaction times (RTs) and error rates in
human subjects. They use this as an argument in favor of the
drift-diffusion model and against the urgency-gating model.
However, their implementation of the urgency-gatingmodel is
incomplete, as it lacks the low-pass filter that is necessary to
deal with noisy input such as the motion signal used in their
experimental task. Furthermore, by focusing analyses solely
on comparison of mean RTs they overestimate how long early
information influences individual trials. Here, we show that if
the urgency-gating model is correctly implemented, including
a low-pass filter with a 250 ms time constant, it can success-
fully reproduce the results of the Winkel et al. experiment.
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Introduction

Many current models of decision-making (Bogacz et al.,
2006; Busemeyer & Townsend, 1993; Gold & Shadlen,

2007; Ratcliff, 1978; Usher &McClelland, 2001) suggest that
during deliberation, the brain integrates evidence in favor of
each choice until the total integrated evidence reaches a
threshold, the setting of which determines an accuracy criteri-
on. The most influential of these is called the Bdrift-diffusion
model^ (DDM) (Ratcliff, 1978), and has been used to explain
reaction times (RTs) and error rates as well as neural activity in
a wide variety of decision-making tasks (Churchland, Kiani,
& Shadlen, 2008; Domenech & Dreher, 2010; Gold &
Shadlen, 2007; Heekeren, Marrett, & Ungerleider, 2008;
Palmer, Huk, & Shadlen, 2005; Ratcliff et al., 2007; Roitman
& Shadlen, 2002). One feature of the DDM is that, like any
integrator, it is robust in the presence of noise.

However, in most natural situations the environment can
change rapidly, and animals must be able to respond to such
changes quickly. Integrators are not ideal in this regard be-
cause in order to change an ongoing decision they must first
reverse the previously integrated evidence for the old choice.
In contrast, a low-pass filter with a short time constant can
respond more quickly to changes in sensory evidence while
remaining robust to noise. For this reason, we and others have
suggested that sensory evidence is not integrated continuously
but rather low-pass filtered and combinedwith an independent
signal related to the urgency for making a choice – and that
together these bring neural activity to a decision threshold
(Cisek, Puskas, & El-Murr, 2009; Ditterich, 2006; Thura
et al., 2012). We have called this the Burgency-gating model^
(UGM).

Importantly, nearly all of the experiments typically cited in
support of the drift-diffusion model have used tasks in which
subjects view stimuli in which the informational content per-
tinent to the decision is held constant throughout each trial.
For random-dot motion tasks this means that the underlying
direction and degree of coherent motion are constant and al-
ways present during any given trial. However, if evidence is
held constant in this way, no conclusive distinction can be
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made between the DDM and the UGM because under such
conditions both of these models make very similar predictions
that are difficult to distinguish experimentally. Thus, the best
way to distinguish these models is to design tasks in which the
evidence changes within trials – a scenario for which the
models make qualitatively different predictions.

Specifically, because it keeps a running sum of all sensory
evidence, the DDM predicts that adding or removing sensory
evidence at any point prior to the decision will affect the time
at which the integrated sum of evidence crosses the threshold,
thereby affecting the response time. In contrast, the UGM
posits that evidence is computed quickly using a low-pass
filter with a fairly short time constant. Thus, it more quickly
tracks the current state of evidence while filtering out spuri-
ous, high-frequency noise (Fig. 1a, b). This evidence-tracking
signal is subsequently combined with a separate Burgency
signal^ that independently grows over time to bring the
resulting neural activity to a decision threshold (Fig. 1c, d),
as commonly observed in physiological studies (Churchland,
Kiani, & Shadlen, 2008; Gluth, Rieskamp, & Buchel, 2012;
Thura & Cisek, 2014). Because the strength of the evidence
signal is dependent primarily on the recent state of the evi-
dence at any given time, early transient increases in stimulus
strength will Bleak out^ later in the trial.

Importantly, the amount of time it takes for the evidence
signal to transition from representing one evidence level to the
next is determined by the time constant of the low-pass filter.
By this logic, any change in the level of stimulus strength
should only affect response times for trials in which the deci-
sion was made within a limited temporal window of this
change in evidence strength (i.e., before the prior evidence
has fully leaked away). Decisions made past this critical win-
dow ought to be indistinguishable from trials in which evi-
dence was held constant (see Fig. 1d).We have shown support
for this latter prediction in recent experiments, first using a
task in which subjectsmade decisions based on discrete events
(Cisek et al., 2009), and later using a variation of the random-
dot task in which the motion coherence was changing during
each trial (Thura et al., 2012). We have also shown that while
monkeys make decisions about changing sensory information,
neural activity in motor regions tracks evidence quickly (with
old evidence leaking out within 200 ms), and combines it with
a growing urgency signal (Thura & Cisek, 2014).

In a recent paper,Winkel et al. (2014) also used a changing-
evidence task but reached the opposite conclusion with re-
spect to the two models. In their task, subjects viewed
random-dot motion in which the signal early in the trial varied
briefly between trials in terms of direction and duration, and
these brief early variations significantly influenced the mean
RT of subjects in a stimulus-dependent manner, similar to
earlier studies of motion pulses (Huk & Shadlen 2005; Kiani,
Hanks, & Shadlen 2008). They then attempted to model and
replicate their behavioral results using the two models
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Fig. 1 (a) Example of a simple step input with- and without an early
increase in evidence (“pulse”) 1000 ms in length, during which the signal
strength is doubled. Black lines represent the underlying motion signal in
each condition, whereas the grey traces portray the resulting sensory input
which is subject to noise (SNR = 4:1). (b) The same evidence signal
depicted in (a), passed through a low-pass filter with a time constant of
250 ms. Black lines depict the filter’s response to a pure signal without
noise, as per the black traces in (a); grey lines show the filter’s response to
the same noisy signal depicted in (a). (c) An independent “urgency”
signal that increases over the course of a decision. The urgency signal’s
mean slope (black line) can vary across tasks, enabling different decision-
making strategies for different contexts. Additionally, the urgency signal
slope is itself subject to inter-trial variations (grey lines) which generate
variability in decision times even for identical trials within a given task
context. (d) The combined result of the filtered evidence (b) and urgency
signal (c), resulting in rise-to-threshold neural activity. The dashed grey
lines depict two different threshold settings. Note that this model predicts
an effect of early evidence on decision time only for a certain time
window following early evidence; decisions made sufficiently later will
no longer show an effect and will be indistinguishable from reaction times
(RTs) from trials in which the evidence was constant. The length of the
timewindow for early evidence’s efficacy is effectively determined by the
time constant of the filter (i.e., the leak parameter), as well as the slope of
the urgency signal within a given trial
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described above. In so doing they obtained qualitatively dif-
ferent results for each: the DDM showed a pronounced sensi-
tivity to early changes in evidence strength – even for deci-
sions taken relatively late in a trial – whereas their implemen-
tation of the UGM was irresponsive to these early changes.
Because the behavioral data revealed that human decision-
makers are sensitive to early evidence, it led them to conclude
that the DDM was better-suited to explain behavior in such
tasks. However, Winkel et al. did not consider two important
points. The first relates to their implementation of the urgency-
gating model and the second pertains to how they analyzed
and interpreted their data.

The urgency-gating model includes a low-pass filter

The UGM includes a low-pass filter to reduce high-frequency
noise in the stimulus while remaining sensitive to the low-
frequency signal. This is important, especially if one hopes
to simulate behavior in a task like random-dot motion discrim-
ination in which the stimulus is highly noisy. However,
Winkel et al. chose to use a BUGMwithout temporal filtering^
(their Eq. 2).

In the original UGM paper (Cisek et al. 2009), we com-
pared four versions of evidence integrator models and two
versions of the urgency-gating model, one without (Bmodel
5^) and one with a low-pass filter (Bmodel 6"). The former
was meant solely as an illustrative step, and we emphasized
the importance of low-pass filtering in the original 2009 paper,
as well as in subsequent publications (Thura et al., 2012;
Thura & Cisek, 2014; Thura, Cos, Trung & Cisek, 2014).
Unfortunately, it seems this caused some confusion. In partic-
ular, in the behavioral task described in Cisek et al. (2009)
there was no noise so both models 5 and 6 behaved similarly.
It is perhaps for that reason that Winkel et al. assumed that
low-pass filtering is not needed in general, and did not try
including it in their simulations. This is unfortunate because,
as will be shown below, if the UGM is implemented correctly
and includes a low-pass filter, then it easily captures the results
of their experiment.

Here, we aim to clarify why the filter is necessary and how
it relates to concepts such as Bleaky integration^ (Usher &
McClelland, 2001). Consider a general implementation of a
leaky integrator described by the following first-order linear
differential equation

dx

dt
¼ −Lxþ gE ð1Þ

Here, x is the neural decision variable, g is a gain factor, and
L is a leak parameter. The sensory evidence is denoted as E(t),
and we assume that it is subject to Gaussian noise with mean
zero, standard deviation σ, and frequency F.

Now consider how changes in these parameters influence
the dynamics of the system. If the leak is zero, then x simply
integrates Ewith gain g. In other words, it becomes equivalent
to the DDM. If the leak parameter is non-zero and positive,
then the system behaves like a low-pass filter with a time
constant equal to 1/L and gain equal to g/L. This can be dem-
onstrated by rewriting Eq. (1) as

τ
dx

dt
¼ −xþ g

L
E ð2Þ

where the time constant is τ=1/L. See Fig. 1a and b for an
example of how x responds to a simple step input buried in
noise (mean 0, standard deviation 0.25). Importantly, the low-
pass filter is just as effective in removing high-frequency noise
as a pure integrator.

Now consider what happens in the limit as both L and g go
to infinity. The result is that the time constant becomes zero so
the left-hand side of Eq. (2) goes to zero, leaving

x ¼ hE ð3Þ

where h is a gain equal to g/L. This is effectively what was
implemented by Winkel et al. in their equations. Consequent-
ly, here we will refer to their model as a Bzero time constant^
version of the UGM. This is functionally and mathematically
equivalent to the wholesale removal of the low-pass filter
component of the model, and thus renders it entirely unable
to handle noise.

The differences between the UGM with- and without a
low-pass filter are illustrated in Fig. 2. Note that when pre-
sented with constant, noiseless evidence, the models behave
very similarly. There is a slight difference in the predicted
build-up of neural activity (compare solid and dashed black
lines) but we believe this is unlikely to be empirically distin-
guishable. However, the presence of a filter nonetheless has
strong consequences when dealing with noise. Specifically,
the filtered version (with a time constant of 250 ms; solid grey
line) is much less susceptible to noise than the unfiltered ver-
sion (dashed grey line).

Note that in both the filtered and unfiltered versions, nearly
all of the activity build-up over time can be attributed to the
growth of the urgency signal, rather than the integration of
evidence over time. Thus, the UGM’s primary point of depar-
ture from the DDM is not in whether activity builds-up over
time, but in what drives such activity build-up. The urgency
signal replaces evidence integration as an explanation for the
build-up, but some estimate of evidence is still necessary. That
estimate is provided by a low-pass filter with a short time
constant, as opposed to the infinite (or very large) time con-
stant assumed by the DDM.

In summary, filtering is of central importance to the oper-
ation of the UGM and cannot be omitted from any fair com-
parison of model performance. This raises a question: If the
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UGM were to be implemented correctly, could it reproduce
the results reported by Winkel et al.? And, if so, what time-
constant would be necessary?

Simulating the data of Winkel et al.

Using Eq. (1) to implement the low-pass filter, wemultiply the
resulting filtered evidence signal by a growing urgency signal:

y tð Þ ¼ x tð Þ⋅U tð Þ ð4Þ

whereU(t) = (b +mt)η and η is inter-trial noise (i.e., variability
in the rate of growth of the urgency signal that changes from
trial to trial, but not within a trial). The decision is made when
y(t) reaches a threshold T and we add a constant Bnon-decision
time^ t0 to obtain the total RT (RT= t + t0). Note: in our original
description of the UGM (Cisek et al. 2009) we implied that
inter-trial variability influenced the evidence term, while here
we imply that it influences the urgency signal. While this does
not strictly make any difference because the terms are multi-
plied, we speculate that at the neural level, the more likely sce-
nario is that inter-trial variability influences the urgency signal.

Instead of using a minimization procedure to find the pa-
rameter values that produced the best fits to the full data set,

we fixed as many of our parameter settings as possible using
some of our own data from humans performing the random-
dot motion task without any changes in motion. We obtained
an estimate for the non-decision delay (NDD = 481 ms) by
averaging the mean RTs from all subjects from Beasy^ trials in
which motion was held constant at 50 % coherence, allowing
for very rapid discrimination of motion direction (admittedly,
this is probably an over-estimate, as even a strong motion
signal of 50 % coherence will still require some perceptual
processing).We then estimated additional parameter values on
the basis of prior UGM fits to data obtained from trials in
which motion coherence was held constant at 3 %. On this
basis we assumed a fairly large signal noise (Gaussian distri-
bution with μ = 0 and σ = 6, SNR = 1:6) with a frequency
limited by the refresh rate of the stimulus display (60 Hz).

We fit the remaining parameters as follows. The signal gain
(g = 0.03), leak (L = 0.004, corresponding to a time constant of
250 ms), decision threshold (T = 16300), and inter-trial noise
(log-normal distributionwithμ = 0.7 and σ = 0.2) were chosen
to produce a simulated reaction-time distribution whose mean
was as close as possible to that reported for condition #9 in
Winkel et al. (i.e., the closest experimental analogue to our
own Bdifficult^ 3 % coherence, constant-evidence trials). The
remaining eight trial conditions were then simulated using the
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Fig. 2 Neural activity predicted by the UGM in response to a step input
signal, assuming a filter with a 250-ms time constant (solid lines) versus a
version without a filter (dashed lines) in response to either a constant
noiseless sensory input (black) or input with noise that is six times

stronger than the signal (grey). Note that the presence or absence of a filter
has only a small influence on the time course of the average overall build-up
of neural activity, but a major effect on the attenuation of noise. Insets
illustrate the estimated evidence (top) and the urgency signal (bottom)
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description provided by Winkel et al., as shown in our Fig. 3.
Our results are shown in Fig. 4a and b, which compare the
output of our version of the UGM to the data reported by
Winkel et al. as well as to their simulations of the DDM and
their Bzero time constant^ version of the UGM.

Clearly, when it is implemented correctly, the UGM simu-
lates the behavioral data quite well, with RTs for the six trial
types containing the most evidence lying within the standard
error of the mean for most data points (Fig. 4a), and with cor-
responding error rates matching those of the behavioral data
reported by Winkel et al. (Fig. 4b). More importantly, over
and beyond any quantitative aspects of the models’ fits is the
UGM’s qualitatively-demonstrated sensitivity to early evi-
dence. While the extent of this influence of early evidence is
weaker in our model than in the behavioral data (as reflected in
the overall slope of the data points in Fig. 4a and the longer RTs
in trial types 1–3), it is nonetheless quite robust (as evidenced
by the small error margins). This places it in stark contrast to
Winkel et al.’s Bzero time constant^ version of the UGM,which
showed no effect of early evidence at all – an observation which
in part motivated their dismissal of the UGM.Of course, neither
of these models should be expected to provide a perfect fit,
because they don’t attempt to capture all the complexities of

human behavior (e.g., lapses of attention, etc.). Crucially, how-
ever, their respective disparities with respect to the present data
do not permit a strong ruling in favor of one over the other, as
previously reported.

As noted above, a low-pass filter is a leaky integrator, and
as such is related to the leaky competing accumulator (LCA)
model of Usher and McClelland (2001). However, it is impor-
tant to recognize how strong the leak that we’re proposing
really is. With a 250-ms time constant the filter equilibrates
to within 15 % of its asymptote in about 500 ms. In the pres-
ence of noise, at this point it no longer continues to consis-
tently grow but rather fluctuates around an asymptotic value
(see Fig. 1b). This means that after that point, if the threshold
is constant, then the only way the system can cross it is
through randommomentary fluctuations due entirely to noise.
Allowing for a ~450-ms non-decision delay, this would mean
that all RTs longer than 950 ms (97 % of the data of Winkel
et al.) would be determined purely by random fluctuations.
Furthermore, neural activity up to that point would be a satu-
rating exponential function, not the linear build-up often ob-
served (cf. Roitman & Shadlen, 2002). Instead, if one posits
that an urgency signal helps to bring neural activity to the
decision threshold, then the result is the UGM – a low-pass
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filter with time-varying gain that can explain existing neural
and behavioral data (Ditterich, 2006). In summary, a UGM
is defined as consisting of two key elements: (1) fast pro-
cessing of sensory information using a low-pass filter
with a relatively short time constant; and (2) an urgency
signal that brings the result toward a decision threshold.
The specific setting of the time constant is difficult to
estimate in behavioral experiments, although prior studies
and our recent neural data suggest that in some conditions
it can be as short as 100 ms (Ludwig et al., 2005; Ghose,
2006; Thura & Cisek, 2014). It could also be task depen-
dent and adjustable (Ossmy et al., 2013).

Interpreting model fits to data

In the Winkel et al. paper, early motion evidence presented in
the first 67–200 ms was interpreted as B[…having] pronounced

effects 1100 ms later^ on the basis of the resulting changes in
the means of the RT distributions. Consequently, on the surface
the behavioral data would seem to support a leak-less model
such as the DDM, and therefore appear to contradict any model
with substantial leak, including our version of the UGM (with a
filter time constant of 250 ms). However, it is important to bear
in mind that the mean of a distribution can be influenced in any
number of ways, ranging from an identical systematic bias in
every member of that distribution, to a small number of large
biases in only a subset of that distribution. This point is of
crucial importance when comparing the performance of the
two models because examining solely the group mean is not
sufficient to determine what kind of change has taken place in
the full distribution from which the mean RT is calculated.

To better illustrate these differences, it helps to scrutinize in
detail how each model generates variability in RTs in the sim-
plest case of identical constant-evidence trials. It is well-
known that RT distributions in decision-making tasks are very
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generated by the different models under each task condition (all data
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2014; numbered data points refer to the numbered trial types presented
in Fig. 3). The “zero time constant” UGM as implemented by Winkel
et al. (dotted grey line) shows no sensitivity to early evidence – the main
observation on which the authors based their conclusions. When
implemented correctly, however, the complete UGM (dashed black
line) does capture the overall trends present in the human behavioral

data (solid grey line). Each data point for our implementation of the
UGM reflects 50,000 simulated trials; the range of the standard error of
the means (SEM) is smaller than the markers themselves and thus has
been omitted from both Figs. 4a and b. (b) Error rates generated by each
model for each task condition. Winkel et al.’s implementation of the
UGM (dotted grey line) is once again insensitive to early evidence.
Including the low-pass filter of the UGM, however, does in fact render
it responsive to changes in early evidence, and, overall, matches the
behavioral data very well
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broad, and this can be explained either with large intra-trial
noise – as in the DDM – or with large inter-trial variability – as
in the LATER model (Carpenter & Williams, 1995) and the
UGM (Cisek, Puskas, & El-Murr, 2009; Thura et al., 2012).
Importantly, variability in the urgency signal also provides an
alternative explanation for the shift in mean RT distributions
reported byWinkel et al. – namely, when the urgency signal is
steep, decisions will sometimes be made before the early in-
formation has fully leaked out, resulting in a shift in the RT
only for those trials. When the urgency signal is shallower, the
total decision-related activity will not reach threshold until
after the early information has fully leaked out, thereby mak-
ing the RT indistinguishable from a trial in which no early
evidence was presented at all.

In short, the early information may not have lingering ef-
fects 1100 ms later within individual trials. Instead, individual
response times are only affected by early evidence in a subset
of trials in which the decision was made within a certain time
window of the change in evidence. Other trials, in which the
decision was made later, will otherwise show no difference in
response time because any early evidence will have leaked out
by the time the decision is made. Crucially, however, the mean
RT for all trials will still undergo a significant shift. Therefore,
looking only at group means is insufficient to fully discrimi-
nate between the effects of both models.

Task-dependent differences in model sensitivity

While the simulations summarized above demonstrate that an
urgency-gating model can indeed reproduce the results of
Winkel et al.’s behavioral data, one final apparent discrepancy
remains. In our previous experiments using discrete evidence
(Cisek, Puskas, & El-Murr, 2009) or random-dot motion
(Thura et al., 2012) we presented biases in early evidence
lasting up to 1000 ms, and these had no significant effect on
RTs for decisions made after these biases (RT >1000 ms).
Therefore, one must ask: how could a short bias (as in Winkel
et al.’s experiment) have a detectable effect on RTs while long
ones (as in our previous experiments) do not?

One possibility is that the filter time-constant is context-
dependent (Ghose, 2006; Ossmy et al., 2013). While that is a
viable possibility, we believe a simpler answer is that what
changes depending on task-context is the mean rate at which
the urgency signal grows over time (i.e., the steepness of its
slope). In a task where success rates asymptote after a short
observation time, further observation only reduces reward
rates (Thura et al., 2012). Because reward rate is often opti-
mized at the cost of accuracy (Balci et al., 2011), subjects in
such circumstances ought to adopt a steep urgency signal in
order to make decisions more quickly. The classic random-dot
motion task is of this sort, and the urgency signal we use here
to simulate it tends to be relatively steep, producing mean RTs

around 1200 ms – about 25 % of which are shorter than
1000 ms. In that distribution of RTs, a significant portion of
the earliest reactions will occur before the early stimulus in-
formation has leaked out (see the grey lines in Fig. 5), and this
subset of early decision times will cause a significant change
in the overall mean RT.

However, for tasks in which success rates do not asymptote
as rapidly – or when evidence can change – it can be worth-
while to wait longer to see if evidence improves (see Thura
et al., 2012, for a derivation of the theoretically optimum pol-
icy). Indeed, in contrast toWinkel et al.’s experiment, raw RTs
under such conditions in our previous studies were almost
never below 1 s and tended to have means of approximately
3 s. To simulate such results with an urgency-gating model, a
shallower urgency signal is needed. Consequently, under such
conditions, there are almost never any RTs so fast that the
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Fig. 5 Simulated neural activity in two different task contexts with
identical baseline evidence strength. In the “fast” context, the urgency
signal’s average slope tends to be high, reflecting a task in which a
speedier response policy tends to be advantageous. The solid grey line
portrays a trial in which the evidence remains at a single fixed level
throughout the entire trial; the dotted line depicts a trial with an early
bias during which the evidence is briefly doubled for 500 ms, after
which evidence strength drops to the same (baseline) level as the
constant-evidence trial. In the “slow” condition, the urgency signal’s
mean slope is substantially lower, reflecting a task context in which a
slower response policy is more advantageous. The solid black line
depicts a constant-evidence trial whose evidence strength is identical to
that in the “fast" context, but which reaches a fixed threshold substantially
later in the trial due to the shallower urgency signal. The dotted black line
illustrates a trial with an early bias lasting 1000 ms in duration. The
dashed horizontal line represents a single neural activity threshold,
producing distributions of response times whose means will be
~1000 ms in the “fast” context and ~2250 ms in the “slow” context.
Note that, in spite of its much longer duration, the 1000-ms bias in the
“slow” condition should not substantially affect the response times in this
context, as the bias will have fully leaked away by the time the threshold
is reached. In contrast, an early bias only 500 ms in duration will affect
response times in the “fast” context, and these bias trials may therefore skew
the group mean reaction time (RT) for all trials in this task condition
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evidence has not had the time to leak out (see the black lines in
Fig. 5), and RTs therefore show little or no difference of the
early bias.

We have further substantiated this hypothesis in a recent
experiment with human subjects, so far only available in ab-
stract form (Carland et al., 2013). In these experiments, we use
the random-dot motion task with brief motion pulses, and
compare RTs for identical trials in two separate conditions;
one in which subjects are motivated to respond quickly (steep
urgency), versus one where they respond more slowly (shal-
low urgency). In the former condition, RTs are significantly
influenced by early motion pulses but not by late ones, in a
manner consistent with a low-pass filter whose time constant
is fairly short. This agrees with previous studies (Huk &
Shadlen, 2005; Kiani, Hanks, & Shadlen, 2008), which found
that only early pulses (<300 ms) were effective in affecting
RTs. Importantly, however, in our latter condition in which
responses to identical trials are slower (presumably owing to
a shallower urgency signal), RTs are no longer affected by
those same early pulses but are instead affected by late pulses.
This is consistent with a leaky evidence signal whose activity
is governed by a low-pass filter with a short time constant, but
is not compatible with any model that does not include a
strong leak term.

Conclusion

While Winkel et al. (2014) designed and conducted a very
interesting study that aimed to distinguish between the drift-
diffusion model and the urgency-gating model, they failed to
consider two important points. First, they did not implement
the UGM correctly because they left out a crucial piece – the
low-pass filter, which is necessary whenever significant noise
is present in the input signal (Cisek et al., 2009). Second, they
dismissed the possibility of a strong leak because they focused
only on the means of their RT distributions. Here, we show
that if the UGM is implemented properly with a low-pass
filter, then it successfully captures the behavioral data reported
by Winkel et al., and does indeed explain the effects of early
evidence.
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