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Abstract The recognition heuristic (RH) theory states that, in
comparative judgments (e.g., Which of two cities has more
inhabitants?), individuals infer that recognized objects score
higher on the criterion (e.g., population) than unrecognized
objects. Indeed, it has often been shown that recognized
options are judged to outscore unrecognized ones (e.g., rec-
ognized cities are judged as larger than unrecognized ones),
although different accounts of this general finding have been
proposed. According to the RH theory, this pattern occurs
because the binary recognition judgment determines the in-
ference and no other information will reverse this. An alter-
native account posits that recognized objects are chosen be-
cause knowledge beyond mere recognition typically points to
the recognized object. A third account can be derived from the
memory-state heuristic framework. According to this frame-
work, underlying memory states of objects (rather than rec-
ognition judgments) determine the extent of RH use: When
two objects are compared, the one associated with a “higher”
memory state is preferred, and reliance on recognition in-
creases with the “distance” between their memory states.
The three accounts make different predictions about the im-
pact of subjective recognition experiences—whether an object

is merely recognized or recognized with further knowledge—
on RH use. We estimated RH use for different recognition
experiences across 16 published data sets, using a multinomial
processing tree model. Results supported the memory-state
heuristic in showing that RH use increases when recognition
is accompanied by further knowledge.
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The recognition heuristic (RH) for comparative judgments is
among the simplest heuristics proposed by Goldstein and
Gigerenzer (2002) within their program of the “adaptive tool-
box”—metaphorically standing for decision makers’ repertoire
of judgment and choice strategies. For pairwise comparisons,
the RH can be stated as follows: “If one of two objects is
recognized and the other is not, then infer that the recognized
object has the higher value with respect to the criterion”
(Goldstein&Gigerenzer, 2002, p. 76). For the RH to be applied,
the following preconditions have been proposed: (1) recognition
is a valid cue strongly correlated with the criterion; (2) further
cues are not openly available; (3) recognition stems from natural
encounters in the world (Gigerenzer & Goldstein, 2011).

The typical paradigm for investigating the RH consists of a
comparison task in which participants see pairs of objects and
must infer, for each pair, which object has a higher value on a
criterion dimension. The most common example is the city-
size task in which participants decide which of two cities has
the larger population. Additionally, participants engage in a
recognition task for each object. That is, they state for each
object whether they recognize it or not. On the basis of this
information, three types of object pairs can be defined: recog-
nition pairs (one object is recognized and the other is not),
knowledge pairs (both objects are recognized), and guessing
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pairs (neither of the objects is recognized). In some experi-
ments, the recognition task additionally asks participants to
state whether they merely recognized the name of the object or
whether they have further knowledge about it (e.g., Hilbig &
Pohl, 2009). However, despite this distinction of recognition
experiences, participants’ judgments are usually simply ana-
lyzed as recognized versus unrecognized (some exceptions are
Hilbig & Pohl, 2009; Hilbig, Pohl, & Bröder, 2009).

Several studies showed that recognized objects are chosen
more often than unrecognized ones in recognition pairs (for
reviews, see Gigerenzer & Goldstein, 2011; Pachur, Todd,
Gigerenzer, Schooler, &Goldstein, 2011). However, choosing
the recognized object does not necessarily involve use of the
RH. Whereas the latter implies that recognition alone deter-
mined the choice, the former can occur either from consider-
ation of recognition alone or in combination with further
knowledge about the recognized object (which will typically
be in line with the recognition cue). In this sense, different
accounts have been proposed for the observable tendency to
choose the recognized object. According to the original RH
theory, the recognized object is chosen more often because “if
one object is recognized and the other one is not, then the
inference is determined; no other information about the rec-
ognized object is searched for and, therefore, no other infor-
mation can reverse the choice determined by recognition”
(Goldstein & Gigerenzer, 2002, p. 82). We will refer to this
account as the invariance account.

An alternative account, which we will designate as the
inhibition account, presumes that the recognition cue can be
overruled by further knowledge. Specifically, the recognized
object is chosen more often not for being recognized per se, but
because further information about this object leads to the same
choice. This account is corroborated by several studies showing
that further knowledge affects choices in recognition pairs (e.g.,
Bröder & Eichler, 2006; Hilbig & Richter, 2011; Newell &
Fernandez, 2006). For example, people are more likely to infer
that a recognized city is more populous than an unrecognized
one if they know that the recognized city has a major league
soccer team (Newell & Fernandez, 2006). Naturally, further
knowledge can also result in the choice of the unrecognized
object when the available information indicates that the recog-
nized object is small. Nevertheless, since nothing is known
(and little can be inferred) about unrecognized objects, knowl-
edge will typically support choice of recognized objects.

A third account is given by the memory-state heuristic
(MSH; Erdfelder, Küpper-Tetzel, & Mattern, 2011). The
MSH presumes that individuals tend to choose the object that
reaches a “higher” memory state—that is, a higher level of
memory strength. Because criterion values are typically
strongly correlated with memory strengths (Erdfelder et al.,
2011), MSH use will often result in correct inferences. In line
with the two-high-thresholdmodel of recognition (e.g., Kellen,
Klauer, & Bröder, 2013), the MSH assumes that objects are in

one of three memory states: recognition certainty, uncertainty,
or rejection certainty. Objects with memory strengths exceed-
ing a recognition threshold are in the recognition certainty state
and are judged as recognized. If the memory strength falls
below this recognition threshold but is still larger than a
rejection threshold, an object is in the uncertainty state, and
the recognition judgment is determined by guessing. Finally, if
the memory strength falls below the rejection threshold, an
object is in the rejection certainty state and is judged as
unrecognized. According to the MSH, reliance on recognition
should increase with the “distance” between memory states of
the to-be-compared objects. Specifically, if one object is in the
recognition certainty state and the other in the rejection cer-
tainty state, reliance on recognition should be highest.

Beyond binary recognition judgments: New predictions

As was previously mentioned, the majority of studies investi-
gating the RH have relied on binary recognition judgments,
ignoring the reported subjective recognition experiences.
However, when distinguishing between nonrecognition (U),
mere recognition (mR), and recognition with further knowl-
edge (R+) judgments, it can be seen that the different accounts
make distinct predictions.

According to the invariance account, RH use should not vary
with the composition of the recognition pairs (i.e., pairs judged
R+–U vs.mR–U), because only the binary recognition judgment
determines choices and the distinction between R+ and mR
should not matter. In contrast, the inhibition account predicts
that RH use will be less frequent for R+–U pairs than for mR–U
pairs, since the availability of knowledge should lead to integra-
tion of this knowledge and, by implication, decrease reliance on
the RH. The MSH account makes the opposite prediction; that
is, RH use should be more frequent for R+–U than for mR–U
pairs, because it is more likely that the recognized object in the
former pair is in the recognition certainty state than that the
recognized object in the latter pair is. Note that this prediction
assumes only that reported recognition experiences (R+ vs. mR)
and underlying memory states (recognition certainty vs. uncer-
tainty) are positively correlated. It does not require that all R+

objects be in the recognition certainty state. To derive the MSH
prediction, it suffices to assume that R+ objects more likely
originate from recognition certainty than mR objects do.

TheMSH account makes an interesting additional prediction.
Specifically, the availability of further knowledge should be used
as a cue in R+–mR knowledge pairs as well, leading to the R+

object being judged as having a higher criterion value (e.g., being
judged as the more populous city). Again, this prediction
emerges from the fact that R+ objects are more likely in a
recognition certainty state than mR objects. The other two ac-
counts make no such prediction, since they predict that choices
for knowledge pairs will be based on retrieved knowledge only.
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Finally, predictions regarding the ecological validity of the
different recognition experiences can also bemade. According
to the MSH account, objects in the recognition certainty state
should have higher criterion values than objects in the uncer-
tainty state (Erdfelder et al., 2011). Thus, the MSH predicts
that the probability of the recognized object having the larger
criterion value should be greater for R+–U than for mR–U
pairs. The invariance account predicts no such difference,
because R+ and mR objects are treated as equivalent if com-
pared with unrecognized objects.

The evaluation of the above-described predictions requires
the ability to disentangle the relative contributions of RH use
and reliance on further knowledge. The r-model proposed by
Hilbig, Erdfelder, and Pohl (2010) provides such a measure of
RH use (via parameter r), while also taking into account the
contribution of further knowledge. However, this model does
not distinguish between different types of recognition experi-
ences. In the next section, we first present the r-model and then
propose an extension, the r*-model, that incorporates different
recognition experiences.

From the r-model to the r*-model

The r-model belongs to the class of multinomial processing tree
models (Batchelder & Riefer, 1999; Erdfelder et al., 2009). This
class of models assumes that the observed categorical responses
are produced by a set of discrete mental states. The probability
of each state being entered is determined by the probability of

certain cognitive processes taking place or not. The models
provide estimates for the probability of each of these processes
taking place, producing a characterization of categorical data in
terms of latent cognitive processes. Multinomial processing tree
models are usually depicted as trees, with each branching pre-
senting the occurrence (or not) of cognitive processes and the
terminal nodes representing the observed categorical responses.

The r-model (Hilbig, Erdfelder, & Pohl, 2010) models data
from a two-alternative forced choice comparison task and a
yes–no recognition task. The recognition judgments are used
to categorize the pairs into knowledge, recognition, or guess-
ing cases, defining the three trees of the model (see Fig. 1).
They lead to eight outcome categories that are described by
four parameters: r, the probability of applying the recognition
heuristic; a, the probability of recognition being a valid cue; b,
the probability of valid knowledge; and g, the probability of a
correct guess. While both the knowledge and guessing trees
are defined by a single parameter that accounts for accuracy (b
and g, respectively), the recognition tree is slightly more
complex. If the RH is used (with probability r), accuracy
depends on recognition validity; with probability a, the infer-
encewill be correct; andwith probability 1−a, it will be false.1

If further knowledge or any other judgment strategy is used,

1 The a parameter represents the proportion of recognition cases in which
the recognized object has the larger criterion value. This parameter could
be placedwithout loss of generality at the root of the tree or even removed
implicitly via the use of two trees (for pairs in which the recognized item
has the smaller or larger criterion value, respectively). We find the present
parametrization the most convenient one for several (pragmatic) reasons.
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Fig. 1 Parameter r denotes the probability of applying the recognition
heuristic as originally proposed—that is, by ignoring any knowledge
beyond recognition. a = recognition validity (probability of the

recognized object representing the correct choice when paired with an
unrecognized object); b = probability of valid knowledge; g = probability
of a correct guess; rec. = R = recognized; unrec. = U = unrecognized
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the RH is not applied (with probability 1−r), and accuracy
depends on (knowledge) validity. With probability b, the
answer is correct, and with probability 1 – b, it is false.
Again, the choice of either the recognized or the unrec-
ognized object will depend on the recognition validity
(but see footnote 1).

To investigate whether use of the RH varies between rec-
ognition pairs in which the recognized object is judged as
either R+ ormR, we extended the r-model to the r*-model (see
Fig. 2). The r*-model consists of six trees with 18 outcome
categories in total. Because the category probabilities must
sum up to one for each tree, only 12 of the 18 probabilities are
free to vary. These category probabilities are represented by
10 parameters, resulting in a testable model with 12−10=2
degrees of freedom. The r*-model comprises three trees for
knowledge cases, two trees for recognition cases, and one
guessing tree. The three knowledge trees refer to (1) R+–R+

pairs, (2) R+–mR pairs, and (3) mR–mR pairs. It could be
argued that this is not a knowledge tree, since, according to
the participant’s judgments, there is no knowledge available.
Nevertheless, we refer to the parameter that accounts for
accuracy in these pairs as a knowledge parameter, but more
for reasons of consistency and simplicity than due to a strong
claim about the availability of valid knowledge for these
cases. The two recognition trees correspond to simple dupli-
cations of the original recognition tree in the r-model (each
with its own set of r and b parameters), accounting both for
R+–U andmR–U pairs. Finally, as in the r-model, the guessing
tree includes pairs of two unrecognized objects (U–U).

As can be seen in Fig. 2, in the R+–mR knowledge tree, we
assume that the distinction between merely recognized objects
(mR) and recognized objects with further knowledge (R+) can
be used as a simple cue. In other words, irrespective of the
retrieved knowledge, the R+ object would be preferred over
themR object (as measured by parameter k). If participants use
this strategy (as predicted by the MSH), a correct answer
depends on the R+ cue’s validity (as measured by parameter
c)—that is, on the proportion of times the object with the
higher criterion value is the one judged as R+. However, if
this strategy is not used, participants rely on the knowledge
they possess, and a correct answer will depend on the validity
of knowledge (as measured by parameter b2). Choice of the R

+

or the mR object will again depend on parameter c.

Model-based hypothesis testing

The hypotheses discussed previously can be represented by
parameter restrictions in the r*-model:

invariance account : r1 ¼ r2; a1 ¼ a2;
inhibition account : r1 < r2;
MSH : r1 > r2; a1 > a2:

In addition to these restrictions, the MSH predicts that
people use the strategy modeled by parameter k. Therefore,
the MSH predicts that the restriction k=0 should produce
gross misfits.

The suitability of the different parameter restrictions can be
compared by evaluating the relative performance of the models
instantiating them. A model selection analysis will allow us to
assess which hypotheses are corroborated by the data and
which are rejected. Model selection requires a weighting be-
tween the ability of eachmodel to account for the observed data
and the ability of each model to account for data in general
(model complexity or flexibility), since more flexible models
provide a better fit to data a priori. The goal is to find the model
with the best trade-off between fit and flexibility (see
Vandekerckhove, Matzke, & Wagenmakers, in press).

One prominent approach in model selection is based on the
minimum description length principle (MDL; Kellen et al.,
2013). According to the MDL approach, both models
and data are understood as codes that can be com-
pressed. The goal of MDL is to assess models in terms
of their ability to compress data. The greater the com-
pression, the better the account of the underlying regu-
larities that are present in the data. One of the indices
emerging from the MDL principle is the Fisher infor-
mation approximation (FIA), which combines a model’s
goodness of fit with model flexibility penalties:

ð1Þ
The first summand of FIA corresponds to the (minus) max-

imum log-likelihood of observed data x in a particular experi-
ment, quantifying model ℳ’s fit, and the second and third
summands correspond to the model penalties. The second
summand takes the number of parameters p and sample size
N into account. The third summand accounts for the flexibility
of the model due to its functional form by integrating over the
determinant of the expected Fisher informationmatrix I(θ). FIA
differences larger than 1.1 already represent substantial evi-
dence in favor of the winning model (Kellen et al., 2013).

Analysis of data sets

The r*-model requires responses discriminating between
objects that were unrecognized, merely recognized, and
recognized with further knowledge. Sixteen previously pub-
lished data sets fulfilled this requirement (Hilbig, Erdfelder,
& Pohl, 2010, 2011, 2012; Hilbig & Pohl, 2008, 2009;
Hilbig et al., 2009; Hilbig, Scholl, & Pohl, 2010). The
choice task used in all data sets was the city-size task.
Table 1 provides a description of each data set (additional
details can be found in the Supplemental Material).
FIA values and parameter estimates were calculated using
the MPTinR package (Singmann & Kellen, 2013).
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Fig. 2 Tree representation of the r*-model. R+, object recognized with
further knowledge; mR, object merely recognized; U, object unrecog-
nized; b1, b2, and b3, knowledge validity parameters; k, probability of
using the further knowledge cue; c, validity of choosing the R+ object
(probability that it represents the correct choice) in R+–mR pairs; r1,
probability of applying the recognition heuristic (RH) in pairs for which
the recognized object received an R+ judgment; a1, recognition validity

(probability of the recognized object representing the correct choice) in
pairs for which the recognized object received an R+ judgment; r2,
probability of applying the RH in pairs for which the recognized object
received an mR judgment; a2, recognition validity (probability of the
recognized object representing the correct choice) in pairs for which the
recognized object received an mR judgment; g, probability of a valid
guess
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Following Hilbig, Erdfelder, Pohl (2010), the baseline re-
strictions b1=b4 and b3=b5 were imposed on the model.

The baseline model performed well in describing the data
(see Table 2). For 12 of the 16 data sets, it fitted the data
according to the standardG2 goodness-of-fit test using α = .05
as a criterion of significance. For 4 of the 16 data sets (data sets

5, 13, 15, and 16), there was misfit at this level of significance.
However, these misfits did not exceed the critical G2 values
obtained in compromise power analysis (i.e., balancing of
type I and type II error probabilities) given an effect size of
ω=0.1 under H1 (see Erdfelder, 1984; Faul, Erdfelder, Lang,
& Buchner, 2007).

Table 1 Data sets

Data Set Origin Materials N

1 Hilbig & Pohl, 2009, Experiment 1 20 largest Swiss cities 4,560

2 Hilbig & Pohl, 2009, Experiment 2 17 random world cities 9,969∗

3 Hilbig & Pohl, 2009, Experiment 3 14 largest Swiss cities 6,188

4 Hilbig & Pohl, 2008, Experiment 5 11 random world cities 5,776∗

5 Hilbig, Erdfelder, & Pohl, 2011 14 Polish and 14 Austrian cities 12,012

6 Hilbig, Pohl, & Bröder, 2009 14 largest Belgian cities 7,358∗

7 Hilbig, Erdfelder, & Pohl, 2010 (6a) 17 random world cities 2,312

8 Hilbig, Erdfelder, & Pohl, 2010 (6b) 17 random world cities 2,584

9 Hilbig, Erdfelder, & Pohl, 2010 (7a) 14 largest Italian cities 1,183

10 Hilbig, Scholl, & Pohl, 2010, Experiment 1a 16 largest Canadian cities 1,320

11 Hilbig, Scholl, & Pohl, 2010, Experiment 1b 16 largest Canadian cities 960

12 Hilbig, Scholl, & Pohl, 2010, Experiment 2a 16 largest Canadian cities 2,400

13 Hilbig, Scholl, & Pohl, 2010, Experiment 2b 16 largest Canadian cities 2,040

14 Hilbig, Erdfelder, & Pohl, 2012, Experiment 1a 18 random world cities 3,672

15 Hilbig, Erdfelder, & Pohl, 2012, Experiment 1b 18 random world cities 3,213

16 Hilbig, Erdfelder, & Pohl, 2012, Experiment 1c 18 random World cities 3,672

Note. The sample size corresponds to the aggregate level: total number of trials multiplied by number of participants. For the data sets marked with an *,
the total N does not match what was reported in the published articles. This is due to missing values in variables required for the analysis.

Table 2 Model fit and maximum likelihood parameter estimates

Data Set G2 p-value b1 b2 b3 k c g r1 r2 a1 a2

1 4.85 .09 .75 (.02) .85 (.02) .68 (.02) .37 (.05) .80 (.02) .52 (.02) .77 (.03) .63 (.03) .93 (.01) .79 (.01)

2 2.44 .30 .70 (.01) .73 (.02) .62 (.02) .46 (.03) .70 (.01) .54 (.01) .73 (.01) .45 (.03) .82 (.01) .74 (.01)

3 3.67 .16 .74 (.01) .78 (.02) .64 (.02) .42 (.03) .70 (.01) .56 (.02) .84 (.02) .67 (.02) .82 (.01) .73 (.01)

4 0.94 .62 .65 (.01) .67 (.03) .52 (.02) .60 (.02) .48 (.02) .53 (.02) .70 (.02) .49 (.03) .57 (.01) .62 (.01)

5 8.00 .02 .66 (.02) .69 (.02) .63 (.01) .50 (.02) .65 (.01) .53 (.01) .82 (.01) .70 (.02) .86 (.01) .81 (.01)

6 5.08 .08 .69 (.02) .71 (.04) .64 (.02) .61 (.04) .78 (.02) .57 (.01) .82 (.02) .52 (.02) .94 (.01) .78 (.01)

7 3.82 .15 .64 (.03) .84 (.04) .66 (.03) .50 (.06) .72 (.03) .52 (.02) .74 (.03) .63 (.04) .79 (.02) .70 (.02)

8 1.34 .51 .63 (.02) .63 (.04) .61 (.04) .50 (.05) .58 (.03) .51 (.02) .84 (.02) .75 (.04) .79 (.01) .77 (.02)

9 0.99 .61 .71 (.04) .81 (.05) .53 (.05) .41 (.11) .86 (.03) .50 (.03) .75 (.05) .57 (.06) .94 (.01) .69 (.03)

10 1.42 .49 .52 (.08) .65 (.09) .51 (.04) .64 (.08) .67 (.04) .59 (.02) .98 (.01) .67 (.04) .82 (.02) .74 (.02)

11 0.03 .98 .58 (.06) .72 (.10) .58 (.04) .67 (.09) .75 (.04) .54 (.03) .95 (.02) .50 (.06) .82 (.02) .70 (.03)

12 2.38 .30 .62 (.03) .67 (.04) .56 (.03) .40 (.06) .62 (.03) .53 (.02) .77 (.03) .52 (.04) .80 (.02) .68 (.02)

13 6.09 .05 .63 (.03) .84 (.05) .62 (.04) .60 (.07) .75 (.03) .53 (.02) .85 (.02) .56 (.05) .78 (.02) .68 (.02)

14 3.17 .20 .66 (.01) .74 (.03) .67 (.02) .30 (.04) .56 (.02) .45 (.02) .56 (.03) .42 (.04) .59 (.02) .59 (.02)

15 6.48 .04 .68 (.01) .75 (.03) .64 (.03) .39 (.04) .55 (.02) .50 (.02) .58 (.03) .41 (.05) .64 (.01) .57 (.03)

16 8.07 .02 .64 (.02) .62 (.03) .64 (.02) .13 (.05) .53 (.02) .46 (.02) .69 (.02) .63 (.03) .57 (.02) .56 (.02)

Mean 3.67 – .66 .73 .61 .47 .67 .52 .77 .57 .78 .70

Note. Standard errors in parentheses
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The results reported in Table 3 show that for the majority of
the data sets (12 out of 16), the FIA metric prefers the model
imposing the full set of MSH restrictions, r1>r2 and a1>a2,
and provides support for k>0. These results are corroborated
by the parameter estimates obtained with the unrestricted
model, which are almost invariably consistent with these
parameter restrictions (see Table 2).2

Three data sets (4, 7, and 14) were better accounted for by a
model imposing the restrictions r1>r2 and a1=a2. This departs
from theMSH only in terms of the latter’s expected ecological
validity, since the probability of the recognized object having
the larger criterion value was not found to be reliably greater
in R+–U pairs than in mR–U pairs. Finally, data set 16 was
better described by a model imposing the restrictions r1=r2
and a1=a2. As can be seen in the Supplemental Material, data
set 16 corresponds to a condition in which speeded responses
were collected. It is plausible that the retrieval of additional
information from memory was impaired by this experimental
constraint, leading to the use of fast, familiarity-based recog-
nition judgments (e.g., Pachur & Hertwig, 2006).

General discussion

We tested the predictions of three different accounts about the
impact of subjective recognition experiences on RH use.
Overall, we found a clear pattern that was predicted by the
MSH and is inconsistent with both the invariance and the
inhibition accounts. RH use is more frequent when the recog-
nized object is judged as R+ than when judged asmR. TheMSH
predictions about RH use for different recognition experiences
rely on the assumption that objects judged as R+ are more likely
to have originated from a certainty state than objects judged as
mR. Despite the plausibility of this assumption, future efforts
should be placed on implementing a complete model that
associates choice predictions to latent memory states that are
themselves estimated from the data (Erdfelder et al., 2011;
Pachur et al., 2011). This, however, implies the possibility of
distinguishing whether an object (e.g., a city name) was expe-
rienced previously or not. One way to achieve this is by induc-
ing recognition experimentally (see Bröder & Eichler, 2006),
although it can be argued that this “artificial” recognition is
beyond the domain of the RH (Gigerenzer & Goldstein, 2011).

In addition to the main hypotheses, we derived two other
predictions from the MSH framework. The first prediction
concerns a strategy that was not investigated before—namely,
choosing the object judged as “recognized with further

Table 3 Model-Selection Results: FIA indices for different versions of the r*-model applied to 16 data sets

Parameter Restrictions

Data Set baseline r1=r2 r1=r2
a1=a2

r1=r2
a1=a2
k=0

r1≤r2 r1≤r2
k=0

r1≥r2
a1≥a2

r1≥r2
a1=a2

r1≥r2
a1≥a2
k=0

1 34.80 37.13 83.09 118.34 39.01 74.25 33.41 80.09 68.65

2 37.29 81.21 95.15 224.39 83.38 212.63 35.92 50.57 165.17

3 36.17 50.02 60.99 171.04 52.02 162.07 34.79 46.47 144.84

4 34.46 54.29 53.68 255.12 56.28 257.72 35.95 33.18 237.39

5 41.08 52.36 61.89 240.86 54.72 233.69 39.68 49.94 218.66

6 36.84 65.42 155.66 270.67 67.49 182.49 35.45 126.41 150.45

7 30.90 31.21 34.04 73.67 32.73 72.36 29.50 33.05 69.14

8 30.03 30.25 27.61 69.10 31.78 73.26 28.65 26.74 70.14

9 25.85 26.41 53.08 60.61 27.52 35.05 24.48 51.89 32.02

10 26.20 46.46 46.50 70.48 47.68 71.66 24.79 25.55 48.78

11 24.40 46.34 48.46 68.23 47.45 67.21 23.02 25.85 42.79

12 30.37 40.81 49.58 72.69 42.38 65.48 28.98 38.48 52.09

13 30.79 46.14 48.35 80.25 47.55 79.45 29.43 32.36 61.32

14 32.81 35.64 32.44 56.79 37.35 61.70 31.47 28.98 55.82

15 33.55 36.69 36.18 72.52 38.28 74.62 32.19 32.38 68.52

16 35.46 34.27 31.27 34.09 36.08 38.89 34.08 31.79 36.90

Total 521.00 714.65 917.97 1,938.85 741.70 1,762.53 501.79 713.73 1,522.68

Note. FIA indices of the winningmodel for each data set are set in boldface type. FollowingHilbig, Erdfelder, Pohl (2010), all models have the restriction
b1=b4 and b3=b5. The baseline model had no further restrictions. Extending the set of candidate models by including models without these restrictions
does not change the model selection results

2 The preference for this particular restricted model did not change when
including equivalent candidate models that did not include the baseline
restrictions b1=b4 and b3=b5. Moreover, the FIA-based results were
corroborated by order-restricted significance tests on parameter restric-
tions (see the Supplemental Material).

Psychon Bull Rev (2014) 21:1131–1138 1137



knowledge” (R+) in a heterogeneous R+–mR knowledge pair,
irrespective of the retrieved knowledge. The observed use of
this strategy suggests that participants are relying on a differ-
ence in memory states. The second prediction relates to the
recognition validities in the two recognition trees. We ob-
served that recognition validity was (in most data sets) higher
in R+–U than in mR–U recognition pairs. This shows that the
MSH framework reflects the environmental structure better
than does the invariance account. Both results reinforce the
importance of memory states in adaptive decision making
and, thus, the need to go beyond simple binary yes–no recog-
nition judgments.

In sum, we found strong support for theMSH by testing the
influence of recognition experiences on RH use. The inhibi-
tion account prediction that the availability of knowledge
reduces RH use was not supported, and only in one data set
(under time pressure conditions) did we find support for the
invariance account prediction that RH use should not differ
between recognition experiences. We believe that our work
shows the importance of focusing on underlying memory
processes when investigating memory-based probabilistic in-
ferences and strategies such as the RH.
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