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Abstract Generalization from previous experiences to new
situations is a hallmark of intelligent behavior and a prerequi-
site for category learning. It has been proposed that category
learning in humans relies on multiple brain systems that
compete with each other, including an explicit, rule-based
system and an implicit system. Given that humans are biased
to follow rule-based strategies, a counterintuitive prediction of
this model is that other animals, in which this rule-based
system is less developed, might generalize better to new
stimuli in implicit category-learning tasks that are not rule-
based. To test this prediction, rats and humans were trained in
rule-based and information-integration category-learning
tasks with visual stimuli. The generalization performance of
rats and humans was equal in rule-based categorization, but
rats outperformed humans on generalization in the
information-integration task. The performance of rats was
consistent with a nondimensional, similarity-based categori-
zation strategy. These findings illustrate through a compara-
tive approach that the bias toward rule-based strategies can
impede humans’ performance on generalization tasks.
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Assigning unseen objects to previously learned categories is
an ability found throughout the animal kingdom (Ashby &

Maddox, 2005; E. E. Smith & Medin, 1981; Vogels, 1999).
This process is referred to as generalization. One necessary
condition for achieving generalization involves being able to
judge the similarity between the new object and internal
representations (Nosofsky, 1986; Shepard, 1987). Overall,
when similarity with one specific representation is higher than
the similarity with other representations, the category label
related to the most similar representation is associated with the
novel object (Shepard, 1987).

Many brain regions are involved when new categories are
learned, and novel objects are categorized accordingly. The
COVIS theory (Ashby, Alfonso-Reese, Turken, & Waldron,
1998) of category learning distinguishes two competing sys-
tems, an explicit, rule-based system and a more implicit sys-
tem. The explicit system is very well developed in humans
(J. D. Smith, Beran, Crossley, Boomer, & Ashby, 2010; J. D.
Smith, Minda, & Washburn, 2004) and allows for superior
performance when the task is best solved by the application of
a relatively simple rule (rule-based, or RB). The implicit
system is involved when categories cannot be distinguished
by a simple rule-based solution, such as when multiple di-
mensions have to be integrated (information-integration, or
II). The performance of humans (Ashby, Ell, & Waldron,
2003) and monkeys (Smith et al., 2010) is better in RB
category learning than in II category learning. One cause for
the inferior performance in II category learning is the bias of
human subjects to first test verbal rules before switching to the
implicit learning system. This leads to the hypothesis that the
explicit system will hinder performance when learning cate-
gories that are not differentiated according to an explicit rule.
Filoteo, Lauritzen, and Maddox (2010) tested this hypothesis
in the context of a study in which subjects were instructed to
perform a dual-task paradigm designed to diminish the in-
volvement of the explicit system during category learning, and
these researchers indeed found that performance in II category
learning improved under such dual-task conditions.
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Another, as yet untested and counterintuitive, prediction
derived from the COVIS framework is that animals in
which the explicit system is less well developed might
show better generalization in II category learning than
humans do. Indeed, Jitsumori (1993) already showed that
pigeons, who have a differently developed brain and might
be more likely to rely on the implicit learning system,
generalized better in II tasks than humans did, but this
study did not include both versions of the task. J. D.
Smith et al. (2011) reported that pigeons learn both RB
and II tasks equally quickly/slowly. However, this study
did not pinpoint whether this was due to worse perfor-
mance, relative to humans, in the RB task (a logical direct
consequence of a less-developed explicit system) or, alter-
natively, to better performance in the II task (as a conse-
quence of the removal of interference from this explicit
system). Here, we aimed to directly test the latter predic-
tion from the interference hypothesis by means of a com-
parative approach.

A general problem in comparative studies between humans
and other animals is that humans mostly receive relatively
detailed task instructions (or derive them easily), whereas
animals have to invest more time in figuring out the general
task procedure. Thus, task learning is confounded with learn-
ing the specific process of interest, which is category learning
and generalization. Here we solved this problem by first
training the subjects, both humans and rats, in the general
procedure of the taskwith one prototypical stimulus from each
category. Once the general task and the stimulus-to-category
mapping were learned for these two stimuli, we tested gener-
alization to other, previously unseen stimuli.

Humans and rats showed equal generalization ability in RB
categorization, but rats significantly outperformed humans in
terms of generalization in II categorization. This result con-
firms that lower interference from the explicit system leads to
superior generalization in II category learning.

Method

Rat experiment

Animals The experiment included 16 FBN F1 rats (F1 hy-
brids, first-generation offspring of crossing the Fisher and
Brown–Norway strains). They were obtained from Harlan
animal research laboratory (HSD, Indianapolis, Indiana) at
an age of 5 months. The rats lived in groups of six per cage,
and the animals from each cage were equally divided over the
two conditions (RB and II). For identification, we colored
each rat’s tail with zero to five circles, using a black marker.
All of the procedures for animal housing and testing were
approved by the KU Leuven Ethics Committee for animal
experiments.

Behavioral setup For the behavioral task, we implemented
our version of the visual water-maze setup (V-Maze;
Figs. S1A and S1C) described previously (Prusky, West, &
Douglas, 2000; Wong & Brown 2006). The animal is released
into the water at the short end of a trapezoid pool. From there,
it has to find a submerged platform located in front of one of
two screens (Dell 17-in. LCD monitors) at the long end of the
pool. The animal has to learn which of two stimuli predicts the
location of the platform. A 50-cm-long divider was placed
between the two screens, to force the animal to make a choice
at the end of the divider. The circular stimuli measured about
23º in diameter when seen from this point. When the rat
crossed this point we scored the trial as correct or incorrect,
depending on the location of the platform.

Stimuli Following previous studies of category learning in
humans (Maddox, Ashby, & Bohil, 2003), we defined a
grating stimulus space using two dimensions: orientation
and spatial frequency (see Fig. 1A for more details about the
different experimental conditions). The orientations ranged
from 0º (horizontal) to 90º (vertical), and the spatial frequen-
cies ranged from a minimum of 0.05 cycles per visual degree
(cpd) to a maximum of 0.30 cpd. This range was selected on
the basis of the contrast sensitivity values of rats obtained by
Silveira, Heywood, and Cowey (1987), who showed a similar
sensitivity of pigmented rats for this range of frequencies (see
the supplemental information, downloadable with this article,
for more details on how we compensate the remaining differ-
ence in sensitivity).

Human experiment

Subjects All 24 subjects participated in the behavioral study
as part of the first-year bachelor of psychology in Leuven
(participation for course credits). The subjects were right-
handed and 18 to 24 years old at the time of testing. All
subjects had normal or corrected-to-normal vision. Informed
consent was obtained, and the procedures were approved by
the ethics committee of the Faculty of Psychology and
Educational Sciences (KU Leuven).

Behavioral setup For the behavioral testing, we used a Dell
desktop computer running Windows XP. The stimuli were
displayed using a Dell 16-in. monitor (running at 75 Hz).
The viewing distance was approximately 40 cm (see
Supplemental Figs. S1B and S1D), and the subjects responded
using custom-made response buttons, one in each hand.

Stimuli The subjects viewed the stimuli on a 16-in. CRT
monitor and were instructed to fixate a small fixation cross
in the middle between two gray fields in which gratings would
appear for 200 ms, at fixed positions. The viewing distance
was approximately 40 cm, and stimuli were presented at 5º in
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size and about 12º eccentricity. Their spatial frequencies were
in the range of 0.2–1.2 cpd, and were chosen to result in a
stimulus visibility (given the eccentricity and timing used) that
was not better than what the rats could perceive. See the
supplementary information for more details on how we per-
formed this matching of frequency ranges.

Training procedure

We first trained the subjects to distinguish two grating patterns
(see Fig. 1A) in a visual discrimination task. These two grating
patterns were the prototypical stimuli from the two categories
that each subject had to learn (see the boxed stimuli in the
bottom row of Fig. 1A; see the supplemental information for
more details on the training procedures). To the humans
subjects, instructions were given by the experimenter that
there were “good” (target) and “bad” (distractor) patterns
and that both humans and rats had to detect these by trial
and error. The subjects were given feedback, thus allowing
them to learn which prototype constituted the target. The
gratings could differ on two dimensions, orientation and spa-
tial frequency; we counterbalanced the target and distractor
categories over subjects (see Fig. 1A). For subjects in the RB

condition, only one of the two dimensions differed between
the two to-be-learned categories. For subjects in the II condi-
tion, both dimensions differed. The stimuli were presented
randomly on the two presentation locations, and one of these
patterns consistently predicted the location to go for. Rats
were clearly slower than humans in picking up the stimulus–
response associations. Using the 85% crossing point of the
fitted sigmoid function as a criterion, rats needed from five
(fastest animal) to 17 (slowest animal) 12-trial sessions to
learn the basic discrimination task (see Fig. S2). With the
exception of two outlier human subjects (who never obtained
performance above chance level), all of the human subjects
reached this same criterion after at most the equivalent of two
sessions (24 trials). The numbers of sessions needed to reach
this criterion were not significantly different between the RB
and II conditions (rats: t(14) = –0.543, p = .596, d = –0.272;
humans: t(20) = –0.076, p = .941, d = –0.032).

Testing phase

In this phase, we first expanded the stimulus set with four new
gratings that were located most distantly from the center
(scheme shown in Fig. 1B; the exact stimuli are shown in

Fig. 1 Overview of the stimuli used in all conditions. (A) The vertical
axis in each plot should be read as the orientation of the grating; the
horizontal axis indicates variation in the spatial frequency of the grating.
Columns 1 and 3 define rule-based tasks, for which one dimension is
relevant for categorization; columns 2 and 4 define information-integra-
tion tasks, for which both dimensions should be taken into account for
successful categorization. We counterbalanced which stimulus category
was the target (first vs. second row). This design yielded eight (4 columns
× 2 rows) possible target–distractor pairs, each of which was given to two
rats and two or three human subjects. The third row shows examples of
the stimuli used in both training and test phases; the black rectangles
indicate the training sets. (B) This plot shows the stimulus space for the
test phase, illustrated with Orientation Condition 1. In total, we

distinguished between five subsets of pairs: (1) the original pair (solid
line), which was the pair used to train the animals in the training phase of
the experiment; (2) the two pairs that contained the original target and a
new distractor (short dashes); (3) the two pairs that contained the original
distractor and a new target (long dashes); (4) the two pairs that consisted
of new stimuli from the space that did not vary on the orthogonal
dimension (irregular dashes); and (5) the two pairs that also consisted of
new stimuli, but with large differences for the orthogonal dimension
(dotted lines). These pairs were compared in part 3 of the analysis in
order to give us an idea of how well the subjects generalized to new
stimuli. The five subsets indicated in this figure correspond to different
levels of generalization that were required (1 = no generalization . . . 5 =
maximum level of generalization)
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the bottom row of Fig. 1A). These six gratings were combined
in nine pairs that were presented in every session. These fixed
pairs were interleaved with three pairs resulting from a com-
bination of stimuli that had a random position in stimulus
space between the original central stimulus and the extremes.
We included these random pairs to avoid having the animals
learn simple stimulus–response mappings. Part I of the testing
phase was stopped after ten sessions (total of 120 trials per
rat).

Results

Rats were trained until all of them performed above
criterion (85%) for four successive trials. Their perfor-
mance in the sessions after criterion was reached is
summarized in Fig. 2A. This performance was the same
in rats and humans, with no difference between the RB
and II conditions in either of the species. These effects
were tested with a 2 (species: rats vs. humans) × 2
(catType: RB vs. II) analysis of variance. We found
no main effect of catType [F(1, 34) = 0.038, p = .846,
η2 = .001], nor a main effect of species [F(1, 34) =
0.117, p = .734, η2 = .003]. The catType × Species
interaction was also not significant [F(1, 34) = 1.158,
p = .289, η2 = .033]. Thus, for the prototypical stimuli,
the stimulus–category association was induced equally
well for the rats and the humans, and equally well for
the two category-learning tasks.

After this training phase, we tested the generalization of the
animals to 120 nonprototypical exemplars from the two cate-
gories (see Fig. 1A). In the RB condition, the animals could
solve the task by attending to one of the two stimulus

dimensions. In the II condition, the target stimulus could only
be determined by integrating the two dimensions. We ana-
lyzed the generalization data with a 2 (species: rats vs.
humans) × 2 (catType: RB vs. II) analysis of variance. The
results (Fig. 2B) revealed a main effect of catType [F(1, 34) =
6.452, p = .016, η2 = .095] and a main effect of species [F(1,
34) = 5.300, p = .028, η2 = .078]. Most importantly, both
effects were strongly modulated by a strongly significant
interaction between catType and species [F(1, 34) = 17.037,
p < .001, η2 = .250].

This interaction effect indicates that the patterns of gener-
alization across the RB and II conditions were very different
for the two species. To further investigate the direction and
strength of the effects, we performed post-hoc t tests. For rats,
we found no difference between the two category-learning
tasks [t(14) = –1.327, p = .206, d = –0.664]. For humans, we
found a strongly significant difference, with lower generaliza-
tion performance in the II than in the RB condition [t(20) =
4.555, p< .001, d= 1.951]. When comparing the performance
of both species in the same conditions, no difference occurred
in the RB condition [t(16) = –1.836, p = .085, d = –0.871]. In
contrast, humans performed worse than the rats in the II
condition [t(18) = 3.829, p < .001, d = 1.748]. These findings
indicate that rats obtained similar performance in both ver-
sions of the task, whereas humans showed a strong deficit in
the II task.

To obtain more detailed information about the pattern of
generalization, we classified all of the stimulus pairs from the
testing phase according to their averaged similarity to the
stimuli presented in the training phase (Fig. 1B). This resulted
in three types of pairs: the original pair, pairs in which an
original was paired with an unseen stimulus, and pairs in
which both were new stimuli. We could further distinguish

Fig. 2 Performance in rule-based (RB) and information-integration
(II) conditions for both species. (A) Plateau performance of both
species at the end of the training phase. We found similar per-
formances for both species, and no differences between the RB

and II conditions. (B) Data for the generalization test phase. Rats
reached performance comparable to the training levels, whereas
humans clearly showed difficulties solving the II tasks
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the second type, depending on whether the target or the
distractor was original. Also, the third type could be divided
into straight and cross pairs, corresponding to, respectively, no
and maximal variation in the orthogonal dimension (the di-
rection of the stimulus space that was irrelevant for
distinguishing the categories). Thus, we looked at the perfor-
mance of both groups on each of these five subsets of pairs
(pairType).

The results were analyzed in a 2 (catType: RB vs. II) × 5
(pairType: subset 1–5) split-plot design, with catType as a
between-subjects variable and pairType as a within-subjects
variable. We performed one analysis of variance per species
(rats, humans).

For rats (see Fig. 3A), we found no main effect of catType
[F(1, 14) = 2.179, p= .162, ηp

2 = .135]. However, a significant
main effect of pairType [F(4, 56) = 3.492, p= .013, ηp

2 = .200]
was observed: Stimuli more distant from the initially learned
prototype yielded worse performance. The interaction be-
tween the two factors was not significant [F(4, 56) = 0.184,
p = .946, ηp

2 = .013]. These findings support the hypothesis
that these animals relied on a similarity-based strategy to solve
the generalization problem in both the RB and II conditions.

For humans (see Fig. 3B), we found a significant main
effect of catType [F(1, 20) = 11.363, p = .003, ηp

2 = .362]. No
significant main effect of pairType [F(4, 80) = 0.091, p= .985,
ηp
2 = .005], nor an interaction effect [F(4, 80) = 0.707, p= .589,

ηp
2 = .034], was found. These findings support the hypothesis

that generalization in humans is very different between RB
and II conditions, and is not related in a simple way to the
similarity of novel stimuli with respect to the originally
learned prototypical stimuli.

Finally, the very good generalization performance was
consistent across rats. Despite the large variation between rats

in the time taken to learn the basic discrimination in the
training phase (ranging from five to 17 sessions being required
to reach criterion performance), which could have led to
possible overtraining effects in the fast learners, this variable
was not related to the much less variable generalization per-
formance (r = .09, p = .74).

Discussion

In sum, we reported generalization in a rule-based category
scheme to be fairly similar in rats and in humans, whereas rats
outperformed humans in generalization in an information-
integration category distinction. The strong difference in the
generalization abilities of humans in RB and II conditions
confirms the wealth of data in the literature that category
learning and generalization in humans is dimension-based.
Note that the performance levels were higher overall than is
generally reported, but our between-class distance was larger,
due to the matching to the rat experiment. In contrast, rats
showed similar generalization performance for RB and II
category distinctions, and generalization in rats was based
on overall similarity. This is a superior strategy in the case of
an II category distinction, which is why rats outperformed
humans in such a situation. An important note hereby is that
we ruled out that the animals were using some trivial strategy
or confound unrelated to the stimuli to solve the task, because
their performance fell back down to chance level in a subse-
quent experiment using unrelated shapes (but with the same
average luminance and contrast; see the supplemental
information).

In order to directly compare generalization in rats and
humans, we changed the category-learning protocol that is

Fig. 3 Comparison of generalization to new stimuli for the two species.
(A) Rats performed slightly worse for stimuli that were less similar to the
original pair, but no difference emerged between the rule-based (RB) and
information-integration (II) conditions. This is also indicated by the

p values of the t tests for each pair of bars. (B) Humans showed different
patterns for both conditions. Subjects in the RB condition performed
similarly for each of the subsets of pairs (no effect of generalization
level), whereas subjects in the II condition performed consistently worse
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typically used for comparisons of RB and II category learning.
First, in previous studies, the category distinction was learned
gradually by being presented with a distribution of stimuli
(one stimulus at a time, and different stimuli in different trials).
However, this procedure mixes up learning of the general task
procedure and of the general category distinction with gener-
alization to novel stimuli. To isolate the latter process, we used
a multiphase paradigm, and first trained subjects on associat-
ing the correct response with a prototypical stimulus from
each category, before generalization was tested in a later phase
of the experiment. A second difference was that we used a
two-alternative forced choice (2AFC) design, involving two
stimuli per trial instead of one, because 2AFC is a very robust
paradigm, with superior qualities from a signal detection point
of view, as compared to one-interval identification paradigms
(see the supplementary information).

Thus, any prediction of a difference between RB and II
category distinctions would be related to the generalization
phase. This prediction was based on the assumption that the
switch to a multiphase 2AFC paradigm would not have con-
sequences for finding such a difference between RB and II
category learning. This seemed to be a reasonable assumption.
If a subject, whether human or rat, were biased to apply a one-
dimensional rule in the typical paradigm, we would expect
this bias to also occur in our multiphase 2AFC paradigm.
Nevertheless, it was important to test this explicitly by includ-
ing human subjects in the present study. The findings con-
firmed that, also in our multiphase 2AFC paradigm, humans
show superior generalization performance in the context of an
RB rather than an II category distinction, exactly as has been
found in the numerous previous studies comparing RB and II
category learning (Ashby et al., 2003; Hélie, Waldschmidt, &
Ashby, 2010).

In contrast, rats showed equal performance in the two
conditions, and our multiphase paradigm allowed for the
conclusion that they even outperformed humans in generali-
zation in the case of an II category distinction. The rats’
performance was best explained by a similarity-based gener-
alization strategy, instead of a dimension-based strategy like
the one used by humans. Why do rats employ a different
strategy? This is not a trivial outcome, because the repre-
sentation of stimuli in the rat visual system is in fact very
similar to the representation in primates. Our stimulus space
manipulated the orientation and spatial frequency of grating
patterns, dimensions that are represented in the primary
visual cortex (V1) of rats in a way very similar to that in
monkeys (Girman, Sauvé, & Lund, 1999). Particularly in-
triguing is the finding that rat V1 neurons seem to show
separable codings of orientation and spatial frequency
(Burne, Parnavelas, & Lin, 1984; Niell & Stryker, 2008;
Ohki, Chung, Ch’ng, Kara, & Reid, 2005), which is a
prerequisite of dimensional processing of the stimuli that
might not be there in the case of pigeons, which is also a

species in which no difference has been found between RB
and II category learning (J. D. Smith et al., 2011).

Thus, the choice of a similarity-based generalization strat-
egy is most likely not directly related to the way that stimuli
are represented in visual cortex, but rather to the absence of a
bias to employ simple, dimension-based rules. It should be
noted that rats have regions in the prefrontal cortex that are
seen as homologues of primate prefrontal cortex (Uylings,
Groenewegen, & Kolb, 2003) but that are obviously less
developed. Interestingly, young children, whose brains are
not fully developed, as compared to adults (relating mostly
to the explicit system; the implicit system does not undergo
many changes throughout development), still show this bias
toward dimension-based rules. However, these are not applied
as efficiently in children as in adults (Visser & Raijmakers,
2012). Thus, a qualitative difference most likely distinguishes
rats and humans, and not so much a quantitative difference.
This might explain rats’ relative inability to use a rule- and
dimension-based strategy, despite the fact that the dimensions
that would feature in such a rule are represented in visual
cortex. Our findings, in combination with the neurophysio-
logical data in the literature, suggest that a dimension-based
visual representation does not necessarily lead to a dimension-
based generalization strategy. Furthermore, they suggest that
the bias toward using explicit rules might not be a universal
feature of mammalian neurocognition, as has been proposed
(J. D. Smith et al., 2010). Up to now, researchers have found
positive evidence for this in primates, and negative evidence
in pigeons, but our present findings indicate that not all
mammals exhibit this bias. It would seem even less likely to
occur in some of the other mammalian species used in vision
research, which are phylogenetically farther removed from
primates than rodents (e.g., cats, dogs, or sheep; see Miller
et al., 2007; Nishihara, Hasegawa, & Okada, 2006).

Most importantly, we have shown here that rats display
superior generalization performance in a generalization con-
text in which correct stimulus–response associations do not
follow a dimension-based rule. This finding is in line with the
hypothesized competition in the human brain between an
explicit, rule-based system and an implicit category-learning
system (Filoteo et al., 2010). From this hypothesis, we pre-
dicted that animals with a less elaborate rule-based system
would experience less competition from this system in situa-
tions in which adequate learning cannot be based on rules, and
as such, these animals would outperform humans in such
situations. This prediction is counterintuitive, given that we
predicted that the animal species with the less well-developed
category-learning system would perform best, but neverthe-
less, the findings clearly support it.
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