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Abstract Two models of how people predict the next out-
come in a sequence of binary events were developed and
compared on the basis of gambling data from a lab experiment
using hierarchical Bayesian techniques. The results from a
student sample (N = 39) indicated that a model that considers
run length (“drift model”)—that is, how often the same event
has previously occurred in a row—provided a better descrip-
tion of the data than did a stationary model taking only the
immediately prior event into account. Both, expectation of
negative and of positive recency was observed, and these
tendencies mostly grew stronger with run length. For some
individuals, however, the relationship was reversed, leading to
a qualitative shift from expecting positive recency for short
runs to expecting negative recency for long runs. Both patterns
could be accounted for by the drift model but not the stationary
model. The results highlight the importance of applying hier-
archical analyses that provide both group- and individual-level
estimates. Further extensions and applications of the approach
in the context of the prediction literature are discussed.

Keywords Gamblers fallacy . Hot hand . Recency . Binary
prediction task

Introduction

When making predictions, people often take previous out-
comes into account. In basketball, for example, people

sometimes predict that a player’s probability to score in-
creases if the previous throw was successful, an assumption
that is referred to as the hot-hand belief (Gilovich, Vallone, &
Tversky, 1985). In finance, buying stocks that have previ-
ously performed well and selling those with poor past returns
is known as momentum trading (De Bondt & Thaler, 1985).
The prediction that a run of the same outcome will continue
is often referred to as expectation of positive recency (Burns,
2004). For binary sequences, positive recency yields the
same predictions as a “win–stay, lose–shift” strategy, which
is widespread in research on game theory (Nowak &
Sigmund, 1993).

The reverse policy predicts that the next outcome will be
different from the previous one; this describes the expecta-
tion of negative recency. A classic example of this strategy is
the “gambler’s fallacy,” which refers to the tendency of
roulette players to bet on red after the wheel has landed on
black (Croson & Sundali, 2005; Laplace, 1820/1951).

Whether assumptions of positive or negative recency
increase prediction accuracy depends on the structure of the
environment. For positively autocorrelated (i.e., “patchy”)
sequences, assuming positive recency is adaptive; for nega-
tively autocorrelated (i.e., alternating) sequences, assuming
negative recency is adaptive (Scheibehenne, Wilke, & Todd,
2011). Most previous studies seem to have found a tendency
toward positive recency, with important moderators being
the assumed data-generating process (Ayton & Fischer,
2004; Caruso, Waytz, & Epley, 2010), the type of presenta-
tion (Barron & Leider, 2010), and the experienced sequence
length (Hahn & Warren, 2009).

Effect of run length

Croson and Sundali (2005) observed that real-life roulette
players are particularly prone to the gambler’s fallacy when
the other outcome has occurred over four times in succes-
sion. Barron and Leider (2010) reported a similar increase for
run lengths of three or more using a virtual roulette wheel in
a lab study. Others have found that perceived streakiness
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monotonically increased up to a run length of three and then
remained steady (Carlson & Shu, 2007).

A systematic influence of preceding run length may lead
to interesting behavioral patterns. For example, decision
makers might exhibit positive recency for short and negative
recency for long runs. Jarvik (1951) reported initial empirical
evidence for this co-occurrence of both positive and negative
recency. When predicting pseudorandom series of two
words, participants expected positive recency at a run of
one, but turned toward negative recency for longer runs. In
an experiment using coin tosses, Altman and Burns (2005)
found a curvilinear relationship, with positive-recency bets
occurring more often at both short and long run lengths.
However, conclusions about the effect of run length that
are based on existing research are somewhat limited, because
investigations of behavior at runs longer than three or four
are very rare.

Hierarchical Bayesian approach

Past research on recency effects in outcome predictions has
commonly focused on group-level data. Although this in-
creases statistical power, it conceals individual differences.
In the extreme case, the averaged data are not representative
of any single individual (Estes, 1956). This effect may also
hold for research on recency effects. For example,
McClelland and Hackenberg (1978) reported strong individ-
ual differences in how people predict gender in birth se-
quences. Likewise, Sundali and Croson (2006) found that
roulette players at a casino were about equally divided into
hot-hand players and gambler’s fallacy players. Presumably,
individual differences become even more important if run
length is taken into account.

Hierarchical Bayesian techniques allow for capturing in-
dividual differences while preserving high statistical power
by partially pooling the individual-level parameter estimates
through higher-level group distributions (Carlin & Louis,
2009). This joint estimation of all parameters increases sta-
tistical power on the individual level and shrinks the leverage
of possible outliers at the group level (Kruschke, 2010b).
Here, we will outline how this approach can be fruitfully
applied to research on recency effects in outcome predic-
tions. As a starting point, we will define two competing
models that are then tested on the basis of a choice experi-
ment in which participants repeatedly indicated which of two
outcomes would occur next and placed a bet on their
decision.

One way to formally reconcile both positive and negative
recency is to map them on a continuum that describes the
probability π to predict the same outcome for the next event
that has just been observed. Here, positive recency occurs for
π > .5, whereas π < .5 indicates negative recency. When
estimating recency effects irrespective of run length, a single

free parameter α ranging between 0 and 1 can be used to
describe π across all t trials:

πt ¼ α ð1Þ

As this yields an overall recency estimate, we refer to it as
a “stationary” model. Since the model only depends on the
immediately prior event, it satisfies path independence, or
the Markov condition (Oskarsson, Van Boven, McClelland,
& Hastie, 2009).

To incorporate the effect of run length, we extended the
stationary model by one parameter β, which describes the
change of π as a function f of the previous run length, denoted
r (e.g., for a hypothetical sequence {R, B, B, B, R} of red and
black outcomes, r is {1, 1, 2, 3, 1}):

πt ¼ f αþ β⋅ rt−1½ �ð Þ: ð2Þ

Because for run lengths greater than one, recency does not
just depend on the last outcome, but also on r, we refer to it as
the drift model. Here, a positive β parameter indicates that
people are more likely to predict a continuation of a streak,
the longer it lasts; a negative β parameter indicates that the
probability to switch increases with run lengths greater than
one. For β = 0, the probability to stay or switch remains
constant for different run lengths, and the drift model reduces
to the stationary model. Note that the drift model allows for a
combination of positive and negative recency that cannot be
accounted for by the stationary model.

Since π describes a probability, its value must stay be-
tween 0 and 1, even for high values of r. Here, one option
would be to apply a nonlinear link function; another option
would be to retain a linear relationship between r and π by
restricting the possible range of β contingent on α and rmax

(the longest occurring run). We chose the latter approach
because the linearity assumption allows for an intuitive in-
terpretation of the obtained parameter values, similarly to a
linear regression. For a given α, we limited the range of β
between δ * α (upper limit) and δ * α – δ (lower limit), where
δ is defined as –1/(rmax – 1). This restriction reflects the idea
that the possible increase in positive recency is limited if π is
high initially (α > .5), and vice versa for α < .5. Thus,
consistent with theoretical assumptions, the β and α param-
eters in the drift model are negatively correlated a priori.

Since the drift model includes the stationary model as a
special case, it will always provide a better fit to the observed
data. Thus, the question of which model better accounts for
peoples’ prediction strategy cannot be answered on the basis
of model fit alone, but must also take the models’ complexity
into account. Here, Bayesian techniques provide a principled
way to compare the two models on the basis of the Bayes
factor, which indicates the ratio of the observed evidence of
one model over the other (Kass & Raftery, 1995). Bayesian
techniques also yield precise estimates of the models’
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parameters on the group and individual levels, including full
joint posterior probability distributions providing informa-
tion about the parameters’ reliability and correlations.

Predictions

As was outlined above, predicting sequences of events may
just depend on the immediately previous outcome, as de-
scribed by the stationary model, or it may be contingent on
run length, as predicted by the drift model. On the basis of
the results of past research, we predict that the drift model
will provide a better account of peoples’ prediction
strategies.

Within the drift model, the next question is in what man-
ner would predictions change with run length. Many previ-
ous experiments found an initial tendency for positive recen-
cy. In this case, a decrease of π with run length (i.e., a
negative β parameter) seems likely a priori, because as
outlined above, this limits the range by which π can increase
further. Thus, one might expect a change from positive to
negative recency. Alternatively, an initial propensity for pos-
itive recency could be further strengthened as run length
increased, which would yield a positive correlation between
α and β.

Method

Participants

Fourty students at the University of Basel participated in the
experiment in exchange for course credit or a book voucher
worth 15 Swiss francs (15 US dollars) plus a performance-
dependent bonus (0–5 Swiss francs). One participant always
predicted the same outcome and was excluded from further
analyses because these data yielded no variance, and hence
no opportunity to model the responses.

Experimental task

Each participant completed a total of 256 prediction trials,
presented as a computerized gambling game. Participants
saw a wheel of fortune with two equally likely outcomes
(red/black). On each round, they first decided on the color
and then placed a bet on the outcome, ranging from 10 to 90
points. If participants selected the correct color, they won the
betted points, otherwise they lost them. Participants were
given an initial endowment of 500 points and were reim-
bursed dependent upon their final task earnings. No infor-
mation was given about the rules or processes that generated
the observed outcomes. Throughout the experiment, a verti-
cal history bar displayed the outcomes of the ten preceding
rounds.

Sequences

In order to present participants with longer runs of one color
without eliciting the impression that sequences deviated
from a random distribution, each color sequence was ran-
domly drawn on the basis of the following rules: The first
and third sets of 64 color items stemmed from a Bernoulli
distribution with a base rate (i.e., the probability of red over
black) and alternation probability of .5 each. The second and
last sets of 64 items also had a base rate of .5, but the
alternation probability was set to .3 (equivalent to an auto-
correlation of .4). Thus, the mean alternation rate across the
sequence was .4. To allow for a better comparison between
individuals, only sequences containing exactly two runs of
length eight (indicating the maximum run length, rmax), three
runs of length seven and six, five runs of length five, and no
runs longer than eight were used, which approximately
matched the expected run lengths in the case on hand.

Model implementation

The models were implemented in a hierarchical Bayesian
framework. This required specifying the likelihood func-
tion and prior probabilities of all parameters, including the
group level.1 On each trial t, the likelihood of predicting
the same outcome that had been previously observed
(denoted x) was modeled as a Bernoulli distribution, with
parameter πti indicating the probability to stay for each
individual i:

p xti
�
�
�πti

� �

¼ πxti
ti ⋅ 1−πtið Þ1–xti : ð3Þ

Uninformative prior distributions were assigned to the
group-level means and standard deviations of all parame-
ters, such that all possible values of α (stationary model)
and all possible parameter combinations of α and β (drift
model) were equally probable on the individual level. For
the drift model, α and β were drawn from a joint group-
level distribution that also yielded their correlation. Both
models were estimated using Monte Carlo Markov chain
samplers based on the BUGS programming language,
implemented in JAGS (Plummer, 2011) and called from
within the R software (Version 2.14.0). To improve esti-
mation efficiency and allow for proper aggregation of the
individual parameter estimates, the group-level means
were sampled from normal distributions and then rescaled
to match the intended range on the individual level
through probit transformations.

1 See the supplementary materials for details and programming code.

Psychon Bull Rev (2014) 21:211–217 213



Results

Participants took 28 min on average to complete the task
(SD = 3 min) and predicted 52.1 % of trials (SD = 3.8 %)
correctly. The average task earnings were 743 points (SD =
1,192), which translated to an average payoff of 1 Swiss
franc.

Stationary model estimates

On the group level, the mean probability α to stay on the
same color was .61, and 95 % of the highest posterior density
(HPD95) ranged from .56 to .67, indicating credible evidence
for positive recency expectations across all individuals. As is
shown in Fig. 1, considerable variability was observed
across individuals: For the majority of participants (n =
25), α was credibly higher than .5 (positive recency); for
five participants, α was credibly lower than .5 (negative
recency); and for nine participants, α was not credibly dif-
ferent from .5. Bayes factor estimates obtained through the
Savage–Dickey density ratio further confirmed the evidence

for positive and negative recency on the individual level
(Morey, Rouder, Pratte, & Speckman, 2011).

Drift model estimates

For the drift model, the mean of the group-level α parameter
was estimated at .62 (HPD95 from .57 to .66). The mean β
parameter estimate was 0 (HPD95 from –.03 to .03), indicat-
ing that the probability of choosing the same outcome as on
the last trial did not vary as a function of run length. Again,
these group-level results concealed considerable individual
differences. As is displayed in Fig. 2, β was credibly higher
than 0 for ten of the 39 participants (26 %, positive slope),
and another nine participants (23 %) were best described by a
negative slope (β < 0).

Figure 3 shows the posterior means of α and β for each
participant. The means were positively correlated across
participants (r = .6, calculated from the group-level distribu-
tion), despite an a priori negative correlation. For 22 in-
dividuals (56 %), the initial tendency for either positive or
negative recency was further enhanced as runs increased.
The remaining 17 individuals (44 %) had α > .5 and β < 0,
indicating a decrease of positive recency as runs increased.

Fig. 1 Estimated posterior distribution of the α parameter in the sta-
tionary model. The distribution on top shows the posterior of the group-
level mean. The single dots in the panel indicate the mean for each
individual participant (sorted in decreasing order). Filled dots represent
individuals for whom the evidence for positive recency (squares) or
negative recency (triangles) was at least 30 times higher than the
evidence for a null model assuming no recency (open circles), as
indicated by the Bayes factor. Error bars indicate 95 % of the respective
highest posterior density (HPD95)

Fig. 2 Estimated posterior distribution of the β parameter in the drift
model. The distribution on top shows the posterior of the group-level
mean. The single dots in the panel indicate the mean for each individual
participant (sorted in decreasing order). Filled dots indicate higher
evidence for the drift model over the stationary model (Bayes factor >
1). Squares indicate drift toward positive recency, and triangles indicate
drift toward negative recency. Error bars indicate the respective HPD95
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For ten individuals (26 %), this led to the co-occurrence of
both positive and negative recency (for short and longer runs,
respectively). The opposite case, a drift from negative recen-
cy to positive recency, did not occur.

Toward a more intuitive understanding of these parameter
estimates, Fig. 4 displays the individual drift model posterior
predictions of the probability to stay on the previously
displayed symbol for each run length. Most lines are above
.5 (indicating positive recency) and have a positive slope
(indicating positive drift). A combination of both positive
and negative recency occurs if the lines cross the dashed line
at .5. Figure 4 also shows the observed mean probabilities of
staying and the group-level prediction of the drift model,
both of which are almost flat.

Model comparison

To decide whether the drift model or the stationary model is
better suited to capture participants’ behavior, we conducted
a Bayesian model comparison on the individual level by
means of the product-space method implemented in BUGS,
which directly yields the Bayes factor (Carlin & Louis, 2009;
Kruschke, 2010a). This comparison implicitly takes model
complexity and the choice of priors into account.

The results of the comparison indicated that 64 % of
participants (n = 25) were better described by the (nested)
stationary model; the remaining participants were better
described by the more complex drift model. For all but two
of the participants described better by the stationary model,
Bayes factor estimates were below 3, indicating weak

evidence (Kass & Raftery, 1995). In contrast, the evidence
for those identified as drift model users was stronger, as
indicated by Bayes factors above 3 for most of these partic-
ipants. For seven participants, the Bayes factor exceeded 10,
indicating strong evidence (Kass & Raftery, 1995).

Even though most individuals were described better by
the stationary model, the drift model nevertheless provides a
better description of the data at the group level, as indicated
by the deviance information criterion (DIC; Spiegelhalter,
Best, Carlin, & van der Linde, 2002). For the drift model, the
DIC equals 1,453, which is smaller (i.e., better) than the
stationary model DIC of 1,467. This seems plausible, given
that run length had a strong and systematic influence for
some participants.

Betting

The average bet placed per round was 59 points, with con-
siderable variance between participants (SD = 22) and trials
(SD = 19). To test whether people were more confident of
bets placed on the continuation of a run than on its ending,
we calculated the difference between the average betting
amounts, after rescaling the bets of each individual (M = 0,
SD = 1) to control for differences in absolute magnitude. On
the group level, the mean difference was .2 (95 % confidence

Fig. 3 Joint plot of α and β parameters. Each dot represents one
individual. Filled dots indicate higher evidence for the drift model over
the stationary model (Bayes factor > 1). Squares indicate drift toward
positive recency, and triangles indicate drift toward negative recency.
The rhomboid indicates the possible parameter space

Fig. 4 Probability π to stay on the previously displayed symbol,
contingent on run length r. Thin lines indicate the drift model pre-
dictions for individual participants, the bold black line indicates the
group-level predictions, and the open triangles indicate the observed
group-level means. Lines above the dashed line at .5 indicate positive
recency, lines below indicate negative recency, and lines crossing the
dashed line indicate a combination of positive and negative recency
within the same individual. The slope of each of the lines indicates the
direction of drift (developing upward = positive drift, developing
downward = negative drift). Error bars show HPD95 for the predictions
and bootstrapped 95 % confidence intervals for the observed data
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interval [CI95] from .1 to .29), indicating that on average,
participants’ confidence was higher when betting on the
continuation of a run (i.e., positive recency).

Betting behavior further highlights the importance of run
length as predicted by the drift model. On average, bet
amounts were positively correlated with run length (mean
r = .07, CI95 from .05 to .1). This correlation was higher for
individuals characterized by a steeper slope (|β|) in the drift
model (r = .35, CI95 from .02 to .59). Thus, people who were
more likely to change their prediction policy contingent on
run length did so with higher confidence as run lengths
increased.

Discussion

We assessed participants’ choices in a prediction task with
binary outcomes and compared two models of prediction
strategies using hierarchical Bayesian techniques. Two im-
portant findings were obtained. First, prediction behavior
was subject to considerable individual differences and in-
cluded strategies that were not apparent in the averaged
group data. Second, run length influenced the predictions
of some, but not all, participants.

The group-level results of both models showed that pre-
dictions were characterized by positive recency—that is, the
tendency to choose the outcome that had won on the last
trial. This result is in line with previous work on outcome
predictions (Scheibehenne, Wilke, & Todd, 2011) and the
perception of random sequences (Falk & Konold, 1997), and
it seems plausible, given that on average the presented
sequences were in fact slightly streaky. However, on the
individual level, negative recency and indifference to previ-
ous outcomes were also observed. Similarly, although no
significant influence of run length was observed on the group
level, individual-level parameter estimates revealed that
about a third of the participants did take run length into
account. These participants were described better by the drift
model than by the stationary model. Furthermore, several
different prediction strategies were observed for these par-
ticipants. Mostly, an initial propensity for either positive or
negative recency became stronger as runs increased (see also
Barron & Leider, 2010, and Croson & Sundali, 2005), and
this pattern was accompanied by higher bets for long runs. In
another subgroup of participants, an initial propensity for
positive recency decreased with run length, leading to the
co-occurrence of both positive and negative recencies, a
pattern previously observed at the group level by Jarvik
(1951).

In conclusion, our analyses revealed that prediction strat-
egies varied across participants. Such variance has previous-
ly been found in a real-life investigation of roulette play
(Sundali & Croson, 2006), but laboratory studies on

sequential effects in outcome predictions have largely fo-
cused on group-averaged data. Our results clearly highlight
the importance of considering individual-level data, and
suggest that some of the inconsistency about the nature of
run length effects in previous studies might be explained by
variance at the individual level.

Advantage of Bayesian techniques

Our results demonstrate that the application of hierarchical
Bayesian model techniques provides a fruitful framework to
quantify and test peoples’ prediction strategies by taking
both individual- and group-level data into account. The
approach yielded exact and easily interpretable estimates
for all model parameters and allowed for a rigorous model
comparison taking model complexity into account (Lee,
2011; Scheibehenne, Rieskamp, & Wagenmakers, 2013).
This advantage might become even more important when
testing possible extensions of the drift model in future re-
search that would allow for more complex functional rela-
tionships between run length and recency, such as curvilinear
trends, step functions, or concave trajectories (Altmann &
Burns, 2005; Carlson & Shu, 2007). Likewise, the ability to
account for individual differences would allow for testing
various differential influences on prediction strategies, such
as age (Castel, Drolet Rossi, & McGillivray, 2012) or per-
sonality (Friedland, 1998).

The online supplementary material can be accessed here: http://
scheibehenne.de/OnlineSupplementScheibehenneStuder.zip

Author Note This work was supported by Research Grant No.
100014_130149 from the Swiss National Science Foundation to the
first author.

References

Altmann, E. M., & Burns, B. D. (2005). Streak biases in decision making:
Data and a memory model. Cognitive Systems Research, 6, 5–16.

Ayton, P., & Fischer, I. (2004). The hot hand fallacy and the gambler’s
fallacy: Two faces of subjective randomness? Memory & Cogni-
tion, 32, 1369–1378. doi:10.3758/BF03206327

Barron, G., & Leider, S. (2010). The role of experience in the gambler’s
fallacy. Behavioral Decision Making, 23, 117–129.

Burns, B. D. (2004). Heuristics as beliefs and as behaviors: The adap-
tiveness of the “hot hand. Cognitive Psychology, 48, 295–331.

Carlin, B. P., & Louis, T. A. (2009). Bayesian methods for data anal-
ysis. Broken Sound Parkway, NW: Chapman and Hall/CRC.

Carlson, K., & Shu, S. (2007). The rule of three: How the third event
signals the emergence of a streak. Organizational Behavior and
Human Decision Processes, 204, 113–121.

Caruso, E. M., Waytz, A., & Epley, N. (2010). The intentional mind and
the hot hand: Perceiving intentions makes streaks seem likely to
continue. Cognition, 116, 149–153.

216 Psychon Bull Rev (2014) 21:211–217

http://scheibehenne.de/OnlineSupplementScheibehenneStuder.zip
http://scheibehenne.de/OnlineSupplementScheibehenneStuder.zip
http://dx.doi.org/10.3758/BF03206327


Castel, A. D., Drolet Rossi, A., & McGillivray, S. (2012). Beliefs about
the “hot hand” in basketball across the adult life span. Psychology
and Aging, 27, 601–605. doi:10.1037/a0026991

Croson, R., & Sundali, J. (2005). The gambler’s fallacy and the hot
hand: Empirical data from casinos. Journal of Risk and Uncer-
tainty, 30, 195–209.

De Bondt, W. F. M., & Thaler, R. (1985). Does the stock market overreact?
Journal of Finance, 40, 793–805. doi:10.1111/j.1540-6261.1985.tb05004.x

Estes, W. K. (1956). The problem of inference from curves based on
group data. Psychological Bulletin, 53, 134–140.

Falk, R., & Konold, C. (1997). Making sense of randomness: Implicit
encoding as a basis for judgment. Psychological Review, 104,
301–318.

Friedland, N. (1998). Games of luck and games of chance: The effect of
luck- versus chance-orientation on gambling decisions. Journal of
Behavioral Decision Making, 11, 161–179.

Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in basket-
ball: On the misperception of random sequences. Cognitive Psy-
chology, 17, 295–314.

Hahn, U., & Warren, P. A. (2009). Perceptions of randomness: Why
three heads are better than four. Psychological Review, 116, 454–
461.

Jarvik, M. E. (1951). Probability learning and negative recency effect in
the serial anticipation of alternative symbols. Journal of Experi-
mental Psychology, 41, 191–297.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association, 90, 773–795. doi:10.1080/
01621459.1995.10476572

Kruschke, J. K. (2010a). Doing Bayesian data analysis: A tutorial with
R and BUGS. Burlington, MA: Academic Press.

Kruschke, J. K. (2010b). What to believe: Bayesian methods for data
analysis. Trends in Cognitive Science, 14, 293–300.

Laplace, P. (1951). Philosophical essays on probabilities (Trans:
Truscott, F. W. & Emory, F. L.). Dover, New York, NY. (Original
work published 1820)

Lee, M. D. (2011). How cognitive modeling can benefit from hierar-
chical Bayesian models. Journal of Mathematical Psychology, 55,
1–7. doi:10.1016/j.jmp.2010.08.013

McClelland, G. H., & Hackenberg, B. H. (1978). Subjective probabil-
ities for sex of next child: U.S. college students and Philippine
villagers. Journal of Population, 1, 132–147.

Morey, R. D., Rouder, J. N., Pratte, M. S., & Speckman, P. L. (2011).
Using MCMC chain outputs to efficiently estimate Bayes factors.
Journal of Mathematical Psychology, 55, 368–378. doi:10.1016/
j.jmp.2011.06.004

Nowak, M., & Sigmund, K. (1993). A strategy of win–stay, lose–shift
that outperforms tit-for-tat in the Prisoner’s Dilemma game. Na-
ture, 364, 56–58.

Oskarsson, A. T., Van Boven, L., McClelland, G. H., & Hastie, R.
(2009). What’s next? Judging sequences of binary events. Psycho-
logical Bulletin, 135, 262–285. doi:10.1037/a0014821

Plummer, M. (2011). JAGS Version 3.1.0. Retrieved from http://mcmc-
jags.sourceforge.net/

Scheibehenne, B., Rieskamp, J., & Wagenmakers, E.-J. (2013). Testing
adaptive toolbox models: A Bayesian hierarchical approach. Psy-
chological Review, 120, 39–64. doi:10.1037/a0030777

Scheibehenne, B., Wilke, A., & Todd, P. M. (2011). Expectations of
clumpy resources influence predictions of sequential events. Evo-
lution and Human Behavior, 32, 326–333.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A.
(2002). Bayesian measures of model complexity and fit. Journal of
the Royal Statistical Society, 64, 583–639.

Sundali, J., & Croson, R. (2006). Biases in casino betting: The hot hand
and the gambler’s fallacy. Judgment and Decision Making, 1, 1–12.

Psychon Bull Rev (2014) 21:211–217 217

http://dx.doi.org/10.1037/a0026991
http://dx.doi.org/10.1111/j.1540-6261.1985.tb05004.x
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1016/j.jmp.2010.08.013
http://dx.doi.org/10.1016/j.jmp.2011.06.004
http://dx.doi.org/10.1016/j.jmp.2011.06.004
http://dx.doi.org/10.1037/a0014821
http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
http://dx.doi.org/10.1037/a0030777

	A hierarchical Bayesian model of the influence of run length on sequential predictions
	Abstract
	Introduction
	Effect of run length
	Hierarchical Bayesian approach
	Predictions

	Method
	Participants
	Experimental task
	Sequences
	Model implementation

	Results
	Stationary model estimates
	Drift model estimates
	Model comparison
	Betting

	Discussion
	Advantage of Bayesian techniques

	References


