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Abstract Model comparison in recognition memory has fre-
quently relied on receiver operating characteristics (ROC)
data.We present a meta-analysis of binary-response ROC data
that builds on previous such meta-analyses and extends them
in several ways. Specifically, we include more data and con-
sider a much more comprehensive set of candidate models.
Moreover, we bring to bear modern developments in model
selection on the current selection problem. The new methods
are based on the minimum description length framework,
leading to the normalized maximum likelihood (NML) index
for assessing model performance, taking into account differ-
ences between the models in flexibility due to functional form.
Overall, NML results for individual ROC data indicate a
preference for a discrete-state model that assumes a mixture
of detection and guessing states.
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The ability to recognize previously encountered information is
one of the most popular topics in memory research, with a
substantial part of the research efforts devoted to the develop-
ment of measurement models. These measurement models
establish connections between certain cognitive processes
and the observed responses (Riefer & Batchelder, 1988).
Themodels thereby inform theories that provide more detailed
accounts of memory judgments (Malmberg, 2008).

Several distinct recognition memory measurement
models have been proposed: Some assume that memory
information is represented as a discrete process (e.g.,
Batchelder & Riefer, 1990; Klauer & Kellen, 2010), while
others postulate a continuous representation of evidence
(e.g., Wixted, 2007) or a combination of both (e.g.,
DeCarlo, 2002; Yonelinas, 1997). Many attempts to distin-
guish between these models have been based on the predict-
ed receiver operating characteristics (ROC) functions.
ROCs describe the recognition of studied and nonstudied
items across different levels of response bias (for a review,
see Yonelinas & Parks, 2007).

The purpose of this article is to bring to bear recent
developments in the assessment of model flexibility on
ROC data with binary responses. We present a reanalysis
of published ROC data, extending previous such analyses
(Bröder & Schütz, 2009; Dube & Rotello, 2012; Dube,
Starns, Rotello, & Ratcliff, 2012) in several ways: We (1)
consider a much wider range of models and (2) base model
selection on a principled quantification of the flexibility of
the different models by means of the minimum description
length (MDL) principle (Grünwald, 2007), taking into ac-
count differences in the models’ flexibility due to functional
form. In addition, (3) we include more data sets than do
these previous analyses. Beyond ROC data with binary re-
sponses, there are data from other paradigms bearing on the
adequacy of the different models, such as, for example, data
based on remember/know judgments (e.g., Wixted &
Mickes, 2010), data from the process-dissociation procedure
(e.g., Yonelinas & Jacoby, 2012), and ROC data based on
confidence ratings.

This article is organized as follows. First, the different
measurement models and their particular features are char-
acterized. Second, the use of ROC functions to distinguish
between the models is discussed. Third, we introduce the
MDL principle and the normalized maximum likelihood
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(NML) index for model selection derived from it. Finally,
published ROC data are reanalyzed under the MDL
principle.

The candidate models

Figure 1 presents a visualization of the models discussed
here. In an item recognition memory test, previously studied
items (old items) and nonstudied items (new items) are
presented, and individuals indicate whether they were pre-
viously studied (responding old or new). The probabilities to
respond old given an old item and a new item are called the
hit and false alarm rates, respectively. Binary-response
ROCs plot hit rates against false alarm rates across different
levels of response bias. Different levels of response bias can
be induced by manipulating the base rate of old items,
relative to new items at test, or by payoff schedules
(Macmillan & Creelman, 2005; Wickens, 2002).

Recognition memory models make different predictions
for the shape of ROCs, and ROCs can therefore be used to
discriminate between the different candidate models. For
example, discrete-state models predict linear ROCs, contin-
uous models predict curvilinear ROCs, and hybrid models
can predict intermediate shapes, as well as more complex
ones (Malmberg, 2002). Figure 2 depicts examples of dif-
ferently shaped ROCs. Note that these predictions hold only
if it is assumed that the ability to discriminate between old
and new items remains constant across different response
bias conditions (for alternative views, see Atkinson, 1963;
Balakrishnan, 1999).

The two-high-threshold model (2HTM; Snodgrass &
Corwin, 1988) is a discrete-state model that assumes that
memory judgments are based on “detect” and “guessing”
states.1 An old item is detected with probability Do, invari-
ably leading to an old response. If the item’s old/new status
is not detected, with probability (1−Do), then a guessing-
state is entered: The status of the item is then guessed, with
the old response occurring with probability g and the new
response with probability (1−g). A new item is detected with
probability Dn, invariably leading to a new response. When
detection fails, with probability (1−Dn), a guessing process
is engaged, with the old response occurring with probability
g and the new response with probability (1−g). Regarding
the interpretation of parameters, Do describes correct re-
membering, Dn characterizes several forms of active
distractor rejection processes (e.g., Strack & Bless, 1994),
while response bias is captured by parameter g.

The 2HTM is a member of the multinomial processing
tree (MPT) model class (Riefer & Batchelder, 1988; for
reviews, see Batchelder & Riefer, 1999; Erdfelder et al.,
2009), and its proponents see it as a simple measurement
model that attempts to capture the major cognitive processes
involved in old/new judgments (e.g., Bröder & Schütz,
2009). The 2HTM assumes that old/new judgments reflect
a mixture of responses made in “memory”/“detection” states
and in a “guessing” state in which information on the status
of the item is not available. Despite the likely oversimplifi-
cation and misconception of the underlying cognitive pro-
cesses (Kinchla, 1994), this particular model and its
extensions maintain a mathematical tractability that makes
them quite useful in several implementations (see
Batchelder, Riefer, & Hu, 1994) and extensions (e.g.,
Chechile, 2004). Three distinct parameter restrictions are con-
sidered here for the 2HTM: Do ≥ Dn, Do = Dn, and Dn = 0,
defining submodels referred to as, in order, 2HTM Do � Dnð Þ ,
2HTM Do ¼ Dnð Þ, and 1HTM. The restrictionDo ≥ Dn is includ-

ed given that it (1) reflects the pattern of results usually found
in the literature (e.g., Bröder & Schütz, 2009; Klauer &
Kellen, 2010), and (2) reflects the notion that Dn captures
distractor rejection processes that are, in part, conditional on
memory for studied items as captured by Do (e.g., Rotello &
Heit, 2000; Strack & Bless, 1994). The restriction Dn = 0 re-
sults in the one-high-threshold model (1HTM; Blackwell,
1963). The restriction Do = Dn is frequently imposed in using
the model as a measurement tool (Snodgrass & Corwin, 1988).

Let po,i and pn,i be the probabilities of hits and false
alarms, respectively, in (base rate or payoff) condition
i, i = 1, …, I. The 2HTM has parameters θ = {g1, g2,…, gI,
Do, Dn}, 0 ≤ θ ≤ 1, and is defined by

po;i ¼ Do þ 1� Doð Þgi;
pn;i ¼ 1� Dnð Þgi:
The signal detection theory (SDT) model (Banks, 1970;

Green & Swets, 1966; Lockhart & Murdock, 1970;
Macmillan & Creelman, 2005; T. E. Parks, 1966; Wickens,
2002) is a continuous model. It assumes a continuous memory
process, often termed familiarity, to describe the individuals’
decisions on the basis ofmemory information. Both old and new
items evoke some degree of familiarity, with separate familiarity
distributions for old and new items. The ability to discriminate
between the two kinds of items is determined by the overlap
between the two distributions. According to SDT, an item’s
familiarity is compared with an established response criterion,
denoted by parameter c. If an item’s familiarity is larger than the
criterion, the old response is given; if the familiarity is lower
than the criterion, the new response is given instead.

The familiarity distributions are assumed to be Gaussian,
with parameters {μo, σo} and {μn, σn} for old and new items,
respectively, with μo ≥ μn, σo > 0, and σn > 0. Without loss of

1 The terms threshold and discrete state are used interchangeably here.
In the present context, both terms are used to designate the occurrence
of retrieval only, without strong assumptions on the information re-
trieved (see Batchelder & Riefer, 1999, p. 79; C. M. Parks &
Yonelinas, 2007, p. 189).
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generality, μn and σn are fixed to 0 and 1, respectively. The
unrestricted version is referred to as the unequal-variance
signal detection model (UVSD). Two parameter restrictions
are considered for this model—namely, σo ≥ σn and σo = σn,
defining submodels referred to as UVSD σo � σnð Þ and EVSD,

respectively. The UVSD model with the restriction σo ≥ σn is
included because it (1) reflects a pattern in parameter estimates
that is almost invariably found in the literature (e.g., Ratcliff,
McKoon, & Tindall, 1994) and (2) can be given a theo-
retical justification in terms of encoding variability increas-
ing variability of the familiarity distribution of old items
(e.g., DeCarlo, 2010).2 Although several continuous distribu-
tions other than the Gaussian (e.g., Weibull, gamma, log-

normal) could be used instead (Rouder, Pratte, & Morey,
2010), we restrict our analysis to the SDT model using
Gaussian distributions, due to the fact that it is the most
common implementation.

According to SDT, all items have a baseline level of famil-
iarity that is determined by several characteristics (e.g., frequen-
cy and/or recency of prior occurrences; see Wixted, 2007).
When a set of items (e.g., words) is studied, their average
familiarity increases (μo > μn). This increase in familiarity is
described by the old-item distribution being shifted to the right,
relative to the new-item noise distribution (see Fig. 1).

Let F be the cumulative distribution of the standard
normal distribution. The UVSD has parameters θ = {c1, c2,
…, cI, μo, σo} and is defined by

po;i ¼ F μo � ci
σo

� �
;

pn;i ¼ F �cið Þ:

Fig. 1 The recognition
memory models. See the text
for the definition of parameters

2 Despite the fact that this interpretation of σo implies the inequality
restriction, σo ≥ σn, σo is frequently estimated without this restriction
(e.g., Dube et al., 2012).
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The dual-process model (DPSD; Mandler, 1980;
Yonelinas, 1997) is a hybrid approach that combines a
continuous familiarity process (equivalent to EVSD) and
a threshold component, termed recollection. When judg-
ing an old item, an individual can recollect the item
with probability R; when recollection fails (with proba-
bility 1−R), the recognition judgment is based on the
item’s familiarity, with discriminability determined by
μo. When judging a new item, recollection cannot oc-
cur, which means that the item is evaluated solely in
terms of its familiarity. According to Yonelinas (1997),
recollection and familiarity represent two independent
memory systems that are associated to distinct brain
regions (e.g., Yonelinas, Otten, Shaw, & Rugg, 2005).

The “butcher-on-the-bus” anecdote (Mandler, 1980,
p. 252) is commonly used to distinguish the separate
contributions of recollection and familiarity in the
DPSD: Suppose that you are sitting in a bus and en-
counter a person whose face is very familiar, although
you do not remember any particular detail or context
about that individual. After engaging in a memory
search, if you finally remember the context in which
you have met that person before (“That’s the butcher
from the supermarket!”), then there is recollection. The
recollection process thus provides concrete episodic in-
formation that is reexperienced by the individual
(Yonelinas, 2001), whereas the familiarity process does
not rest on the retrieval of episodic detail.

The DPSD has parameters θ = {c1, c2, …, cI, μo, R} and
is defined by

po;i ¼ Rþ 1� Rð ÞF μo � cið Þ;
pn;i ¼ F �cið Þ:
While the probability of the old response under the famil-

iarity process depends on the response criterion ci, recollection
invariably leads to an old response. Note that the DPSD
becomes the EVSD when R = 0 and the 1HTM when μo = 0.

The mixture signal detection model (MSD; DeCarlo,
2002, 2010) builds on the EVSD and assumes that familiar-
ity for studied items is described by two distributions, one
corresponding to items that were attended during study, with
mean μo, and a second distribution for unattended items
with mean μ*

o and μ*
o � μo . The proportion of attended

items among studied items is defined by parameter 1. The
restriction μ*

o ¼ 0 results in the MSD0 model.
The MSD model focuses on differences in encoding—in

particular, differences in the level of attention to items
during the study phase. It describes these differences by
means of a mixture of latent classes, represented by the
two distributions for old items, one for attended items, the
other one for nonattended items.

The MSD has parameters θ ¼ c1; c2; . . . ; cI ;μo;μ
*
o; 1

� �
,

with 0 � μ*
o � μo and 0 ≤ l ≤ 1, and is defined by

po;i ¼ lF μo � cið Þ þ 1� lð ÞF μ*
o � ci

� �
;

pn;i ¼ F �cið Þ:
Note that the variable-recollection dual-process model pro-

posed by Onyper, Zhang, and Howard (2010) is mathematically
equivalent to the MSDmodel in the present context.3 Also note
that in the present context, the MSD becomes mathematically
equivalent to DPSDwhen μo→ +∞ (see DeCarlo, 2007, 2008).
Decisions betweenmathematically equivalentmodels cannot be
based on model selection criteria. Other criteria of the models’
appropriateness can be employed, however—for example, sys-
tematic parameter validation studies reflecting the theoretical
notions captured in model parameters (e.g., 1 and R).

In summary, the models discussed above describe ROC
data by a limited number of processes, each model focusing
on a different set of processes. According to the 2HTM and
restricted cases, recognition memory judgments result from
a mixture of discrete memory states (retrieval and rejection)
and guessing strategies. For the UVSD and restricted cases,
responses are based on the familiarity of items and its
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Fig. 2 Examples of receiver operating characteristics (ROC) functions
for a selection of models. See the text for a description of the models.
Hit and false alarm rates are the probabilities of the old response for old
and new items, respectively. The solid diagonal represents chance-level
performance

3 Onyper et al. (2010, Footnote 4) note that the variable-recollection
dual-process model could be further extended by including standard
deviations of the distributions of attended and unattended old items,
σo* and σo, as parameters to be estimated from the data (see Sherman,
Atri, Hasselmo, Stern, & Howard, 2003). In this version, the model
would include UVSD as a special case as well. Following Onyper et
al., we will not consider this extension.
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comparison with established response criteria. For the
DPSD, recognition responses can occur via a familiarity
process or via episodic recollection. MSD postulates that
the familiarity of studied items depends on the attention
levels associated to them during study.

Despite several decades of research (for reviews, see
DeCarlo, 2010; Malmberg, 2008; Yonelinas & Parks, 2007;
Wixted, 2007), the issue of which model best describes ROC
data is still under debate (Bröder & Schütz, 2009; Dube &
Rotello, 2012; Dube, Rotelo, & Heit, 2011; Dube et al., 2012;
Klauer & Kellen, 2011a, b). Several factors are likely to
contribute to this state of affairs. One issue addressed below
concerns the problems associated with analyses of aggregate
frequencies and the complementary problems associated with
analyzing individual participants’ data. Another issue is what
we consider to be limitations in the use of confidence-rating
ROCs for discriminating between models. A third limitation is
that previous analyses usually focused on comparing only two
of the above models, such as 2HTM versus UVSD (Dube et
al., 2012) or UVSD versus DPSD (e.g.,Wixted, 2007). A final
issue regards the quantification of model flexibility and how
to take this into account in discriminating between the various
models.

Previous meta-analyses of ROC data

ROC functions were originally conceived as functions
obtained through the use of direct response bias manipula-
tions on binary old/new responses. In most studies, they are,
however, obtained by means of confidence-rating scales,
which are then compiled in order to emulate changes in
response bias, motivated by work in perception suggesting
an equivalence of binary-response ROCs with response bias
manipulations and confidence-rating-based ROCs with im-
plied response bias variation (Green & Swets, 1966). In
comparison to response bias manipulations, the use of con-
fidence ratings is much more efficient and convenient to
implement, since only a single test condition is necessary.
For example, they sidestep the difficulties of manipulating
response bias in an efficient manner (e.g., Cox & Dobbins,
2011). In addition, the use of confidence ratings does not
affect any of the predictions made by models such as the
UVSD or MSD: According to these models, responses on an
(I + 1)-point confidence scale are given by establishing a set
of ordered parameters c1 ≤ c2 ≤ … ≤ cI. Whenever the
familiarity of an item falls between ci and ci + 1, for i = 1,
…, I, the rating response i is given. When the familiarity of
an item is lower than c1, the rating response 1 (correspond-
ing to maximum confidence that the item is new) is given,
and when the familiarity of an item is larger than cI, the
rating response I + 1 (maximum confidence that the item is
old) is given instead.

Although the use of confidence ratings is innocuous for
models like the UVSD or MSD, for models like the 2HTM
or the DPSD with detect/recollection states, it raises the
question of how responses from such states should be
mapped onto confidence ratings. One reasonable ancillary
assumption is to map them on highest-confidence ratings,
leading to the same predicted shapes for the ROCs based on
confidence ratings as for ROCs based on binary responses.
For example, 2HTM with this ancillary assumption predicts
linear ROCs. On the other hand, the existence of individual
differences in response styles in the use of extreme response
categories and response strategies (e.g., Hamilton, 1968;
Tourangeau, Rips, &Rasinski, 2000), intraindividual variations
and sequential dependencies in scale usage (e.g., Haubensak,
1992; Malmberg & Annis, 2012) and the possibility of random
errors (e.g., Rieskamp, 2008) suggest that a certain proportion
of responses generated from detect/recollection states might be
mapped on less than highest confidence ratings. But as soon as
this possibility is admitted, models with detection/recollection
states can predict ROCs shaped like those predicted by UVSD
(e.g., Klauer & Kellen, 2010), diminishing the potential of
ROC data to discriminate between these models.

Nevertheless, even allowing for nontrivial response map-
ping, confidence-rating data retain some diagnosticity for dis-
criminating between these models that can be exploited for
critical tests (Province & Rouder, 2012), and the added flexi-
bility implied by assuming a nontrivial response mapping can,
in principle, be taken into account using the MDL methods
detailed below. In the present article, we focus on ROCs based
on binary data as a first step, because such data do not require
ancillary assumptions regarding the state–response mapping
and for the practical reason that we have developed tractable
methods for computing the modern MDL-based selection in-
dices only for binary-response ROCs so far.

The fact that binary-response ROCs sidestep the issue of
specifying state–response mapping functions makes them
particularly attractive for the comparison of models. This
advantage was exploited by Bröder and Schütz (2009), who
conducted a meta-analysis on ROCs based on binary re-
sponses and response bias manipulations. Aggregate data
from 59 experiments were fitted with the UVSD and 2HTM
and submodels thereof. Goodness-of-fit results, as indexed
by the G2 statistic, favored the UVSD model, especially
when focusing on ROCs constructed with a larger number
of response bias conditions (a corrected analysis was
reported by Bröder & Schütz, 2011). Still, the 2HTM did
not reliably produce statistically significant deviations from
the data when considering power-adjusted statistics (see
Faul, Erdfelder, Lang, & Buchner, 2007). Bröder and
Schütz (2009) argued that the diagnosticity of the analyzed
ROCs is somewhat questionable, since many were obtained
from experiments that included additional manipulations
and/or large numbers of study–test blocks across multiple
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sessions, which might affect memory discriminability or
induce response strategies not accounted for by the models.
These possible confounds led Bröder and Schütz (2009) to
implement new studies focused on determining the shape of
the ROCs. In three experiments, they collected ROC data by
varying test item base rates across five levels (10 %, 30 %,
50 %, 70 %, and 90 % of old items). In the three experi-
ments conducted, linear ROCs were obtained, as predicted
by the 2HTM, but inconsistent with the curvilinear ROCs
based on confidence ratings that have been reported almost
ubiquitously in the literature.

Bröder and Schütz’s (2009) claims were challenged by
Dube and Rotello (2012), who pointed out that most of the
ROCs considered by Bröder and Schütz (2009) in their meta-
analysis have only two points (i.e., two response bias condi-
tions) and that these cannot be used to assess the shape of
ROCs. When focusing on ROCs with at least three points, the
goodness-of-fit results indicate a strong preference for the
UVSD. Like Bröder and Schütz (2009), Dube and Rotello
also reported new experimental data, but with response bias
manipulated by (mis)informing participants about the propor-
tions of old and new items. Across the two experiments
reported by Dube and Rotello, goodness-of-fit results in gen-
eral favored the UVSD over the 2HTM, which were again the
only models considered. A larger number of test trials was
collected in the second experiment (77 old and 77 new items
per implied base rate condition), which encouraged Dube and
Rotello to compare the two models with both individual and
aggregated data. In both cases, goodness-of-fit results
supported the UVSD. Similar results were reported by Dube
et al. (2012), who used two types of studied items (weak and
strong) and a base rate manipulation.

One limitation of the analyses by Bröder and Schütz
(2009, 2011), Dube and Rotello (2012), and Dube et al.
(2012) that we intend to overcome is that they focus on
comparing only 2HTM and UVSD. Moreover, the previous
meta-analyses are based on goodness-of-fit results, ignoring
possible differences in the models’ flexibility, that is in their
ability to fit data in general (Pitt & Myung, 2002). Kellen
and Klauer (2011) and Klauer and Kellen (2011b) have
shown that these models differ pronouncedly in terms of
their flexibility, differences which need to be taken into
account when comparing the goodness of fit of the different
models (Roberts & Pashler, 2000).

Model selection and the minimum description length
principle

Traditional model selection approaches

The question of how to compare and choose from compet-
ing models is a core aspect of cognitive modeling endeavors

(see Myung, Forster, & Brown, 2000; Wagenmakers &
Waldorf, 2006). One of the main concerns in model selec-
tion is the weighting of goodness of fit and model flexibility
(or complexity; both terms will be used interchangeably).
The problem is that models can differ in their ability to
produce good fits to data in general. An overly flexible
model will fit many data sets well, including some that can
be seen as inconsistent with its core assumptions (e.g.,
Roberts & Pashler, 2000). This bears on the support that a
model can gather from observed data: As was thoroughly
discussed by Roberts and Pashler, strong support for a
model requires that it provides a good fit of the data, but
also that the a priori probability that the model will provide a
good fit is low. In particular, if the model fits well almost
any data that could possibly be observed, the support com-
ing from good fits is rather low. Model selection should take
this into account by weighing goodness of fit against how
flexible each model is in terms of fitting data in general. As
is elaborated on below, this notion is straightforwardly
implemented in the NML index that flows from the MDL
principle.

Another way to characterize this notion of model flexibility
is to say that flexible models tend to capitalize on random error
in the data to a greater extent than do simpler models,
compromising their ability to make accurate predictions for
new data. For this reason, more flexible models tend to pro-
duce less stable parameter estimates and a greater number of
prediction errors when attempting to generalize to new obser-
vations. This problem of overfitting and generalization error
encourages the search for a model that strikes the best trade-
off between model fit and model parsimony (Hastie,
Tibshirani, & Friedman, 2008). Several methods based on
different philosophies have been proposed for this purpose
(e.g., Myung, Navarro, & Pitt, 2006; Myung & Pitt, 2004).

The most frequently used method is model selection by
the Akaike information criterion (AIC; Akaike, 1973) and
the Bayesian information criterion (BIC; Schwarz, 1978).
These indices basically quantify model flexibility in terms
of the number of parameters:

AIC ¼ �2 log f x bθðxÞ���� �
þ 2p ;

BIC ¼ �2 log f x bθðxÞ���� �
þ logðNÞp ;

with p denoting the number of parameters and N the sample
size (total number of trials). For both equations, the first
term corresponds to (minus) two times the maximum log-
likelihood of observed data vector x, where the maximum-
likelihood estimates of the p model parameters are denoted

by bθðxÞ; θ ¼ θ1; . . . ; θp
� �

. Note that the first term in the AIC
and BIC formulae thereby quantifies the model’s goodness
of fit, whereas the second term quantifies the penalty factor
quantifying model complexity.
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Despite their similarities and joint use in the literature,
AIC and BIC are based on rather distinct principles: AIC is
based on the expected bias in the Kullback–Leibler diver-
gence of a model (see Burnham & Anderson, 2002), and
BIC is an approximation of the Bayes factor (Jeffreys, 1961;
Kass & Rafterty, 1995). In the derivation of AIC, no as-
sumption is made regarding whether or not the true data-
generating process is included in the set of models being
evaluated, nor does the sample size play any role. The latter
feature is visible in the formulation of AIC, since the penalty
factor is not dependent on the sample size N. This charac-
teristic causes AIC to be biased toward more flexible models
as sample size increases, in contrast with BIC, which selects
the true model (if it is included in the set of candidate
models) with probability approaching 1 as sample size
increases.

In the present case, both AIC and BIC are of limited
value, because many of the models considered here (e.g.,
2HTM, UVSD, DPSD, MSD0) use the same number of
parameters, so that they are treated as equally flexible by
AIC and BIC. But it is easy to see that models can differ
considerably in flexibility despite having the same numbers
of parameters. For example, AIC and BIC are unable to take
into account inequality restrictions that might be imposed on
the models. Take the case of UVSD and UVSD σo � σnð Þ :
Although it is obvious that the latter model is less flexible
than the first, due to the inequality restriction imposed,
according to AIC and BIC they are equally flexible. More
generally, AIC and BIC cannot account for differences in
flexibility due to functional form (e.g., Myung, 2000). For
example, an additional parameter can have anything be-
tween a negligible and a dramatic impact on a model’s
ability to account for data in general, depending on how it
is entered into the model equations, and AIC and BIC gloss
over such differences in flexibility. We elaborate on this
issue below.

Another approach to the problem of model flexibility is
based on simulations (Bröder & Schütz, 2009; Cohen,
Sanborn, & Shiffrin, 2008; Dube et al., 2012; Jang, Wixted,
&Huber, 2011;Wixted, 2007), the most prominent simulation
method being the parametric bootstrap cross-fitting method
(PBCM) introduced by Wagenmakers, Ratcliff, Gomez, and
Iverson (2004). PBCM is also of limited value for the current
selection problem, since it assessesmodel mimicry (see Jang et
al., 2011) for a given pair of models conditional on a particular
data set. Model mimicry is concerned with the distinguish-
ability of a specific pair of models. In contrast, model flexi-
bility is concerned with the ability of a model to fit data in
general and can be calculated in the absence of other candidate
models.

Importantly, the assessment of model mimicry with the
PBCM is inherently limited to pairwise comparisons of
models, and it is not clear whether and how it can be

extended to selecting from larger sets of models as consid-
ered here (Wagenmakers et al., 2004, p. 47). In addition, by
comparing two models in terms of their ability to fit data
generated from either of the two models on the basis of
parameters estimated from the observed data, its relevance
for the case that neither model generated the observed data
is unclear. For example, for many of the data sets analyzed
in previous meta-analyses, neither UVSD nor 2HTM pro-
vided a good fit of the data, so that the simulated data sets in
a PBCM comparison of these two models necessarily bear
little resemblance to the actual data. Given the differences
between model mimicry and model f lexib i l i ty,
Wagenmakers et al. advised against the use of the PBCM
for the purpose of assessing model flexibility, explaining
that the method is unsuited for that purpose and, in addition,
is biased in favor of the more flexible model (pp. 40–42)
when used to quantify flexibility. To assess model flexibil-
ity, Wagenmakers et al. proposed the data-uninformed
PBCM, which is also known as a landscaping analysis
(Navarro, Pitt, & Myung 2004) and yields results closely
comparable to those obtained with the MDL approach
(Cohen et al., 2008; Wagenmakers et al., 2004) considered
next.

The minimum description length approach

An approach that overcomes several limitations of tradition-
al model selection methods is the MDL principle (Rissanen,
1984), a framework stemming from information theory
(Cover & Thomas, 1991) that is widely used in statistics
and machine learning (for a comprehensive introduction, see
Grünwald, 2007). According to MDL, data can be seen as a
code whose length can be compressed by a model (itself a
code with a particular length) according to the regularities
present in the data. The more regularities are present in the
data, the more the data can be compressed into a smaller
description and the more is learned from it, since these
described regularities can be used to predict future observa-
tions (Grünwald, 2007). MDL has been successfully applied
in diverse areas of psychological research, ranging from the
class of MPT models (Wu, Myung, & Batchelder, 2010a, b),
to human categorization learning (Myung, Pitt, & Navarro,
2007), strategy identification (Davis-Stober & Brown, 2011),
clustering (Lee & Navarro, 2005), working memory (Rouder
et al., 2008), hypothesis testing (Lee & Pope, 2006), and
structural equation (Preacher, 2006) modeling.

Model selection according to the MDL principle can be
stated in very general terms: Let M1, …, MJ be a set of
models, and let L(·) be a function that indicates code length.
The best model to describe data D is the model that mini-
mizes the sum L(D|M) + L(M), where L(D|M) is the length
of the description of the data provided by the model and
L(M) is the length of the description of the model itself. The
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first term of this sum corresponds to the goodness of fit of a
model, and the second term to a quantification of the
model’s complexity serving as a penalty factor. MDL there-
by provides a general theory of inductive inference that
inherently implements a form of Occam’s razor, taking into
account not only the ability of a model (hypothesis) to
describe data, but also the flexibility of the model itself.

MDL does not presuppose the existence of an “underly-
ing truth” and, instead, focuses on finding the model that
most concisely describes the regularities present in the data
(Grünwald, 2007). Furthermore, simpler models tend to be
preferred by MDL not because it assumes that “simple
models are more likely to be true” but because it is frequent-
ly the case that the data available are not sufficient to
identify a complex model and all its predicted regularities
with any reliability. Note that we think that this “agnosti-
cism” regarding an underlying truth in the MDL framework
is appropriate given that none of the simple measurement
models considered here is likely to provide more than a first
approximation of the underlying processes generating the
data. Nevertheless, this agnosticism does not compromise
the consistency of the indices that emerge from it; as in the
case of one the models being true, they will select it as
sample size increases (see Grünwald, 2007, Chap. 7).

The Fisher information approximation and normalized
maximum likelihood

Two indices derived from the MDL principle are the Fisher
information approximation (FIA; Rissanen, 1996) and NML
(Myung, Navarro, & Pitt, 2006), with FIA being an asymp-
totic approximation of NML. It is instructive to consider
FIA first:

FIA ¼ � log f x bθðxÞ���� �
þ p

2
log

N

2p
þ FIAf ;

where

FIAf ¼ log

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det I θð Þ

p
dθ:

The first term of FIA corresponds to (minus) the maxi-
mum log-likelihood of observed data x in a particular ex-
periment, quantifying model fit, and the second and third
terms correspond to the model penalties.4 The second term
takes the number of parameters p and sample size N into
account, similarly to BIC. The third term, FIAf, accounts for

the flexibility of the model due to its functional form by
integrating over the determinant of the Fisher information
matrix (I(θ)) of the model for a sample of size 1 (Schervish,
1995).

Importantly, FIA behaves as one would intuitively expect
of an index that takes functional form into account, as many
examples attest (see, e.g., Kellen & Klauer, 2011; Su,
Myung, & Pitt, 2005; Wu et al., 2010a, b). For example, if
inequality restrictions are imposed on a model’s parameter,
as in the case of UVSD σo � σnð Þ, the restricted model still has

the same number of parameters as the original model,
UVSD, but it is obviously less flexible than the original
model. This is reflected in FIA via FIAf. The penalty FIAf is
decreased for UVSD σo � σnð Þ relative to UVSD, because the

integral of the determinant of the Fisher information matrix
is now computed over only a subset of the parameter
space—namely, over those parameters that satisfy the
inequality restrictions, implying a smaller value for the inte-
gral. Neither AIC nor BIC would correct for such a change in
model flexibility, because both models employ the same num-
ber of parameters. In simulation studies, use of the model
selection index based on FIA led to more valid results than
the use of only goodness-of-fit values, AIC (Klauer & Kellen,
2011b; Myung et al., 2007), or BIC (Klauer & Kellen, 2011b;
Su et al., 2005), as is further illustrated below. Still, the penalty
factor due to functional form included in FIA is asymptotic,
which can sometimes lead to illogical results when sample
size is small (see Navarro, 2004).

FIA is linked to the MDL principle because it provides an
asymptotic approximation to the NML index, which can be
derived as the “optimal” implementation of the MDL prin-
ciple (Myung et al., 2006; Rissanen, 2001). The (logarithm
of the) NML index is given by

NML ¼ � log f x bθðxÞ���� �
þ log

X
y

f y bθðyÞ���� �
:

The NML formula has two terms. The first term is iden-
tical to the first term in FIA. The second term is a penalty
factor that is the sum of the maximum log-likelihoods of all
possible data patterns y that could in principle be observed
in such experiment. In other words, the first term quantifies
a model’s goodness of fit (in terms of the maximum likeli-
hood), and the second term penalizes the model for its
ability to account for any data that might be observed (again
in terms of maximum likelihoods). The flexibility measure
derived from the MDL principle thus penalizes a given
model to the extent that it provides good fits in general,
capturing Roberts and Pashler’s (2000) notion of model
support. The NML penalty term is defined in terms of the
model’s fit to all possible data sets (i.e., sets of response
frequencies) that can, in principle, arise in a specific exper-
imental design. By considering all possible data patterns that

4 Note that in FIA (and other MDL indices), goodness of fit is repre-

sented by � log f x bθðxÞ���� �
, while in AIC and BIC, it is represented by

� 2 log f x bθðxÞ���� �
. This means that in order to compare MDL indices

with AIC and BIC, one needs to adjust them. This adjustment can be
done by either multiplying the MDL indices by 2 or dividing AIC and
BIC by 2. We will use the latter option in our comparisons.
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could be observed in one experiment, NML takes into account
the experiment’s design, which means that the NML penalties
depend not only on the total number of items, but also on the
numbers of items of each type (e.g., old and new items) in
every condition of the experiment. NML penalties are thus
tailored to each experimental design, in contrast to asymptotic
indices such as AIC, BIC, and FIA, whose penalties constitute
large-sample approximations.

An illustration

To further illustrate the relationship between model flexibil-
ity and NML, and the advantages of the latter in comparison
with AIC and BIC, let us consider the present recognition
memory models for the case of the 4AFC-2R task (Kellen &
Klauer, 2011; C. M. Parks & Yonelinas, 2009). In this task,
individuals are presented with a set of four items, one
previously studied and the other three not studied. The
individuals’ task is to choose the item of which they most
strongly believe that it was previously studied and then
choose a second item among the remaining alternatives as
the second most likely item to be the old item. Let π1, π2,
and π3 denote the (unconditional) probabilities that the
studied item is chosen as the first choice, is chosen as the
second choice, or is not chosen, respectively.

Figure 3 depicts the model spaces—that is, the sets of
joint values of π1 and π2 that each model can describe

perfectly, for some of the recognition memory models con-
sidered here (π3 is redundant, because the three predicted
probabilities have to sum to one). The range of predictions
of both EVSD and 1HTM is limited to a single curve each,
while the more flexible models are able to account for
defined regions (see Kellen & Klauer, 2011; Theorems
1–4). Still, the size of these regions varies greatly between
models. For example, MSD0, MSD, and DPSD make the
same range of predictions that is enclosed by the curves for
1HTM and EVSD. On the other hand, 2HTM and UVSD
are able to account for larger regions, with UVSD being by
far the most flexible model. According to model selection
indices like AIC and BIC, the models 2HTM, UVSD,
DPSD, and MSD0 are equally flexible, despite the fact that
their ability to make predictions varies considerably. In
contrast, by fitting the models to each possible data pattern,
NML visits all possible {π1, π2} values in determining the
flexibility penalty and, thereby, captures the differences in
model flexibility that are visible in Fig. 3 as demonstrated
by Kellen and Klauer (2011).

Computing and interpreting NML

The requirement in computing NML to fit all possible data
sets that could, in principle, arise in a given experiment
quickly becomes unfeasible as the number of trials increases
(e.g., Kellen & Klauer, 2011), a difficulty that contributed to
a more common use of FIA (e.g., Pitt, Myung, & Zhang,
2002). As was shown by Klauer and Kellen (2011b), NML
can, however, be computed even for relatively large sample
sizes via Monte Carlo integration (Robert & Casella,
2004), sidestepping the need to fit all possible data sets
that could arise in principle. The estimates of FIA and
NML converge as the sample size increases, given that
FIA is an asymptotic approximation to NML. More

specifically,NMLf ¼ log
P

yf y bθðyÞ���� �
� p

2 log N
2p converges

to FIAf as N→∞. Note that both FIAf and NMLf quantify the
flexibility of models due to functional form. Due to its asymp-
totic nature, FIA can, however, sometimes lead to erroneous
and even illogical results when sample sizes are small (e.g.,
Navarro, 2004), making NML a more suitable measure despite
the computational difficulties associated with it.

NML can also be seen as a complementary (and some-
times more convenient) method for Bayesian model selec-
tion: As was shown by Balasubramanian (1997), model
selection by Bayes factors (Jeffreys, 1961; Kass &
Rafterty, 1995) is equivalent to NML under certain condi-
tions (see also Grünwald & Navarro, 2009; Karabatsos &
Walker, 2006; Lee & Pope, 2006). The connection between
NML and the Bayes factor can be used to obtain rough
guidelines on how to interpret the size of NML differences
between models (Lee, 2004). The Bayes factor is defined as

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

π1

EVSD
UVSD
1HTM
2HTM (upper bound)

π2

Fig. 3 Range of {π1, π2} predictions for a selection of models in the
4AFC-2R task (for details, see Kellen & Klauer, 2011). For EVSD and
1HTM, the predictions are limited to their respective curves (no areas
are defined). The range of predictions of both DPSD and MSD corre-
spond to the area enclosed by the curves for EVSD and 1HTM. The
predictions of 2HTM correspond to the area enclosed by the curves
labeled 2HTM (upper bound) and 1HTM. The predictions of the
UVSD model correspond to the area enclosed by the curve labeled
UVSD
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P D Mijð Þ
P D Mjjð Þ , with i≠j, and quantifies the evidence obtained from

the data (D) for one model (Mi) relative to another model
(Mj). Following Jeffreys (1961), the value of the Bayes
factor on a natural-logarithmic scale (corresponding to the
NML scale here used) can be roughly interpreted as follows:
Values between 0 and 1.1 provide “anecdotal” evidence for
Mi, values between 1.1 and 2.3 represent substantial relative
evidence forMi, values between 2.3 and 3.4 represent strong
relative evidence forMi, and values larger than 3.4 represent
very strong relative evidence for Mi. Summing NML values
across independent data sets is also legitimate. The summed
NML value is simply the NML index of the model fitted to
the joint data, with different parameter values permitted for
each independent data set.

The flexibility of the models due to functional form

Despite their advantages and successful track record in
psychological research, the use of MDL measures such as
FIA and NML has been hindered by the difficulty of their
computation. Klauer and Kellen (2011b) recently developed
tractable methods for computing FIA and NML for the
present models for the case of binary-response ROCs and
found considerable differences in flexibility. Figure 4 shows
model flexibility values that arise from functional form (i.e.,
FIAf and NMLf) across different sample sizes for 5-point
ROCs for each of the recognition memory models. Note that
values can be compared directly for models with the same
number of parameters. These are linked by lines in the
figure. First, note that the NMLf values converge to FIAf,
as sample size increases, as expected. Of special interest in
Fig. 4 is the considerable flexibility of the UVSD, which is
the highest among the candidate models, a result that is
likely to lead to significant changes in the conclusions of
the previous meta-analyses that did not take flexibility due
to functional form into account. These FIAf and NMLf re-
sults per se already run counter to the notion that the UVSD
and DPSD are approximately equal in flexibility and cor-
roborate previous analyses that indicated a greater propen-
sity for the UVSD model to overfit data (Bröder & Schütz,
2009; Jang et al., 2011), although it should be emphasized
that differences in flexibility do not necessarily generalize
across tasks or variations of a particular task (see Kellen &
Klauer, 2011; Klauer & Kellen, 2011b). For example, the
2HTM is more flexible than the DPSD and MSD0 in the
context of the 4AFC-2R task, but not for the case of binary-
response ROCs.5 Model complexity or flexibility is a prop-
erty of the model and of the experimental design.

Additionally, the differences in NMLf presented in Fig. 4
show that the number of parameters is not a good proxy for
model flexibility—that is, for the model’s ability to fit data in
general—given that the models connected by a line in the
figure have the same number of parameters and still show
considerable differences in the ability to fit data in general
(i.e., in NML). More strongly, the UVSD and the MSD
provide an example in which a model with more parameters
(MSD) is even less flexible than a model with fewer param-
eters (UVSD), at least for data sets of realistic sizes: For 5-
point ROCs with 10, 50, 100, and 1000 old and new items per
response bias condition, the differences in NML penalties
between MSD and UVSD are, in order, −1.00, −1.23, −1.27,
and −1.08. These penalty differences indicate that UVSD has
a greater flexibility despite the fact that MSD has one more
parameter than UVSD and would accordingly be punished as
more flexible by AIC and BIC. For example, for BIC, the
penalty differences in quantifying goodness of fit would be
2.30, 3.11, 3.45, and 4.61, respectively, favoring UVSD (see
Footnote 4). Given the common use of AIC and BIC in the
literature, it becomes clear that models such as MSD
have been unfairly penalized so far. Differences in
flexibility can also be found among the models with
fewer numbers of parameters, like 2HTM Do ¼ Dnð Þ and

EVSD: According to AIC and BIC, these models are
equally flexible. Also, these models are highly
constrained in terms of the ROCs that they can account

5 There are tasks in which the UVSD is less flexible than many of the
candidate models: In a two-alternative forced choice task, the UVSD
reduces to the EVSD (see Wickens, 2002, Chap. 6), which is a special
case of DPSD, MSD0, and MSD.
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Fig. 4 FIAf and NMLf for five-point ROCs, and n = 10, 50, 100, and
1,000 trials per hit and false alarm rates. Note that FIAf and NMLf

values can be directly compared only across models with the same
number of parameters (models connected by lines)
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for: 2HTM Do ¼ Dnð Þ can only predict linear ROCs with slope 1,
and EVSD is restricted to symmetrical curvilinear ROCs. Still,
NML results indicate that EVSD is able to fit data in general
much better than 2HTM Do ¼ Dnð Þ : For 5-point ROCs with 10,

50, 100, and 1,000 old and new items per response bias condi-
tion, the differences in NML penalties between 2HTM Do ¼ Dnð Þ
and EVSD are, in order, −1.64, −1.84, −1.93, and −1.99.

Model recovery by AIC, BIC, and NML

We want to apply NML to selecting from the set of models
shown in Fig. 4. As a preparatory step, we conducted a
model recovery study known as landscaping analysis
(Myung et al., 2007; Navarro et al., 2004) or data-
uninformed PBCM (Wagenmakers et al., 2004) across the
ten candidate models considered here (as listed in Fig. 4),
complementing similar simulations previously reported by
Klauer and Kellen (2011b) for selecting from subsets of
these models. We compared model recovery performance
for AIC, BIC, and NML. Ten thousand 5-point binary-
response ROC data sets were generated from each model
for each of three sample sizes: n = 50, n = 100, and n =
1,000 per item type and response bias condition. Sample
sizes n = 50 and n = 100 are representative of analyses at the
level of individual participants, and n = 1,000 is represen-
tative of the analyses with aggregated data. Base rates were
balanced in each response bias condition, but different re-
sponse bias parameters governed each response bias condi-
tion, as might occur in manipulating response biases via
payoff or implied base rate manipulations (e.g., Dube &
Rotello, 2012).

Following Navarro et al. (2004) and Myung et al. (2007),
parameter values were sampled from Jeffreys’s (1961)
noninformative distribution for each model. An important
property of this sampling scheme is that it is the only one that
makes sampling independent of the particular way in which
the model is parameterized. In other words, we thereby en-
sured that the model recovery contrasts the different models
independently of the particular way in which they are mathe-
matically stated (see Navarro et al., 2004; for details on how to
sample from Jeffreys’s distribution for the recognition mem-
ory models, see Klauer & Kellen, 2011b).

Use of NML implies that everything else being equal,
simple models (in terms of NML) will be selected more
frequently and complex models less frequently than under
AIC and BIC. The question is whether the implied reduction
in model recovery for complex models is outweighed by the
implied increase in model recovery for simple models. In
the language of recognition memory models, relative to the
use of AIC and BIC, not only should there be shifts in
response bias toward or against certain models, but also
overall discrimination performance should improve as well.

The simulation results presented in Table 1 show that NML
outperforms AIC and BIC in terms of overall recovery accu-
racy, irrespective of sample size (see the “Overall” column).
This difference is proportionally larger for the smaller sample
sizes reported (e.g., n = 50), in which NML provides a 16 %
and 26% increase in overall accuracy in comparison with AIC
and BIC, respectively. Also, note that AIC and BIC tend to
overpenalize certain models so that they are recovered with
chance or below-chance accuracy. For example, when consid-
ering realistic sample sizes for individual data (n = 50 or
n = 100), MSD is virtually never correctly recovered when
using AIC or BIC. In contrast, model recovery exceeds the
10 % chance baseline for each model under NML. As was
expected, the differences between the model selection indices
are proportionally smaller for larger sample sizes, reflecting
the reduction in sampling variability, as well as the asymptotic
properties of these indices.6

These results are thus consistent with the simulations
previously reported by Klauer and Kellen (2011b), in which
NML fared consistently better than AIC and BIC across
binary-response ROC data with different numbers of points
and different sample sizes in selecting from subsets of the
above models. In the particular case of pairwise model
recovery simulations, Klauer and Kellen (2011b) showed
that model recovery rates obtained with NML are very close
to the optimal rates that can be achieved, a finding that has
previously been reported in the literature (Cohen et al.,
2008, p. 698; Wagenmakers et al., 2004, p. 43). Similar
results showing the advantages of model selection indices
coming from the MDL principle over AIC and BIC have
been reported in several studies that have focused on differ-
ent types of models (e.g., Bozdogan, 2000; Cohen et al.,
2008; Myung, 2000; Myung, Balasubramanian, & Pitt,
2000; Myung et al., 2007; Pitt & Myung, 2002; Pitt et al.,
2002; Su et al., 2005). The BIC results are not surprising
given the connections between BIC and the MDL frame-
work. Like NML and FIA, BIC can be seen as an approx-
imation to the Bayes factor, in which the term quantifying
functional flexibility (i.e., FIAf) is simply neglected (see
Myung et al., 2006, p. 173), making BIC a less accurate
approximation of the Bayes factor than FIA or NML.
Although NML shows superior performance in terms of
model recovery, it is important to note that NML (like AIC
or BIC) was designed not with the purpose of maximizing
model recovery accuracy, but of minimizing overfitting and
generalization error.

In the simulation discussed above, a set of ten models was
considered, although much of the literature is, in fact, focused
on a subset of these. For example, more complex models such

6 NML performance was also superior to AIC and BIC for ROCs
obtained with sample sizes consistent with base rate manipulations
(e.g., Bröder & Schütz, 2009).
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as UVSD, DPSD,MSD0, and MSDwere developed in part to
account for discrepancies between the EVSD and ROC data,
as well as to account for similar discrepancies found with
other tasks (for a review, see Yonelinas & Parks, 2007). The
same is true for 2HTM relative to 1HTM (e.g., Bayen,
Murnane, & Erdfelder, 1996). When excluding simpler
models from the selection set, an important concern is whether
or not the data sets being used are diagnostic. For example, it
could be the case that the ROC points are too close to each
other to provide reliable information on the function’s shape,
or it could be that the data sets are well accounted for by a
common restricted model such as EVSD. In both cases, the
data can be seen as nondiagnostic. They would be well fit by
all complex models that include the restricted model as a
special case, and in consequence, the most simple of these
complex models would invariably be selected as an applica-
tion of the parsimony principle.

This issue was recently discussed by Jang et al. (2011), who
focused on the comparison between the DPSD and the UVSD.
Jang et al. noted that when comparing DPSD and UVSD using
confidence-rating ROCs, many of the cases for which DPSD
was chosen as the best model were cases in which the data
were actually consistent with the EVSD. Given that both
UVSD and DPSD have EVSD as a common restricted case,
their predictions converge for these data sets, which severely
reduces the ability to discriminate between the two models.
Jang et al. pointed out that for these data sets, DPSD will tend
to be selected simply because it is less complex than UVSD. In
contrast, for the data sets that were not consistent with EVSD,
UVSDwas consistently selected over DPSD as the best model.
Given that the role of both UVSD and DPSD is to account for
data sets that are not well accounted for by EVSD, it is
important to focus the comparisons on data sets that actually

diverge from the latter (Jang et al., 2011, p. 756). The findings
of Jang et al. indicate that model selection results from among
more complex models (e.g., DPSD and UVSD) can be
distorted when data sets that are well accounted by common
restricted models (e.g., EVSD) are not screened out.

Because we screen out such data sets in some of the
analyses reported below, let us consider how this affects
model recovery from among the more complex models
2HTM Do � Dnð Þ , 2HTM, UVSD σo � σnð Þ , UVSD, DPSD,

MSD0, and MSD. For these simulations, we excluded sim-
ulated data for which NML favored one of the simple
models 1HTM, 2HTM Do ¼ Dnð Þ , and EVSD. Note that

1HTM is a restricted submodel of 2HTM Do � Dnð Þ , 2HTM,

DPSD, MSD0, and MSD; 2HTM Do ¼ Dnð Þ of 2HTM Do � Dnð Þ
and 2HTM; EVSD ofUVSD σo � σnð Þ, UVSD, DPSD, MSD0,

and MSD. This excludes ROCs that can be accounted for by
common restricted models, as well as ROCs whose points are
too close to each other to be diagnostic. Note that in addition to
the rationale by Jang et al. (2011) based on diagnosticity, this
exclusion of nondiagnostic data sets gains support from similar
recent MDL-based methods developed for optimizing model
discriminability in experimental designs (see Myung & Pitt,
2009). The results from this simulation are presented in Table 2,
and show that overall model recovery increases when exclud-
ing nondiagnostic data sets. The proportion of excluded data
sets decreases as sample sizes increases, as was expected. As in
the previous simulation, NML performs better overall than AIC
and BIC and, unlike AIC and BIC, guarantees recovery rates
above the chance baseline of 14.3 % for each model.

To summarize, MDL indices such as NML provide a
principled quantification of flexibility in recognition mem-
ory models tailored to the parameters of a given study (in

Table 1 Model-recovery simulation results

Sample size Method Data-generating model Overall

1HTM 2HTM Do ¼ Dnð Þ 2HTM Do � Dnð Þ 2HTM EVSD UVSD σo � σnð Þ UVSD DPSD MSD0 MSD

50 AIC .61 .50 .20 .22 .83 .64 .38 .09 .20 .01 .37

BIC .73 .58 .03 .13 .93 .54 .32 .00 .10 .00 .34

NML .67 .85 .36 .31 .67 .49 .32 .16 .27 .19 .43

100 AIC .66 .57 .33 .30 .83 .71 .41 .20 .28 .03 .43

BIC .80 .67 .11 .20 .95 .63 .36 .05 .18 .00 .40

NML .72 .88 .44 .34 .73 .55 .36 .25 .35 .23 .49

1,000 AIC .76 .73 .70 .43 .83 .85 .47 .56 .55 .26 .61

BIC .93 .87 .52 .39 .99 .82 .45 .41 .49 .05 .59

NML .87 .95 .70 .43 .90 .70 .45 .60 .63 .44 .67

Note. The values correspond to proportion of cases (out of 10,000) in which the data-generatingmodel had the smallest valuewith a particular method (AIC,
BIC, or NML). Column “Sample Size” refers to the number of items of each type (old and new), for each response bias condition. Column “Overall”
indicates the overall proportion of data sets for which its data-generatingmodel had the smallest value with a particular method. Chance-level recovery is .10.
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terms of numbers of items and implemented base rates). The
results reported in this section suggest that NML outper-
forms AIC and BIC in model recovery.

MDL analysis of ROC data for item recognition

The data sets

In this section, we reanalyze binary-response ROC data
published in the literature. Following the meta-analysis by
Dube and Rotello (2012), we consider only ROCs with at
least 3 points, stemming from Curran et al. (2007),
Henriques, Glowacki, and Davidson (1994), T. E. Parks
(1966), Ratcliff, Sheu, and Gronlund (1992), Snodgrass
and Corwin (1988), Starns, Ratcliff, and McKoon (2012),
and Van Zandt (2000). We additionally include the data
from the original experiments reported by Bröder and
Schütz (2009), by Dube and Rotello (2012), by Dube et al.
(2012), and by Starns et al., for a total of 41 data sets.

For the sake of comparison with the previous meta-analyses,
we begin by analyzing aggregate frequencies, with aggregate
data set as the unit. The analyses at this level and the data sets
have several limitations that we then overcome by an analysis
of data at the level of individual participants, where available.

The limitations comprise theoretical and practical issues.
First, as was already noted by Bröder and Schütz (2009),
many of the studies analyzed employed nonstandard designs
with unusually high numbers of study–test blocks adminis-
tered across several experimental sessions (Ratcliff et al.,
1994; Starns et al., 2012; Van Zandt, 2000) and unusually

short presentation times at the study phase (e.g., 50 and
200 ms per item; Ratcliff et al., 1994). In addition, these
studies have small numbers of participants (e.g., 4 partici-
pants in a single experiment; Starns et al., 2012), and they
comprise 20 out of the 41 data sets, giving them a high
weight when the data set is the unit of analysis.

A practical limitation stems from the fact that the studies
by Dube et al. (2012), Ratcliff et al. (1994), and Starns et al.
(2012) implemented designs with more than one class of old
and/or new items, calling for a joint analysis with different
parameters permitted per item class. Unfortunately, the com-
putational complexities of computing the NML index allow
us to analyze only standard designs for aggregate data with
one class of old and new items. For this reason, we followed
Bröder and Schütz (2009, 2011) and Dube and Rotello
(2012) in splitting up such data sets into several data sets
that share the same distractor data and, therefore, are
nonindependent for the analyses at the level of aggregate
data. Nonindependence is also an issue for two data sets
gleaned from Curran, DeBuse, and Leynes (2007; see
Bröder & Schütz, 2011).

A final issue is that there is growing awareness of the
problems that arise in aggregating data across individuals
that differ systematically in performance for analyses of
nonlinear models (Estes & Maddox, 2005; Klauer, 2010;
Rouder & Lu, 2005). For example, even if all individual
ROCs are generated from one of the models considered
here, the aggregate ROC need not be well described by that
model. Problems of this kind are compounded to the extent
to which many observations are nested within comparative-
ly few individuals (e.g., Riefer & Batchelder, 1988, 1991),

Table 2 Model-recovery simulation results excluding non-diagnostic datasets

Sample size Diagnostic
data sets

Data-generating model Overall

Method 2HTM Do � Dnð Þ 2HTM UVSD σo � σnð Þ UVSD DPSD MSD0 MSD

50 .56 AIC .74 .44 (.72) .84 .49 (.90) .43 .40 .01 (.39) .48 (.63)

BIC .74 .44 (.72) .84 .49 (.90) .43 .40 .00 (.38) .48 (.63)

NML .93 .59 (.94) .68 .44 (.77) .40 .51 .29 (.68) .55 (.70)

100 .64 AIC .79 .48 (.81) .85 .49 (.91) .52 .45 .04 (.40) .52 (.68)

BIC .79 .48 (.81) .86 .49 (.91) .52 .45 .00 (.38) .51 (.67)

NML .94 .58 (.97) .69 .45 (.79) .53 .58 .32 (.70) .58 (.74)

1000 .83 AIC .92 .53 (.95) .89 .49 (.95) .76 .64 .27 (.56) .64 (.81)

BIC .92 .53 (.95) .90 .49 (.95) .77 .66 .05 (.42) .62 (.80)

NML .97 .54 (.98) .75 .48 (.87) .84 .76 .47 (.79) .69 (.85)

Note. The values correspond to proportion of cases (out of diagnostic data sets) in which the data-generating model had the smallest value with a
particular method (AIC, BIC, or NML). Column “Sample Size” refers to the number of items of each type (old and new), for each response bias
condition. Column “Overall” indicates the overall proportion of data sets for which its data-generating model had the smallest value with a
particular method (AIC, BIC, or NML). Column “Diagnostic data sets” gives the proportion of data sets (out of 10,000) not screened-out as
nondiagnostic. Values in parentheses are the proportions of data sets that were correctly recovered by the data-generating model (2HTM, UVSD,
and MSD) or by a restricted version of that model (2HTM Do � Dnð Þ, UVSD σo � σnð Þ, and MSD0, respectively)
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as was the case especially for the nonstandard designs just
discussed.

For such reasons, Bröder and Schütz (2009), Dube and
Rotello (2012), and Dube et al. (2012) conducted new
experiments using more standard designs and used
individual-participant ROCs in their analyses. Our main
analysis focuses on these data comprising 186 participants,
with participant as the level of analysis. As was already
mentioned, one issue in selecting from among the more
complex models is diagnosticity of the data, and given that
smaller numbers of trials are available per participant than
for the analysis of aggregate data, the diagnosticity issue is
more pressing for the individual-level analyses than for the
aggregate analyses.7 For this reason, we also present an
individual-level analysis in which nondiagnostic data are
screened out as exemplified in the above model recovery
study.

NML results for aggregated ROCs

Table 3 shows the NML analyses of the aggregate data for the
independent data sets (upper half) and the nonindependent
data sets (lower half). We conducted two analyses, a vote-
counting analysis and a quantitative analysis. Vote
counting is based on the frequencies with which each model
is selected as best by NML across data sets. For the quantita-
tive analysis, NML values are summed across data sets for
each model.

The vote-counting analysis is in line with the model
selection rationale according to which the model with
the smallest NML value is the one that strikes the best
balance between fit and flexibility in describing a given
data set. Moreover, it is likely to be robust against a
few outlying data sets, producing unusually large NML
values and differences therein. The quantitative analysis,
on the other hand, compares the models in terms of
their ability to describe the joint data comprising all
data sets, with different parameters per data set. It is
probably more sensitive to outlying data sets, as well as

to the problem of nonindependence of data sets that
arises for many of the aggregate data, as was discussed
above. Note that both levels of analysis need not con-
verge on the same conclusion, given that it is possible
that a model describes many data sets best but fails
spectacularly (in terms of large NML values) for others.

Table 4 presents estimates for the parameters (other
than response bias and guessing parameters) of the
major models for the aggregate analyses. As can be
seen, the parameter values are consistent with the values
typically reported in the literature. Figures 5 and 6 show
the ROCs for the aggregate data sets. Visual inspection
of the ROCs shows that some of them appear to have a
curvilinear shape. In other cases, the shape of the ROCs
seems better described as linear or does not follow any
of the forms that the models discussed here can account
for. In any case, the shapes of many of the ROCs seem
to differ from the smoother and more curvilinear shape
that is almost invariably found in confidence-rating
ROCs (Wixted, 2007; Yonelinas & Parks, 2007), al-
though we acknowledge that an eyeball analysis of this
kind has a subjective element.

Vote counting

Consider the frequencies of model selections given in
brackets in the last row of Table 3 labeled “Total.” A χ2

test for equality of these counts across models reveals that
the models differ significantly in their likelihood of being
selected, χ2(9) = 51.44, p < .001.8 It can be seen that models
from the 2HTM family are chosen most frequently as the
best model. In terms of individual models, there is a group
of three models that fare best, 2HTM Do ¼ Dnð Þ , DPSD, and
2HTM Do � Dnð Þ , with, in order, 13, 10, and 9 selections.

These are followed by a second group of models, compris-
ing EVSD, MSD0, and 1HTM, with, in order, 4, 3, and 2
selections, which are selected significantly less often than
the first group (p < .001 by an exact binomial test on the
cases that one of these six models was selected). A final
group of models, 2HTM, UVSD σo � σnð Þ, UVSD, and MSD,

comprises models that are never selected and that are select-
ed significantly less often as a group than the second group
(p = .004). The differences between models within these
three groups are not significant.

The quantitative analysis

The row labeled “Total” in Table 3 also shows the
summed NML values. Interestingly, these present a

7 For reference, Bröder and Schütz (2009) implemented a base rate
manipulation with a total of 60 trials per response bias condition. The
number of new items was 6, 15, 30, 45, and 54 across five response
bias conditions. Dube et al. (2012) collected 96 trials per response bias
condition, and the number of new items was 24, 32, 48, 64, and 72
across five response bias conditions. Dube and Rotello (2012) collect-
ed 5-point ROCs with balanced base rates in each response bias
condition. In Experiment 1, 40 old and 40 new items were collected
per response bias condition. In Experiment 2, 77 old and 77 new items
were collected per response bias condition instead. In Van Zandt
(2000), both base rate (Experiment 1) and payoff (Experiment 2)
manipulations were used: There are slight variations in the number of
trials per participant (at least in the raw data made available by the
author), with the number of trials for any item type ranging between
137 and 640.

8 A bootstrap analysis that does not rely on asymptotic approximations
confirms that the differences between models are significant.
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different ordering of the models. From best to worst, the
models are ordered as DPSD, MSD, MSD0, UVSD σo � σnð Þ ,

UVSD, 2HTM Do � Dnð Þ , 2HTM, EVSD, 2HTM Do ¼ Dnð Þ ,
1HTM. The quantitative differences between models

Table 4 Parameter estimates for a selection of models for the aggregated datasets

Data 2HTM UVSD DPSD MSD0 MSD

Do Dn μo σo μo R μo 1 μo μ*
o 1

Curran et al. (2007), Exp. 3, collapsed ratings* .58 .32 1.40 1.21 0.98 .28 1.54 .86 1.54 0.00 .86

Curran et al. (2007), Exp. 3, reconstructed binary* .20 .23 0.53 0.85 0.61 .00 0.61 1 0.61 0.00 1

Henriques et al. (1994), Exp. 1, control* .78 .00 4.57 3.86 0.00 .78 7.19 .78 7.19 0.00 .78

Henriques et al. (1994), Exp. 1, dysphorics* .77 .03 3.75 3.23 0.00 .77 7.27 .77 7.29 0.00 .77

Snodgrass & Corwin (1988), Exp. 1, high imagery* .60 .69 1.87 0.97 1.90 .00 1.90 1 1.90 0.00 1

Snodgrass & Corwin (1988), Exp. 1, low imagery* .21 .40 0.78 0.86 0.83 .00 0.83 1 0.83 0.00 1

Bröder & Schütz (2009), Exp.1 .54 .50 1.61 1.13 1.24 .27 1.62 .95 6.56 1.24 .27

Bröder & Schütz (2009), Exp.2 .70 .31 2.69 2.20 0.52 .67 2.83 .77 4.25 0.51 .67

Bröder & Schütz (2009), Exp.3 .56 .45 1.71 1.38 0.95 .41 1.88 .83 6.34 0.95 .41

Dube & Rotello (2012), Exp. 1, pictures .70 .69 2.58 1.52 1.43 .55 2.50 .90 6.61 1.43 .55

Dube & Rotello (2012), Exp. 1, words .43 .38 1.21 1.16 0.93 .19 1.40 .83 1.40 0.00 .83

Dube & Rotello (2012), Exp. 2 .46 .31 1.52 1.74 0.56 .40 2.18 .64 2.32 0.15 .59

Dube et al. (2012), Exp.1, study 1× .40 .45 1.27 1.25 0.90 .23 1.57 .77 1.57 0.00 .77

Dube et al. (2012), Exp.1, study 5× .76 .54 2.45 1.40 1.36 .58 2.29 .93 6.41 1.36 .58

Dube et al. (2012), Exp.2, study 1× .36 .34 1.07 1.35 0.66 .23 1.60 .64 1.60 0.00 .64

Dube et al. (2012), Exp.2, study 10× .67 .52 1.95 1.17 1.52 .31 1.96 .94 1.97 0.10 .94

T. E. Parks (1966), Exp. 1, fixed format .00 .76 1.06 0.19 1.54 .00 1.54 1 1.54 1.54 .63

T. E. Parks (1966), Exp. 1, free format .49 .52 1.46 1.07 1.30 .12 1.50 .95 3.97 1.30 .12

Ratcliff et al. (1992), Exp.1, mixed, weak .34 .30 0.95 1.19 0.65 .19 1.28 .72 5.94 0.65 .19

Ratcliff et al. (1992), Exp.1, mixed, strong .55 .40 1.46 1.12 1.13 .25 1.48 .94 5.41 1.13 .25

Ratcliff et al. (1992), Exp.1, pure, weak .37 .30 1.02 1.16 0.74 .18 1.26 .78 1.68 0.52 .44

Ratcliff et al. (1992), Exp.1, pure, strong .54 .40 1.51 1.21 1.04 .30 1.62 .88 4.90 1.04 .30

Ratcliff et al. (1992), Exp.2, mixed, weak .60 .55 1.96 1.26 1.40 .34 2.00 .91 2.89 1.25 .47

Ratcliff et al. (1992), Exp.2, mixed, strong .86 .63 2.82 1.16 2.27 .41 2.68 .99 2.68 0.00 .99

Ratcliff et al. (1992), Exp.2, pure, weak .64 .51 2.17 1.45 1.17 .49 2.16 .89 7.20 1.17 .49

Ratcliff et al. (1992), Exp.2, pure, strong .77 .71 2.56 1.10 2.24 .28 2.48 .99 6.11 2.24 .28

Starns et al. (2012), HF, speed, study 1× .16 .09 0.35 1.15 0.15 .13 1.38 .28 6.32 0.15 .13

Starns et al. (2012), HF, speed, study 2× .29 .15 0.67 1.23 0.36 .19 1.29 .52 1.29 0.00 .52

Starns et al. (2012), HF, speed, study 4× .34 .18 0.80 1.22 0.45 .22 1.28 .61 1.28 0.00 .61

Starns et al. (2012), HF, accuracy, study 1× .25 .16 0.67 1.13 0.48 .11 1.02 .65 1.48 0.33 .31

Starns et al. (2012), HF, accuracy, study 2× .34 .20 0.87 1.11 0.68 .13 1.07 .80 4.59 0.68 .13

Starns et al. (2012), HF, accuracy, study 4× .46 .22 1.16 1.16 0.81 .23 1.32 .85 5.93 0.81 .23

Starns et al. (2012), LF, speed, study 1× .32 .30 0.90 1.16 0.62 .18 1.20 .73 5.98 0.62 .18

Starns et al. (2012), LF, speed, study 2× .50 .30 1.34 1.37 0.70 .35 1.68 .74 1.68 0.00 .74

Starns et al. (2012), LF, speed, study 4× .60 .36 1.64 1.35 0.88 .43 1.79 .83 5.83 0.88 .43

Starns et al. (2012), LF, accuracy, study 1× .44 .41 1.32 1.15 1.04 .18 1.47 .86 2.09 0.88 .38

Starns et al. (2012), LF, accuracy, study 2× .59 .45 1.71 1.18 1.32 .26 1.79 .91 1.79 0.00 .91

Starns et al. (2012), LF, accuracy, study 4× .70 .50 2.01 1.12 1.62 .30 1.95 .98 6.04 1.62 .30

Van Zandt (2000), Exp. 1, slow .56 .60 1.83 1.26 1.32 .31 1.94 .88 2.99 1.24 .39

Van Zandt (2000), Exp. 1, fast .33 .46 1.06 1.04 1.03 .02 1.15 .91 1.15 0.00 .91

Van Zandt (2000), Exp. 2 .32 .20 0.94 1.21 0.67 .15 1.30 .70 1.30 0.00 .70

Note. Study 1 ×, 2 ×, 4 ×, 5 ×, and 10 × refer to the amount of times that items were presented in the study phase. Data sets with an asterisk (*)
correspond to 3-point ROCs. HF = high-frequency words, and LF = low-frequency words
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in NML values are significant across data sets according
to the Friedman rank-sum test , χ2(9) = 132.53,

p < .001. DPSD significantly outperforms all models, as
attested to by Wilcoxon tests (largest p < .014), except
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2HTM Do � Dnð Þ , for which the difference is not signifi-

cant (p= .15). This indicates that the numerically

sizable difference between DPSD and 2HTM Do � Dnð Þ in

summed NML values is driven by only a few data sets and
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does not generalize across data sets. Because the quantitative
analysis is analogous to the quantitative comparisons in terms
of G2 from previous meta-analyses contrasting UVSD and
2HTM, we also tested UVSD against 2HTM using a
Wilcoxon test and found that they do not differ significantly
(p = .22); the same is true for comparing UVSD σo � σnð Þ and
2HTM Do � Dnð Þ (p = .32).

Summary of the aggregate analyses

The aggregate analyses do not present a clear winner.
Nevertheless, they converge on a couple of conclusions. In
terms of vote counting, as well as in the quantitative analy-
ses, DPSD performed quite well. Likewise, models from the
2HTM family (i.e., 2HTM Do ¼ Dnð Þ and 2HTM Do � Dnð Þ )
performed well in vote counting, and in the quantitative
analysis, the 2HTM Do � Dnð Þ is the only model that is not

significantly outperformed by DPSD. Nor is 2HTM Do � Dnð Þ
significantly outperformed by any other model in this
analysis.

Previous meta-analyses focused on comparing UVSD
and 2HTM. Regarding this comparison, neither in the
vote-counting analysis nor in the quantitative analysis was
UVSD (UVSD σo � σnð Þ) found to perform better than 2HTM

( 2HTM Do � Dnð Þ ), which is also true if the vote-counting

analysis is restricted to just these pairs of models. In other
words, once the ability of these models to fit data in general
is factored in, there is no decisive evidence in these analyses
for or against one of these models.

As was already mentioned, the analyses at the level
of aggregate data are limited in several ways concerning
a large proportion of data sets with nonstandard de-
signs, the issue of nonindependence of some of the
data sets, and the problems related to aggregating data
across heterogeneous participants. For these reasons,
our main analysis focuses on individual data to see
whether these present a more consistent picture across
vote-counting analysis and quantitative analysis and
confirm the suggestive evidence for DPSD and the
2HTM family that is nevertheless found in these aggregate
analyses.

NML results for individual-participant ROCs

Individual data are available from experiments by Bröder
and Schütz (2009), Dube and Rotello (2012), and Dube et
al. (2012) using relatively standard recognition designs,
comprising 186 participants. Following Bröder and Schütz
(2009) and Dube and Rotello, we focus our analysis on
individual data sets from recent studies specifically designed
to compare these models, therefore not including the 15
individual data sets from Van Zandt (2000), who

implemented experimental designs that are nonstandard in
several respects.9

The data from Dube et al. (2012) comprised two types of
old items, weak and strong items. At the level of the indi-
vidual analyses, we are able to compute NML values for the
model that analyses new items and weak and strong old
items jointly, with different parameters for the two kinds of
old items. In consequence, the issue of nonindependence
does not arise in the analyses by participant.10

Vote counting

Table 5 presents the NML analyses. Consider the upper half of
the table, labeled “All Data sets,” first. The row labeled “Total”
provides the frequencies of model selections in brackets for
each model. A χ2 test for equality of these counts across
models reveals that the models differ significantly in their
likelihood of being selected, χ2(9) = 407.12, p < .001 (see also
Footnote 8). As can be seen, 2HTM Do ¼ Dnð Þ emerges as the

clear winner, with 48 % of individuals best described by it,
followed at a significant distance (p < .001) by 1HTM (24 %),
which does not differ significantly from 2HTM (18%; p = .25),
and fewer than 4 % per model for the remaining models, each
of which was selected significantly less often than 2HTM
(largest p < .001).

This suggests that many of the individual-level data sets are
not diagnostic for discriminating between the more complex
models, because they are already well described by simpler
models such as 1HTM and 2HTM Dn ¼ Doð Þ (Jang et al., 2011).
Another possibility is, of course, that the simple models and,

9 For the Van Zandt (2000) data, models from the 2HTM family of
models provide the best NML account for 10 of the 15 individual data
sets. There is one outlier (participant 1, Experiment 2) for which the
models from the 2HTM family perform extremely poorly, determining
the summed NML for these data sets so that the 2HTM family does not
fare well in the quantitative analysis. Including the outlier, the ranking
of the models in terms of summed NML is, from best to worst, DPSD,
MSD0, MSD, UVSD σo � σnð Þ, UVSD, EVSD, 2HTM, 2HTM Do � Dnð Þ,
2HTM Do ¼ Dnð Þ , and 1HTM, with summed NML values of 362.06,
368.02, 371.38, 378.98, 382.52, 385.05, 452.54, 452.67, 469.62, and
546.34, respectively. Removing the outlier considerably changes the
ranking of the models in terms of summed NML, from best to worst
being DPSD, 2HTM Do ¼ Dnð Þ , MSD0, MSD, 2HTM, 2HTM Do � Dnð Þ ,
UVSD σo � σnð Þ, EVSD, UVSD, and 1HTM, with summed NML values
of 338.01, 342.05, 343.25, 346.64, 346.71, 347.40, 353.79, 356.57,
356.67, and 427.97, respectively.
10 We followed Dube et al.’s (2012) specification of UVSD for this
analysis in permitting different μo parameters for weak and strong
items and keeping σo (and response bias parameters) equal for both
kinds of items. For the other models, different parameters are permitted
for weak and strong items for all parameters other than the response
bias and guessing parameters. For the case of 2HTM Do ¼ Dnð Þ , we
somewhat arbitrarily let Do = Dn for the weak items and permitted a
new Do parameter for the strong items.
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in particular, 2HTM Do ¼ Dnð Þ are truly the most appropriate

models. If so, the quantitative analysis should mirror their
superiority. In contrast, if the good performance of these
simple models reflects a diagnosticity issue, we can expect
them to perform quite poorly on the still substantial proportion
of cases in which none of them provided the best description
(i.e., in the diagnostic data sets), implying that their perfor-
mance in the quantitative analysis may not mirror their vote-
counting superiority.

Quantitative analysis

Table 5 also presents the summed NML values. They agree
better with the vote-counting results than in the aggregate-level
analyses, but there are a couple of suggestive discrepancies.
From best to worse, the models are ordered as 2HTM,
2HTM Do ¼ Dnð Þ , 2HTM Do � Dnð Þ , DPSD, MSD0, MSD,

1HTM, UVSD σo � σnð Þ, EVSD, and UVSD. These differences
generalize across participants, as attested to by a Friedman
rank-sum test, χ2(9) = 647.01, p < .001. 2HTM significantly
outperformed all models according to Wilcoxon tests (largest
p < .001) other than 2HTM Do ¼ Dnð Þ (p = .06) and

2HTM Do � Dnð Þ (p = .07). 1HTM fared second-best in vote

counting but dropped to the seventh place in the quantitative
analysis, suggesting that it performs poorly onmore diagnostic
data sets.

To summarize, the individual-level analyses suggest that
models from the 2HTM family strike the best balance between
fit and flexibility both in terms of vote counting and in terms
of the quantitative analysis. On the other hand, the good
performance of DPSD seen for the aggregate data is not
replicated at the level of the individuals’ data. One possibility
is that this reflects a diagnosticity issue, as discussed by Jang
et al. (2011); another possibility is that the relatively good
performance of DPSD in the aggregate analysis is an aggre-
gation artifact;.These two possibilities that are not mutually
exclusive. Our final set of analyses excluded nondiagnostic
data sets, as described in the above model recovery study.

Analyses restricted to diagnostic data sets

The final set of analyses is restricted to the individual-level
data sets for which none of the simpler models (1HTM, 2

HTM Do ¼ Dnð Þ , EVSD) was selected by NML, for a total of

49 data sets. The model selection results are shown in the
lower half of Table 5. In terms of vote counting, the selec-
tion frequencies for the seven more complex models dif-
fered significantly from each other, χ2(6) = 116.57, p < .001
(see Footnote 8). The clear winner is 2HTM, with 67 % of
data sets favoring it, with a vote count that is significantly
larger than the vote count for any of the other models
(largest p < .001).

The same is true for the quantitative analysis. The differ-
ences between models in NML values generalize across data
sets, as attested to by a significant Friedman rank-sum test,
χ2(6) = 94.16, p < .001. As in vote counting, 2HTM
performed best: It was associated with the smallest summed
NML, and in Wilcoxon tests, the differences between 2HTM
and any other model were significant (largest p < .001).

Relative to the analysis on all individual data sets, an
important change in the results is that the performance of
UVSD becomes slightly better than DPSD (although not
significant with a Wilcoxon test, p = .52), which suggests
that when excluding nondiagnostic data sets the flexibility
of UVSD is better justified by the remaining data. This
outcome mimics, to a certain extent, Jang et al.’s (2011)
above-described results and reinforces the notion that model
selection efforts need to consider potential biases produced
by nondiagnostic data.

Note that the percentage of data sets excluded as
nondiagnostic is substantial, but this was to be expected
on the basis of the rates of exclusion reported for the
simulation study on model recovery summarized in
Table 2, which represent a best-case scenario in the sense
that one of the more complex models truly generated the
data. Nevertheless, it is noteworthy that the analyses of all
individual data, as well as the analyses of the diagnostic
subset of them, converge without exception in that they
favor 2HTM significantly relative to each of the other six
complex models (significance being only marginal for the
comparison of 2HTM and 2HTM Do � Dnð Þ in the quantitative

analysis of all individual data sets as detailed above).11

General discussion

The purpose of this article is to bring to bear modern de-
velopments in model selection based on the MDL principle
on the debate as to which of several prominent recognition
memory models provides the best measurement model for
ROC data. The NML index derived from the MDL principle
overcomes several limitations of previous model selection
methods, such as those based on AIC, BIC, and the data-
informed PBCM; in particular, it provides a principled and
intuitively plausible quantification of model flexibility due
to functional form. The penalty for flexibility built into

11 One possibility is that the criterion used to screen out data sets
excluded curvilinear ROCs (consistent with EVSD) that would lead
to a rejection of both 2HTM and 2HTM Do � Dnð Þ. We checked this by
redoing the analysis, this time excluding only data sets for which
1HTM or 2HTM Do ¼ Dnð Þ had the smallest NML value. Out of the
remaining 53 individual data sets (only 4 additional data sets), 2HTM
provided the best summed NML and was the most frequently selected
model. Significance tests in the vote counting and quantitative analysis
did not differ from the ones reported in body of text.
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NML can be given a straightforward interpretation: It quan-
tifies the ability of the model to fit data in general. The NML
index thereby addresses the concerns raised by Roberts and
Pashler (2000) and others (e.g., Chechile, 1998; Myung,
2000) in a head-on fashion: A model’ s ability to fit the
observed data should be put in relation to its ability to
provide good fits in general. A model recovery study con-
firmed that model selection based on NML outperforms
model selection based on AIC, as well as BIC, for the
models and kind of data sets considered here. Previously,
Klauer and Kellen (2011a, b) showed that selection by NML
closely approaches the optimal recovery rates that can be
attained in pairwise comparisons of recognition memory
models (see also Cohen et al., 2008; Wagenmakers et al.,
2004). Beyond model recovery, NML will also perform its
objective of identifying the model that provides the best
compression of the data, minimizing overfitting and gener-
alization error, when none of the candidate models truly
generated the data—a fact that we consider reassuring given
that we feel it unlikely that any of the models considered
here provides more than a rough first approximation of the
actual data-generating process.

We focus here on binary-response ROC data with exper-
imental manipulations of response bias that have been the
subject of recent debates assessing the relative abilities of
UVSD and 2HTM to fit such data (Bröder & Schütz, 2009;
Dube & Rotello, 2012; Dube et al., 2011; Dube et al., 2012;
Klauer & Kellen, 2011a, b). We extended this work in
several ways: By bringing modern selection methods in
terms of the MDL principle to bear on the issue, by consid-
ering a much wider range of candidate models, and by
including additional data. We analyzed the data both at the
aggregate level and at the level of individual participants,
where individual-level data were available. At each level,
we conducted a vote-counting analysis of the frequencies
with which the different models were selected as best by the
MDL index NML and a quantitative analysis focusing on
summed NML values. We pointed out several theoretical
and practical limitations of the analyses of the aggregate
data that have the potential to compromise conclusions
based on them. We nevertheless present the aggregate anal-
yses for comparison with previous meta-analyses that fo-
cused on aggregate data.

In fact, the NML analyses of the aggregate data did not
agree well between vote-counting and quantitative analysis.
Nevertheless, for both vote-counting and quantitative anal-
ysis, they suggested a preference for DPSD and models
from the 2HTM family, although the preference was much
more clearly expressed for DPSD than for the 2HTM family
in the quantitative analysis. This also provides a correction
of previous meta-analyses that compared UVSD and 2HTM
on a subset of the present data and concluded that 2HTM
performed significantly worse than UVSD, on the basis of

quantitative (G2-based) analyses that did not take differ-
ences in model flexibility due to functional form into
account.

Because of the problems discussed for the aggregate
analysis, our main interest was on individual-participant
data sets for which many of the problems associated with
the aggregate data sets do not arise. This level of analysis is,
however, more vulnerable to the issue of possible
nondiagnosticity of data sets given the comparatively small
numbers of trials typically administered per participant. To
assess the impact of nondiagnosticity, we conducted the
NML analyses on all the 186 individual data sets available,
as well as after excluding all individuals whose data were
best accounted for by one of the simpler models, thereby
excluding nondiagnostic data sets as per Jang et al. (2011).
A preparatory model recovery study implementing this ex-
clusion scheme showed that overall selection accuracy is
thereby increased for the complex models, although sub-
stantial proportions of data sets have to be excluded as
nondiagnostic. Again, NML performed better than AIC
and BIC in terms of overall recovery performance.

The individual-level data permit a simple summary.
Models from the 2HTM family emerged as the clear winner.
For the analyses including diagnostic and nondiagnostic
data sets, 2HTM Do ¼ Dnð Þ and 2HTM were preferred over

all other models in terms of vote-counting and quantitative
analyses, respectively; for the analyses restricted to diagnos-
tic data sets and the more complex models, 2HTM was
preferred over all other models in terms of both vote-
counting and quantitative analysis.

A number of conclusions can be drawn. First, there is
little evidence at any level of analysis that the mathematical
complexity implied by UVSD is supported by the present
data. Second, the goal of measuring individuals’ recognition
memory performance from binary old/new recognition
judgments parsimoniously (Snodgrass & Corwin, 1988) is
best fulfilled by members of the 2HTM family. This result is
especially relevant for cases in which the 2HTM is used as a
building block in measurement models for extended recog-
nition memory designs such as source monitoring (Bayen et
al., 1996; Klauer & Kellen, 2010; Klauer & Wegener, 1998;
Meiser & Bröder, 2002), since some criticisms of these
models focused on binary-response ROC data like the ones
analyzed here (e.g., Kinchla, 1994).

Note that the adequacy of measurement is a distinct goal
from one’s attempts to characterize in a more fine-grained
manner the processes that actually generated the data (see
Riefer, Knapp, Batchelder, Bamber, & Manifold, 2002). In
addition, it is a common finding in several fields of research
that models based on discrete states provide suitable de-
scriptions of what are believed to be continuous processes
(e.g., Dutilh, Wagenmakers, Visser, & van der Maas, 2011;
Ratcliff & McKoon, 2001; Schmittmann, Visser, &

Psychon Bull Rev (2013) 20:693–719 715



Raijmakers, 2006). For such reasons, we agree with George
Box’s famous words: “All models are wrong, but some are
useful” (Box, 1979, p. 202).

The present results show that the 2HTM is a viable model
for the present data, followed by the DPSD, on the basis of
its good performance for the aggregate data. This conclusion
is tempered by the observation that these models (i.e.,
2HTM and DPSD) are also among the least flexible among
the more complex models (such as UVSD, MSD0, and
MSD) in the principled flexibility metric provided by
NML. In consequence, it may be the case that the ROC
data, even after excluding obviously nondiagnostic data
sets, are still not strong enough to provide reliable support
for the mathematical complexity of more complex models,
such as UVSD or MSD. The present results thereby provide
formal and documented encouragement for recent en-
deavors to develop alternative tasks and tests that have the
potential of providing even more diagnostic data. Promising
avenues comprise administering different recognition mem-
ory tasks in one session and modeling them jointly (e.g.,
Jang, Wixted, & Huber, 2009; Kellen, Klauer, & Singmann,
2012), the development of new paradigms focusing on
aspects in which different models diverge (e.g., O’Connor,
Guhl, Cox, & Dobbins, 2011), and the use of response
latency data (e.g., Dube et al., 2012; Province & Rouder,
2012; Starns et al., 2012). The analysis of response latency
data is becoming increasingly popular, but so far the results
have been mixed, since some are consistent with continuous
models (Dube et al., 2012; Starns et al., 2012) and others
with discrete-state models (Province & Rouder, 2012).
Accounting for response latencies represents an important
effort in recognition memory modeling, but this effort still
needs to be complemented with an assessment of model
flexibility (see Luce, 1986, p. 344) and an assessment
of the ability of response latency data to distinguish
between different processing accounts (e.g., Ratcliff,
1988). The use of alternative tasks and response latency
data might lead to data sets that justify the complexity of some
models, with the potential to change and correct the present
results.

Having said this, it should be noted that recent such work
with confidence-rating ROCs obtained results favoring the
2HTM. Province and Rouder (2012) tested a critical invari-
ance property of state–response mapping functions that are
required by 2HTM to account for confidence-rating data as
discussed above: State–response mappings are not a func-
tion of the probability of the different discrete memory states
being reached. This property leads to a signature prediction
for memory-strength manipulations. Memory-strength ma-
nipulations should only affect the detection of studied items,
leaving the state–response mapping functions unaffected. In
terms of the distribution of responses across the confidence-
rating scale, this means that the component distributions

(defined by the state–response mappings) should remain
invariant under memory-strength manipulations, with only
the mixture weights (defined by the probabilities of entering
the different detection states) being affected (see also
Falmagne, 1985, p. 255). In contrast, continuous models
like UVSD assume that memory-strength manipulations
should lead to shifts in the response distributions. The re-
sults reported by Province and Rouder are consistent with
2HTM’s predictions, but did not support continuous models.
Moreover, recent work by Bröder, Kellen, Schütz, and
Rohrmeier (in press) focusing on the modeling of
confidence-rating ROCs with the 2HTM provided an exper-
imental validation of state–response mapping functions,
showing that the latter can be selectively manipulated with-
out affecting the detection parameters. The results of
Province and Rouder and of Bröder et al. (in press), together
with the ones reported here, suggest not only that
2HTM provides a parsimonious account of the data,
but also that this account can be corroborated by focused
validation tests.

The usefulness of measurement models stems from the
fact that they allow us to go beyond the raw data and make
theoretically significant statements about the underlying
cognitive processes. The search for the most appropriate
measurement model in recognition memory has a long his-
tory but has been riddled with limitations in terms of the
methods used and the scope of the comparisons made. The
use of MDL-based measures such as NML overcomes some
of those limitations, as is shown here and in other work
(e.g., Myung et al., 2006). Ongoing research in MDL is
quickly making these measures available for an increasing
number of models (Wu et al., 2010a, b). For example,
current research is addressing new methods for computing
NML indices for categorical data with more than two re-
sponse categories, which comprises confidence-rating ROC
data (e.g., Kontkanen & Myllymäki, 2007). The use of
MDL-based measures is not limited to ROC data and can
potentially be applied to any experimental paradigm.

An important caveat should be highlighted, though: It is
important to emphasize that model selection in general is not
to be reduced to an automated comparison of indices that
take into account model fit and model flexibility. Other
important criteria for evaluating models include (but are
not limited to) (1) the explanatory adequacy of the accounts,
(2) the validity of parameter interpretations, (3) the testabil-
ity of models, and (4) the heuristic value of the models in
generating predictions for new contexts. Different weights
can be given to these criteria depending on the particular
goals of the researcher (Cohen et al., 2008). Model selection
indices such as NML are useful statistical tools that contrib-
ute to scientific development and should not be seen as the
sole arbiters of truth or adequacy, regardless of their
sophistication.
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