
The role of subjective linear orders in probabilistic inferences

Rüdiger F. Pohl & Benjamin E. Hilbig

Published online: 28 September 2012
# Psychonomic Society, Inc. 2012

Abstract In probabilistic inferences concerningwhich of two
objects has the larger criterion value (e.g., which of two cities
has more inhabitants), participants may recognize both
objects, only one, or neither. According to the mental-
toolbox approach, different decision strategies exist for each
of these cases, utilizing different probabilistic cues. Possibly,
however, participants use these cues to build a subjective rank
order that involves all objects, irrespective of their recognition
status. The decision process then simply utilizes the distance
between two objects in one’s subjective order. We tested the
role of such linear orders in reanalyses of existing data and in a
new experiment. Participants’ choices and decision times
were determined both by subjective rank-order distances and
by the recognition status of the compared objects. To integrate
these theoretically inconsistent findings, we discuss the role of
the evidential difference (or the degree of conflict) between
two objects.
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Probabilistic inferences are a common task for decision
makers, given that to-be judged criteria are rarely known
conclusively. Often enough, judgments must be made on the
basis of some probabilistic cues (e.g., Gigerenzer, Hoffrage,
& Kleinbölting, 1991), and it is thus a central issue to
understand how people perform such tasks. In typical

studies on probabilistic inferences, participants are shown
pairs of objects (e.g., cities) and are asked to infer for each
pair which of the two objects has the higher criterion value
(e.g., population). Given that the answer is unknown,
whereas both objects are familiar, participants may retrieve
probabilistic cues about them (e.g., whether either has an
international airport) to reach a decision (cf. Gigerenzer &
Goldstein, 1996). If, however, only one or neither of the
objects in a pair are known, other strategies are required.
This is one of the main assumptions of the “adaptive tool-
box” approach (Gigerenzer, Todd, & the ABC Research
Group, 1999), which assumes that decision makers are
equipped with a mental repertoire of specialized tools (most-
ly heuristics), selected ad hoc to solve a specific task.

As an alternative, Brown and Tan (2011) recently pro-
posed that participants may engage in magnitude compar-
isons that are based on subjectively built orders of the
objects involved. They tested a set of 16 cars (asking for
the more expensive one in each pair) and found that partic-
ipants’ decision times were better explained by assuming
magnitude comparisons based on subjective linear orders
than by assuming the use of specific heuristics, as predicted
by the toolbox approach. However, Brown and Tan’s find-
ings were limited to situations in which all of the objects are
familiar. Thus, we here extend their approach to testing the
role of linear orders with known and unknown objects (and
all possible pairings of these). Also, we employ additional
dependent measures, namely the deviation rate (measured in
relation to one’s subjective order) and the rate of inconsis-
tencies across repeated trials. Finally, we analyze the data
from two experiments, thus assessing the robustness of the
observed effects.

In the following sections, we will more fully describe the
idea of linear orders as the basis for magnitude comparisons
and what the toolbox approach predicts, assuming multiple
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specific strategies. We will then describe tests of these pre-
dictions in a reanalysis of a published experiment (Hilbig &
Pohl, 2009, Exp. 3) and in a new experiment.

Linear orders

Brown and Tan (2011) suggested that decision makers rely
on magnitude comparisons based on the subjective linear
order of objects—thus avoiding the need to switch tools
from trial to trial. Prior research had shown that in compar-
ative tasks in which well-learned objects are ordered along a
criterion, people possess or build subjective linear orders
and subsequently base their decisions on this mental repre-
sentation (see, e.g., Banks, 1977; Moyer & Bayer, 1976;
Moyer & Dumais, 1978; Parkman, 1971). The central and
most robust finding from these studies is the so-called
“symbolic distance effect”: The larger the distance between
two objects in their underlying order, the shorter the reaction
time (and the fewer errors). This corresponds to what
Brown and Tan found for pairs of recognized cars dif-
fering in price. In addition to this empirical argument,
using such a linear order in repeated paired comparisons
would arguably necessitate less effort than having to
work through several potential decision strategies over
and over (see Pohl, 2011).

Thus, it seems plausible that participants, if confronted
with a new set of objects, quickly develop a subjective linear
order of these objects and subsequently base comparisons
on this order. Importantly, not only recognized objects could
be so ordered, but unrecognized ones, too (cf. Marewski,
Gaissmaier, Schooler, Goldstein, & Gigerenzer, 2010). For
example, cues connected to the unrecognized object’s name
might be used: Some city names simply sound big, and
others small (see McCloy, Beaman, Frosch, & Goddard,
2010, for examples, and Marewski, Pohl, & Vitouch,
2011, for empirical findings on this topic). Or, participants
might simply know more about an object than they admit, so
that not all objects called “unrecognized” by participants
would necessarily be truly novel (cf. Erdfelder, Küpper-
Tetzel, & Mattern, 2011). Indeed, this could also explain
why performance for pairs of unrecognized objects is often
better than chance (see, e.g., Hilbig, Erdfelder, & Pohl,
2010).1 In some cases, recognized objects might even score
lower than unrecognized ones (cf. Smithson, 2010). For
example, a recognized city could have negative cue values
(e.g., no university, no airport, no industry) and therefore
receive a relatively low position in the linear order. All of

this information would be useful in ordering objects, both
recognized and unrecognized.

If, as this reasoning implies, all objects are represented on
the same continuum, a distance effect should be observed
for all types of pairs—that is, with both objects known
(labeled “knowledge case”), with only one object known
(“recognition case”), or with no objects known (“guessing
case”): The farther apart two objects in one’s subjective
order, the faster the decision. By the same token, the prob-
ability of decisions deviating from one’s order (or showing
inconsistencies) should decrease with the distance between
objects, again for all types of pairs.

The toolbox approach

The toolbox approach assumes that decision makers possess
a repertoire of specific strategies that are tailored to certain
situations (Gigerenzer et al., 1999). When inferring which of
two objects has the larger criterion value, several different
cases and corresponding strategies would need to be differ-
entiated (see Pohl, 2011, for a summary of these strategies).
What would these strategies predict for the decision times
for pairs of objects differing in their distances to each other
on the underlying dimension?

In the case of two recognized objects (knowledge case),
one potential strategy would be the fluency heuristic (FH;
Hertwig, Herzog, Schooler, & Reimer, 2008; Schooler &
Hertwig, 2005). This strategy exploits the difference in
recognition times of the two objects and infers that if the
difference is large enough, the object recognized more
speedily would have the larger criterion value—ignoring
any further cues or information (but see Hilbig, Erdfelder,
& Pohl, 2011, for a critical evaluation of this aspect).
Assuming that recognition times (fluency) decrease with
objects’ positions on the continuum (Hertwig et al., 2008;
Herzog & Hertwig, in press; Marewski & Schooler, 2011),
one could deduce that recognition time differences should
be larger for two distant than for two close objects. Thus, the
FH could predict a distance effect in decision times. Another
strategy for knowledge cases would be the take-the-best
heuristic (TTB; Gigerenzer & Goldstein, 1996), which
assumes that probabilistic cues are searched in the order of
their validity until one is found that discriminates between
the two objects. The inference is then based on this cue
alone (but see Ayal & Hochman, 2009; Bröder, 2000). If
none is found, participants resort to guessing. Arguably, two
close objects would have more identical cue values than two
distant objects, implying that the time needed to find a
discriminating cue should be greater for two close than for
two distant objects (see Bröder & Gaissmaier, 2007). Thus,
TTB could also predict a distance effect for pairs of recog-
nized objects. In contrast, Brown and Tan (2011) argued that

1 Hilbig et al. (2010) reported the results of ten data sets and found
performance in cases of guessing to be slightly greater than 50 % in
eight of the ten cases, which is more often than would be expected by
chance, p 0 .055 (binomial test).
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in their study TTB did not predict the observed distance
effect, because the pairs that they used could have been
answered by considering the same highly valid cue, thus
implying no decision-time differences.

When only one object is recognized, the toolbox proposes
to apply the recognition heuristic (RH; Goldstein &
Gigerenzer, 1999, 2002): The decision maker simply infers
that the recognized object is the larger one—again ignoring all
further information (see Hilbig, 2010, for an overview of
critical findings). Marewski et al. (2010) recently proposed
that the RH will be more often used when recognition times
for the recognized object are short rather than long. In other
words, recognition times (fluency) may act as a cue not only in
the FH, but also in the RH.2 Thus, again assuming that
recognition times decrease with the objects’ relative positions,
and further assuming that larger objects (with shorter recog-
nition times) are, on average, more often included in pairs of
two distant than in pairs of two close objects, a distance effect
could be predicted: The fast RH would be more often applied
in pairs of two distant than of two close objects.

Finally, if neither object is recognized, participants are
typically assumed to know nothing about the two objects,
implying that decision times should also not differ system-
atically between different distances.

A central prediction, independent of the distance between
objects, concerns the decision times for different types of
pairs (knowledge, recognition, and guessing). In the toolbox
approach, the RH is assumed to be the first and foremost of
all heuristics, and should thus lead to shorter decision times
than would a strategy that must be selected if the RH cannot
be applied (e.g., FH or TTB). So, on average, recognition
cases should require less time than knowledge cases.
Previous data have supported this prediction (e.g., Pachur
& Hertwig, 2006), although only partially (Hilbig & Pohl,
2009). In any case, if all objects within a linear order were
treated equally, one would not expect an effect of this
nature. Main effects of the type of pair are thus difficult to
reconcile with the linear-order perspective. We will return to
this problem in the General Discussion.

Reanalyzed data

A previously published study (Hilbig & Pohl, 2009, Exp. 3)
contained sufficient data to allow for a reanalysis that
addresses the following questions: Is there evidence for the
postulated distance effect in decision times? And, if so, does it
hold for all types of pairs (i.e., recognition, knowledge, and

guessing cases)? In that experiment, 68 participants made
inferences for 91 pairs of cities (consisting of the 14 largest
Swiss cities, excluding the largest, Zurich), judging for each
pair which of the two cities is more populous.

To obtain individual rank orders, we assigned ordinal
ranks to each city according to the relative choice frequen-
cy of that city, separately for each participant. The mean
rank correlation (Kendall’s tau) between these subjective
orders and the true order was τ 0 .47 (SD 0 .13), t(67) 0
29.083, p < .001. When computed separately for recognized
and unrecognized cities, the respective mean correlations were
τ 0 .56 (SD 0 .34), t(60) 0 12.881, and τ 0 .38 (SD 0 .26),
t(60) 0 11.517, both p < .001. Thus, participants’ subjective
rank orders were typically valid; that is, they corresponded
well with the true order of objects.

We initially analyzed the distance effect for the whole set
(summing across types of pairs, leaving in the sample N 0 45
who provided data for all distances).3 The results show a clear
distance effect (see Fig. 1); that is, decision times decreased
substantially fromDistance 1 (M 0 2,329 ms, SD 0 888 ms) to
Distance 13 (M 0 1,040 ms, SD 0 449 ms), F(12, 528) 0
38.937, p < .001, ηp

2 0 .48. Next, we split the data conditional
on the type of pair. Because not all participants provided data
for each type of pair and each distance (especially not for the
larger ones, which are inherently more rare), we included only
those data cells to which at least ten participants contributed
data. As is shown in Fig. 2, all three types of pairs showed a
distance effect. Linear regressions yielded similar slopes of –
70, –86, and –90 ms for the recognition, knowledge, and
guessing cases, respectively. Finally, we also found a signifi-
cant main effect of type of pair on decision times (see Fig. 2),
F(2, 120) 0 24.378, p < .001, ηp

2 0 .09. Specifically, we

2 But note that the FH assumes that fluency differences between two
objects are the cue, while here the relative fluency of one object
(compared to all others) is taken as a cue.

3 About 1 % of the individual decision times were considered extreme
(i.e., larger than the overall mean plus five times the standard devia-
tion) and were excluded from the analysis.

Fig 1 Mean decision times (in milliseconds) as a function of the distance
in each participant’s subjective rank order (data from Hilbig & Pohl,
2009, Exp. 3). Error bars represent one standard error of the mean
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observed shorter decision times for recognition cases (M 0

1,518 ms, SD 0 492 ms) than for knowledge (M 0 1,852 ms,
SD 0 710ms) or guessing (M 0 2,000ms, SD 0 842ms) cases,
whereas the latter two did not differ significantly.

In sum, there was clear evidence for a distance effect in
decision times that held for each type of pair, thus supporting
the linear-order view. By contrast, themain effect of type of pair
is inconsistent with a linear-order perspective. However, one
potential caveat of these results is that individual rank orders
were not explicitly stated by the participants, but only indirectly
reconstructed from their choice data. Thus, we ran a new
experiment in which we assessed subjective orders directly
and, in addition, sought further dependent measures beyond
decision times.

Experiment

This experiment again used the typical city-size task. In
addition, to test the robustness of the predicted distance
effect across tasks, we manipulated (between subjects)
whether participants were asked to indicate the more or the
less populous city in each pair. Logically, both questions are
equivalent and should not lead to different decision behav-
ior. However, two previous studies that featured the same
manipulation (Hilbig, Scholl, & Pohl, 2010; McCloy et al.,
2010) both found that more choices were in line with the RH
in the “larger” condition than in the “smaller” condition.
Also, the first of these studies reported a main effect for
decision times, which were shorter for the “larger” question
than for the “smaller” question. The latter result corresponds
to linear-order findings showing that the “larger” question
yields faster answers for comparing large objects and the
“smaller” question for comparing small objects—termed a
“semantic congruity effect” (see, e.g., Banks, 1977; Banks,
Fujii, & Kayra-Stuart, 1976; Moyer & Dumais, 1978). In
most RH studies (including the present one), the materials

have consisted exclusively of “large” objects from the upper
end of the criterion scale. Consequently, we expected to find
a main effect of the question format on decision times. More
interestingly, we aimed to test whether the distance effect
would be the same for both questions (as Banks et al., 1976,
had found).

Finally, we repeated the whole set of paired comparisons
for all participants, thus allowing us to measure the consisten-
cy of inferences as an alternative measure, which has rarely
been considered in the probabilistic-inference literature but
which—according to the reasoning above—should corrobo-
rate the predicted distance effect.

Method

Participants and materials

A total of 80 students (64 female, 16 male; age: M 0
22.3 years, SD 0 3.5 years) participated in return for a flat
fee payment of €8 or course credit. They were randomly
assigned to one of two groups, differing only in the instruc-
tions that they received in the paired-comparison task (see the
Procedure section). Group 1 consisted of 42 participants, and
Group 2 of 38. As materials, we exhaustively paired the 11
largest Belgian cities (excluding Brussels, the largest one, in
order to avoid influences of criterion knowledge—that is,
knowledge about a city’s rank position—that would make
inferences obsolete; cf. Hilbig, Pohl, & Bröder, 2009;
Pachur, Bröder, & Marewski, 2008), resulting in 55 pairs that
were presented twice to each participant.

Procedure

First, participants were asked, for each single city (presented
in random order), whether or not they recognized its name
(indicated by pressing one of two keys on the keyboard). The
reaction times of these answers (i.e., the recognition times)
were recorded. Next followed the paired-comparison task.
The 55 pairs of cities were presented one at a time and in
random order. Participants were asked to indicate speedily and
as accurately as possible which of the cities in a pair was the
larger one (in Group 1) or the smaller one (in Group 2).
Choices and reaction times were recorded. After completing
the 55 pairs, the same set was presented again, but in a new
random order and with altered positions (left/right) on the
screen. This repetition was not announced or otherwise
signified to the participants; thus, subjectively, the task con-
sisted of 110 trials without any interruption. Finally, partic-
ipants were asked to subjectively rank order the 11 cities by
adjusting their relative positions on the screen (using a mouse)
in an initially alphabetically ordered list. The experiment
lasted about 30 min in total.

Fig 2 Mean decision times (in milliseconds) for recognition, knowl-
edge, and guessing cases as a function of the distance in each partic-
ipant’s subjective rank order (data from Hilbig & Pohl, 2009, Exp. 3)
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Results and discussion

Overall decision times

For all analyses, the median decision time of each person (per
condition) served as the dependent measure. To test whether
decision times differed between conditions, we ran a three-way
ANOVA with Group (larger? vs. smaller?) as a between-
subjects factor and Phase (1 vs. 2) and Type of Pair (recogni-
tion, knowledge, and guessing) as within-subjects factors.4

The ANOVA revealed several effects: (1) Decision times were
shorter in recognition cases (M 0 1,107 ms, SD 0 301ms) than
in knowledge cases (M 0 1,468 ms, SD 0 731 ms) or guessing
cases (M 0 1,397 ms, SD 0 607 ms), F(2, 128) 0 18.286, p <
.001, ηp

2 0 .18, while the latter two types did not differ
significantly.5 (2) The decision times of Group 1 (M 0
1,235 ms, SD 0 624 ms) trended toward being shorter than
those of Group 2 (M 0 1,418 ms, SD 0 550 ms), F(1, 64) 0
3.35, p 0 .07, ηp

2 0 .05. In other words, the “larger” inferences
were drawn faster than the logically equivalent “smaller” infer-
ences. (3) Decision times were significantly shorter in Phase 2
(M 0 1,186 ms, SD 0 468 ms) than in Phase 1 (M 0 1,461 ms,
SD 0 673 ms), F(1, 64) 0 53.723, p < .001, ηp

2 0 .46, which
most likely resulted from learning or practice effects.

Subjective rank orders

The mean rank correlation (Kendall’s tau) between subjective
orders and the true order was τ 0 .38 (SD 0 .19), t(79) 0
18.534, p < .001. When computed separately for recognized
versus unrecognized cities, the respective mean correlations
were τ 0 .34 (SD 0 .41), t(53) 0 5.940, and τ 0 .16 (SD 0 .33),
t(79) 0 4.269, both ps < .001. Thus, participants’ subjective
orders generally had some objective validity. Moreover, rec-
ognized cities received predominantly higher subjective ranks
than did unrecognized ones. Consequently, in only 6.4 % of
all recognition cases was an unrecognized city subjectively
considered larger than a recognized one.

Distance effect

To test for distance effects, we analyzed decision times,
deviation rates, and inconsistencies conditional upon the
distance in subjective rank-order positions of the cities in a
pair. Due to the nature of linear orders, the number of cases

declines with growing distance in the order. Analyses con-
sidering all experimental conditions thus led to many empty
cells (or low sample sizes) for larger distances. Therefore,
we initially collapsed the data across types of pairs and
phases, and could thus keep all participants in the sample.
We then ran two-way ANOVAs with Group (larger? vs.
smaller?) as the between-subjects factor and Distance (1–
10) as the within-subjects factor.

Decision times decreased significantly from Distance 1
(M 0 1,451 ms, SD 0 587 ms) to Distance 10 (M 0 1,002 ms,
SD 0 318 ms), F(9, 702) 0 31.604, p < .001, ηp

2 0 .29, thus
showing a distance effect (Fig. 3). As reported above, Group
1 had shorter decision times (M 0 1,115 ms, SD 0 420 ms)
than did Group 2 (M 0 1,260 ms, SD 0 441 ms), F(1, 78) 0
3.961, p 0 .05, ηp

2 0 .05. There was no interaction between
group and distance, F < 1; that is, the distance effect was
similarly large for both question formats.

Similarly, deviation rates (defined as the proportions of
choices deviating from the choice implied by one’s subjective
rank order) declined from Distance 1 (M 0 36.4 %, SD 0

11.6%) to Distance 10 (M 0 3.1%, SD 0 14.5%), F(9, 702) 0
136.726, p < .0001, ηp

2 0 .64 (Table 1). Groups 1 and 2 (with
Ms 0 12.6 % and 14.7 %, respectively) did not differ signif-
icantly, and there was no interaction, both Fs < 1.

In addition, we analyzed inconsistencies in choices be-
tween Phases 1 and 2, computing the probability of providing
different judgments for the same pair. These inconsistency
rates, too, declined significantly from Distance 1 (M 0

8.8 %, SD 0 0.4 %) to Distance 10 (M 0 0.9 %, SD 0

0.5 %), F(9, 702) 0 55.719, p < .001, ηp
2 0 .46 (Table 1).

The two groups (withMs 0 3.9 % and 4.4 %, respectively) did
not differ in their proportions of inconsistencies, F(1, 78) 0
1.016, p 0 .32, and there was no interaction, F < 1.

Next, we split the decision time data (shown in Fig. 3)
according to the type of pair, excluding cells to which fewer
than ten participants contributed data. The resulting mean

4 Due to individually extreme portions of recognized or unrecognized
cities, not all participants had pairs of all three types. Thus, only 34
participants from Group 1 and 32 from Group 2 were entered in the
analysis.
5 Type of pair also interacted with phase and with group, mainly due to
inconsistent differences between the decision times in knowledge and
guessing cases. Recognition cases, however, were always answered fastest.

Fig 3 Mean decision times (in milliseconds) for the two experimental
groups as a function of the distance in subjective rank orders. Error
bars represent one standard error
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decision times showed distance effects for all three types of
pairs (see Fig. 4). However, statistical analyses were feasible
only for recognition cases, where a sufficient number of
participants (viz. 72) entered the analysis. In a two-way
ANOVA with Group and Distance as factors, the distance
effect for recognition cases was significant, F(9, 630) 0

14.729, p < .001, ηp
2 0 .17. As before, the two groups also

differed significantly, F(1, 70) 0 10.058, p 0 .002, ηp
2 0 .13.

As can be seen from Fig. 4, the other two distance effects for
knowledge and guessing cases were highly similar. Simple
linear regression lines for the mean decision times found
slopes of –44, –69, and –46 ms for recognition, knowledge,
and guessing cases, respectively.

To test whether and how recognition times (fluency) relate
to the distance effect in decision times, we ran additional
analyses including only cells with data from at least ten
participants. Unfortunately, tests of significance were not fea-
sible, because the number of participants who contributed to
all included cells was too low. Thus, we report only descrip-
tive results and 95 % confidence intervals (95 % CIs).

For knowledge cases, the mean differences in retrieval
times of the two recognized cities in a pair increased with
increasing subjective distance of these cities, from Distance 1
(M 0 321 ms, SD 0 304 ms, 95 % CI [245, 397]) to Distance 6
(M 0 621 ms, SD 0 409 ms, 95 % CI [399, 843]). These
increasing fluency differences might in turn have led to more
frequent use of the fast FH, and thus to the observed distance
effect in decision times. As such, the distance effect for two
known cities may be compatible with the toolbox approach.

For recognition cases, we found that the mean fluency
decreased with the recognized city’s subjective rank position,
from Rank 1 (M 0 1,104 ms, SD 0 534 ms, 95 % CI [981,
1,227]) to Rank 6 (M 0 1,733 ms, SD 0 750 ms, 95 % CI
[1,340, 2,126]). In other words, subjectively smaller cities
were recognized more slowly than larger ones (Hertwig et
al., 2008; Herzog & Hertwig, in press; Marewski & Schooler,
2011). However, when analyzed as a function of the distance
in subjective rank orders, pairs of different distances showed
nearly the same mean fluency for the recognized city, from
Distance 1 (M 0 1,136 ms, SD 0 554 ms, 95 % CI [1,012,
1,259]) to Distance 10 (M 0 1,083 ms, SD 0 611 ms, 95 % CI
[943, 1,223]). Thus, fluency cannot account for the observed
distance effect in recognition cases, and thus, the effect is
incompatible with the toolbox view.

Finally, we also split the deviation and inconsistency
rates reported above according to type of pair. We found
for both measures that the observed distance effect persisted
for each type of pair (see Table 1).

In sum, we found that decision times, deviation rates (in
relation to subjective orders), and inconsistencies (in repeat-
ed inferences for the same pair of cities) decreased with
increasing rank difference of the cities in a pair. These
effects were quite large. Most importantly, and replicating
our previous findings reported above, the distance effect
was not only observed for knowledge cases (with both cities
known, as in the Brown & Tan, 2011, study), but also for
recognition cases (with only one city known), and even for

Table 1 Deviation rates (according to participants’ subjective rank orders) and inconsistency rates (between Phases 1 and 2) as a function of rank-
order distance (1–10) and type of pair (recognition, knowledge, or guessing)

Rank-Order Distance

1 2 3 4 5 6 7 8 9 10

Deviation .364 .278 .198 .141 .105 .096 .073 .050 .025 .031

Recognition .285 .195 .126 .075 .043 .039 .024 .036 .020 .027

Knowledge .310 .183 .143 .106 .054 .094

Guessing .408 .341 .254 .200 .177 .179 .176 .094 .048

Inconsistency .088 .085 .066 .048 .029 .034 .023 .021 .009 .009

Recognition .069 .059 .044 .033 .017 .018 .010 .015 .006 .007

Knowledge .081 .060 .065 .043 .009 .047

Guessing .097 .103 .080 .061 .043 .058 .049 .039 .024

Results are shown only for cells to which at least ten participants contributed data

Fig 4 Mean decision times (in milliseconds) for recognition, knowl-
edge, and guessing cases as a function of the distance in participants’
subjective rank orders
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guessing cases (with neither city known). Assumptions de-
rived from the toolbox heuristics (RH, FH, and TTB) could
explain the distance effect in our data only for knowledge
cases, but not for either recognition or guessing cases.

General discussion

In this article, we extended and tested Brown and Tan’s (2011)
assumption that decision makers base their probabilistic infer-
ences in paired comparisons on subjective linear orders of the
tested objects. This contrasts to the toolbox approach
(Gigerenzer et al., 1999), which assumes a repertoire of spe-
cialized heuristics for different types of comparisons.

We reanalyzed a previously published data set (Hilbig&Pohl,
2009, Exp. 3) and presented a new experiment to test the pro-
posed role of linear orders: (1) The central result is the distance
effect in decision times that was found in the reanalyzed data set,
as well as in our new experiment: The larger the subjective
distance between two cities, the faster the decision. This distance
effect, moreover, was present for all three types of pairs (recog-
nition, knowledge, and guessing). (2) The distance effect was
further corroborated by alternative dependent measures, namely
deviation rates and inconsistencies: Both declined with increas-
ing subjective distance, and again for all types of pairs. In sum,
these observations are well aligned with the predictions from a
linear-order perspective. (3) As expected from the semantic
congruity effect (Banks et al., 1976), the question format (larger?
vs. smaller?) had a main effect on decision times, with shorter
decision times for the “larger?” question (see also Hilbig, Scholl,
& Pohl, 2010; McCloy et al., 2010). Nevertheless, the distance
effects were comparable inmagnitude for both types of questions
(as Banks et al., 1976, had also found).

The toolbox approach, with its assumption of multiple strat-
egies that fit to different situations, can easily explain the
distance effect in knowledge cases, either through the fluency
heuristic (FH; Hertwig et al., 2008; Schooler & Hertwig, 2005)
or the take-the-best heuristic (TTB; Gigerenzer & Goldstein,
1996). Brown and Tan (2011) interpreted their distance effect as
incompatible with the TTB, because the same highly valid cue
could have been used in pairs of different distances.

A potential explanation of the distance effect in recognition
cases could be derived from a recent suggestion that decision
makers use fluency as a cue not only in knowledge cases, but
also in recognition cases (Marewski et al., 2010). However, in
our experiment, the observed fluencies for the recognized city
in pairs of different distances were highly similar and did not
increase with distance. Thus, weighting the recognition cue by
fluency cannot account for the observed distance effect in
recognition cases. Consequently, both the original RH and
recent extensions fail to account for this distance effect.

Finally, in guessing cases, with two unknown cities, par-
ticipants should have nothing left but to guess. However, the

data show that these cases were affected by subjective dis-
tance, too, suggesting that participants possess (or infer) some
knowledge for subjectively ordering the “unknown” cities.
That these subjective orders were not totally random, but at
least partially built on valid knowledge, was shown by the
positive rank-order correlations with the true order. To explain
the distance effect from a toolbox viewpoint, one would need
to argue that guessing cases were handled just like knowledge
cases (see above), albeit with less knowledge.

The most problematic finding for the linear-order per-
spective, though it is well aligned with the toolbox assump-
tions, was that recognition cases were answered faster than
either knowledge or guessing cases (Pachur & Hertwig,
2006). However, research has shown that the overall main
effect of type of pair may actually be misleading, as it is not
generally true that recognition cases yield faster decisions
than knowledge cases (Hilbig & Pohl, 2009). Nonetheless,
if linear-order representations include and treat all objects
equally, irrespective of their recognition status, decision
times should only depend on distance, not on type of pair.
As such, our findings cannot be fully accounted for by the
linear-order perspective.

Overall, neither the toolbox approach nor the linear-order
perspective is fully compatible with all observations. A pos-
sible remedy to these theoretically inconsistent findings would
be to consider an alternative approach, namely the difference
in evidence (cf. Hilbig& Pohl, 2009; Newell, 2005). To derive
predictions for different types of pairs, assume, merely for
demonstration, that the amount of evidence is mapped on a
scale from 0 to 4: Unrecognized city names, for example, will
elicit no (0) or only very limited evidence (1) regarding their
size. Thus, on average, the difference in evidence between two
unrecognized cities would typically be small, making an in-
ference rather difficult. Recognized city names, on the other
hand, may elicit more diverse amounts of evidence, ranging
from mere recognition without any further knowledge (2),
over one or more probabilistic cues (3), up to full criterion
knowledge (4; cf. Hilbig et al., 2009). Correspondingly, pairs
of cities that differ more strongly in terms of the evidence that
speaks to their criterion value will be answered more quickly
than pairs with less differing evidence (see Hilbig & Pohl,
2009). Following this approach, the mean difference in evi-
dence will typically be larger for recognition cases (with
exactly one object recognized) than for guessing or knowl-
edge cases (no matter how the evidence scale is defined), so
that decision times should be fastest for recognition cases, thus
explaining the main effect of type of pair. Further assuming
that knowledge is typically correlated with the criterion (i.e.,
that people know more about larger cities than about smaller
ones), it is clear that the mean difference in evidence
increases with increasing distance of the two objects on
the underlying continuum, thus also accounting for the
distance effect.
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As such, the difference in evidence (or, conversely, the
degree of conflict) between two options determines decision
times—as predicted by evidence accumulation (e.g.,
Busemeyer & Townsend, 1993; Newell, Collins, & Lee,
2007) and network models (e.g., Glöckner & Betsch,
2008a, b) of decision making: The larger the evidential
difference, the faster the decision. This explanation should
be tested by assessing (or manipulating) the subjective ev-
idence for the objects in a set, and thereby predicting deci-
sion times. This method was not incorporated here, but
appears to be a promising route for future research (see
Pachur et al., 2008).
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