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Abstract An important goal in mathematics is to flexibly use
and apply multiple, efficient procedures to solve problems and
to understandwhy these procedures work. One factor that may
limit individuals’ ability to notice and flexibly apply strategies
is the mental set induced by the problem context.
Undergraduate (N = 41, Experiment 1) and fifth- and sixth-
grade students (N = 87, Experiment 2) solved mathematical
equivalence problems in one of two set-inducing conditions.
Participants in the complex-first condition solved problems
without a repeated addend on both sides of the equal sign
(e.g., 7 + 5 + 9 = 3 + _), which required multistep strategies.
Then these students solved problems with a repeated addend
(e.g., 7 + 5 + 9 = 7 + _), for which a shortcut strategy could be
readily used (i.e., adding 5 + 9). Participants in the shortcut-
first condition solved the same problem set but began with the
shortcut problems. Consistent with laboratory studies of men-
tal set, participants in the complex-first condition were less
likely to use the more efficient shortcut strategy when possi-
ble. In addition, these participants were less likely to demon-
strate procedural flexibility and conceptual understanding on a
subsequent assessment of mathematical equivalence knowl-
edge. These findings suggest that certain problem-solving
contexts can help or hinder both flexibility in strategy use
and deeper conceptual thinking about the problems.
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Students often memorize procedures to solve mathematics
problems without understanding why these procedures work.
Then, students mindlessly apply these procedures to solve
new problem types—even when these strategies are no longer
efficient or correct (see Baroody, 2003; Langer, 2000;
Markovits & Sowder, 1994; McNeil & Alibali, 2005). This
common problem is addressed by mathematics curriculum
reform standards, which underscore the need for students to
understand and flexibly adapt strategies when encountering
new problem situations (Kilpatrick, Swafford, & Findell,
2001; National Governors Association, 2010; National
Council of Teachers of Mathematics, 2000; Woodward et al.,
2012). The goal for students is greater procedural flexibility,
defined as (a) the knowledge of multiple solution strategies
and (b) the use of multiple strategies, particularly in order to
select the most efficient strategy to solve a given problem
(Rittle-Johnson & Star, 2011; Rittle-Johnson, Star, &
Durkin, 2012; Star & Newton, 2009; Verschaffel, Luwell,
Torbeyns, & Van Dooren, 2009). The latter is thought to build
upon the former—students sometimes report knowledge of
multiple procedures before using these procedures (Blöte,
Van der Burg, & Klein, 2001; Durkin, Rittle-Johnson, &
Star, 2011; Siegler & Crowley, 1994). By knowing and using
multiple solution strategies, students are better able to work
with problems beyond a limited range (Siegler, 2003).
Students can also reduce the burden on working memory re-
sources by using efficient strategies to solve problems quickly
and accurately (Beilock & DeCaro, 2007).

Greater procedural flexibility is also associated with in-
creased understanding of underlying concepts (see
Schneider, Rittle-Johnson, & Star, 2011; Verschaffel et al.,
2009). When students do not know or use multiple solution
strategies, they attend to, or mentally represent, less informa-
tion about the problem. This limited problem representation
thereby constrains how students interpret this information
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(McNeil & Alibali, 2005). In contrast, when students are ex-
posed to new problem-solving strategies, they attend to fea-
tures of the problems that are important for executing these
strategies, which helps to support understanding of the under-
lying concepts (Alibali, Phillips, & Fischer, 2009; McNeil &
Alibali, 2004). Numerous studies have demonstrated that
knowledge of a variety of solution strategies is associated with
deeper conceptual understanding of how these strategies are
used (see Baroody, 2003; Heinze, Star, & Verschaffel, 2009;
Schneider et al., 2011; Siegler, 1994; Verschaffel et al., 2009).

Although procedural flexibility is associated with more ef-
ficient strategy selection and greater conceptual understand-
ing, certain problem-solving contexts can help or hinder such
flexibility. For example, elementary-school students often do
not notice or use the inversion principle when solving prob-
lems of the form A + B – B = ?; that is, they fail to recognize
that adding or subtracting the same number leaves the original
number unchanged (Gilmore & Papadatou-Pastou, 2009;
Siegler, 2003). Instead, many students compute each step of
these problems, taking longer to perform these calculations
and increasing the possibility of error during a given step
(Siegler, 2003). However, providing students with a
problem-solving context with a large proportion of inversion
problems, relative to problems such as A + B – C = ?, in-
creases their discovery and use of the more efficient
inversion-based strategy (Siegler & Stern, 1998; Siegler,
2000; Stern, 1992, 1993).

Numerous laboratory studies on mental set have shown
similar effects of the problem context on rigid versus flexible
strategy selection. For example, Luchins (1942) provided par-
ticipants with novel water-jug problems that could all be
solved using the same complex strategy (i.e., B – A – 2C).
The first set of problems was solvable only by using this
complex strategy. However, subsequent problems could be
solved either by using this same strategy or by using a much
simpler strategy (e.g., A + C). After solving several problems
using the complex strategy, individuals generally continued
using this strategy, even when the simpler procedure became
available to use. The early experience of solving problems
using the complex strategies led individuals to select less ef-
ficient strategies, the hallmark of mental set (see also Beilock
& DeCaro, 2007; Wiley, 1988).

Current studies

Thus, separate lines of research have demonstrated that (a) the
problem-solving context can influence procedural flexibility
and mental set, and (b) procedural flexibility is related to con-
ceptual understanding. The current studies examined the con-
sequences of inducing mental set on both procedural flexibil-
ity and activation of the underlying concepts. Specifically,
mental set was manipulated by providing participants with

mathematics problems that could only be solved using a com-
plex strategy. It was expected that participants would persist in
using this strategy even when, later, the problem features
changed, better allowing for more efficient strategies to be
used. It was also predicted that such procedural inflexibility
would impact individuals’ thinking about the problems.
Mental set occurs because individuals narrowly represent the
problems—overlooking features that may indicate the need to
adapt one’s strategy (e.g., McNeil & Alibali, 2005; McNeil,
Rittle-Johnson, Hattikudur, & Petersen, 2010; Wiley, 1988).
Thus, when mental set is induced, participants may also dem-
onstrate less understanding of the concepts underlying the
problems. Rigid thinking may therefore be revealed in mea-
sures of both problem-solving flexibility and conceptual
understanding.

These predictions were examined with undergraduate stu-
dents in a laboratory setting (Experiment 1) and with children
in a classroom setting (Experiment 2) in the domain of math-
ematical equivalence. This domain was selected because there
are well-established measures that can be used to determine
multiple types of understanding (e.g., procedural knowledge,
conceptual knowledge). In addition, mathematical equiva-
lence problems (e.g., 5 + 2 + 3 = _ + 3) can be solved using
multiple possible methods, some of which are more efficient
than others. One strategy students commonly use is known as
the add–subtract strategy, in which students add up the values
on the left side of the equal sign and subtract the value(s) on
the right side. Students can also use shortcut strategies that can
be applied to many, though not all, problems. For example, the
grouping strategy may be used when both sides of the prob-
lem have a repeated addend (e.g., the B3^ in the problem 5 + 2
+ 3 = _ + 3). Use of this procedure requires eliminating the
repeated addend and solving the problem without these values
(e.g., 5 + 2 = _). By using the grouping procedure, the problem
can be solved with fewer operations. Thus, fewer numbers
must be manipulated to compute the answer, reducing the
cognitive demand of the task and enabling the problem to be
solved more quickly and accurately. For these reasons, group-
ing can be considered a more efficient problem-solving strat-
egy (cf. Rittle-Johnson et al., 2012). Flexibly using the short-
cut strategy when it is available might not only increase pro-
cedural efficiency but might also indicate understanding of the
underlying concept of mathematical equivalence—that the
equal sign represents a relational symbol.

The current study tested the idea that the context in
which mathematical equivalence problems are solved can
influence whether students demonstrate problem-solving
flexibility and conceptual understanding. Participants
solved mathematical equivalence problems in one of two
conditions. In both conditions, participants were given two
sets of problems to solve, labeled here as complex prob-
lems and shortcut problems. Complex problems (e.g., 7 + 5
+ 9 = 3 + _) did not include a repeated addend on both
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sides of the equal sign and therefore were expected to be
solved using a complex procedure (e.g., add–subtract).
Shortcut problems (e.g., 7 + 5 + 9 = 7 + _) had a repeated
addend and therefore could be solved using a shortcut
strategy (i.e., grouping). The two conditions differed only
in the order in which these problem sets were presented.
Participants in the complex-first condition solved complex
problems followed by shortcut problems, and participants
in the shortcut-first condition solved the problem sets in
the reverse order. It was hypothesized that the complex-
first condition would induce mental set—reducing use of
the shortcut strategy. It was also predicted that this mental
set would reduce performance on subsequent measures of
procedural flexibility and conceptual understanding.

Such findings would indicate that anchoring students on
complex solution methods may not only limit their ability
to notice and use more efficient strategies when possible
but may also prompt them to become more rigid in their
thinking about the underlying concepts. These findings
may further shed light on one potential factor reducing
students’ flexibility and understanding in the mathematics
classroom—traditional methods of instruction that anchor
students on complex procedures before introducing short-
cut strategies.

Experiment 1

Method

Participants

Participants (N = 41, 83% female) were undergraduate stu-
dents from the psychology subject pool who received course
credit or payment. Two participants were excluded from the
data set for scoring below 85% correct on the set problems,
indicating they did not attain mental set (see Beilock &
DeCaro, 2007; Gasper, 2003; Schultz & Searleman, 1998).
Five additional participants were excluded because they re-
ported that they were bilingual, which has been demonstrated
to improve flexibility on problem-solving tasks (Cushen &
Wiley, 2011).

Procedure

Participants were tested in groups of one to five. Following
informed consent, each participant was given a packet with
the set problems, followed by the mathematical equivalence
assessment. The experimenter instructed participants not to go
backwards in the packet. Finally, participants completed de-
mographic questions and were debriefed. The session lasted
approximately 20 to 30 minutes.

Set problems

Set problems were mathematical equivalence problems (see
Table 1). Participants were instructed to find the number that
goes in each box to make the amount on the left side of the
equal sign the same as the amount on the right side of the
equal sign. They were asked to show their work and to try to
use fast and correct ways to solve the problems.

The set problemswere divided into two sections, and the order
in which these sections were presented differed depending on
experimental condition. Participants in the complex-first condi-
tion (n = 20) were first given six complex problems without a
repeated addend, for which only complex (i.e., multistep) strate-
gies could be used (see Table 1). Following, these participants
solved six shortcut problems, for which one addendwas repeated
on both the left and right sides of the equal sign (see Table 1).
Thus, these problems could be solved using either a complex
strategy or a shortcut strategy requiring fewer steps (i.e., the
grouping strategy). The complex and shortcut problems included
the same numbers, except for the presence of the repeated ad-
dend, to control for difficulty across the two problem sets.
Participants in the shortcut-first condition (n = 21) completed
the exact same problem sets but in the reverse order—six shortcut
problems followed by six complex problems. Thus, the only
difference between conditionswaswhether the shortcut problems
were solved first or last. Of key interest was whether participants
used the more efficient shortcut strategy to solve problems for
which the shortcut was available, and whether condition impact-
ed performance on the mathematical equivalence assessment.

Mathematical equivalence assessment

The mathematical equivalence assessment was adapted from
previous research (DeCaro & Rittle-Johnson, 2012; Matthews,
Rittle-Johnson, McEldoon, & Taylor, 2012; Rittle-Johnson,
Taylor, Matthews, & McEldoon, 2011). The assessment includ-
ed four subscales (see Table 2): Conceptual Knowledge items
evaluated both individuals’ understanding of the meaning of the
equal sign as a relational symbol and the structure of equations.
Procedural Knowledge items assessed participants’ ability to
solve mathematical equivalence problems. The problems were
of the same structure as the set items, and problems with and

Table 1 Set problems used in Studies 1 and 2

Complex problems Shortcut problems

7 + 5 + 9 = 3 +
4 + 14 + 8 = 6 +
15 + 3 + 9 = 13 +
9 + 7 + 6 = + 3
14 + 5 + 3 = + 7
6 + 3 + 12 = + 15

7 + 5 + 9 = 7 +
4 + 14 + 8 = 4 +
15 + 3 + 9 = 15 +
9 + 7 + 6 = + 6
14 + 5 + 3 = + 3
6 + 3 + 12 = + 12
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without repeated-addends (seven items and two items, respec-
tively) were intermixed. Transfer was assessed with items re-
quiring a higher level of conceptual thinking. Procedural flexi-
bility was assessed in two ways. Flexible Knowledge of solution
strategies was assessed using items adapted from research on
algebra equation solving (Rittle-Johnson et al., 2012), requiring
generation and evaluation of different strategies to solve prob-
lems. Flexible use of procedures was assessed by coding the
strategies used to solve correct Procedural Knowledge items
and calculating the number of different correct strategies
used (see Table 3).

Coding

Items requiring a written explanation were coded, and
interrater reliability was assessed by a second coder for 20%
of the participants. Interrater agreement was high (percent
agreement = 97%–100%). In addition, correct strategies used
to solve the set problems and the Procedural Knowledge items
were inferred from participants’written work and coded using
the categories presented in Table 3. Strategies for 20% of the
participants were coded by two raters, and interrater agree-
ment was high (percent agreement = 93%–96%).

Table 2 Example mathematical equivalence assessment items

Item Scoring criteria

Conceptual Knowledge (4 items in Exp. 1, α = .24a; 6 items in Exp. 2, α = .62)

What does the equal sign (=) mean? 1 point if defined relationally (e.g., Bboth sides are the same^)

Rate definitions of the equal sign as Bgood,^ Bnot good,^ or Bdon’t know^ 1 point if rated the statement BThe equal sign means the same as^
as a good definition.

Procedural Knowledge (9 items; α = .41 in Exp. 2b)

Find the number that goes in each box. . . . Try to use fast (and correct)
ways to solve the problems.

(e.g., 7 + 14 + 5 = 7 + ; 11+ 7 + 8 = + 13)

1 point for correct answer (±1)

Transfer (3 items; α = .64 in Exp. 1; α = .42 in Exp. 2)

Without subtracting the 7, can you tell if the number sentence is true or false?
56 + 85 = 141 is true.
Is 56 + 85 – 7 = 141 = 7 true or false? How do you know?

1 point if answer demonstrates knowledge that performing the
same task on each side of the equal sign maintains equivalence

Find the number that goes in each box. You can try to find a shortcut so you don’t
have to do all the adding. Show your work and write your answer in the box.

898 + 13 = 896 + ; 43 + = 48 + 76

1 point for correct answer (±1)

Flexibility Knowledge (4 items; α = .86 in Exp. 1; α = .82 in Exp. 2)

Find the number that goes in each box, using two DIFFERENTways of getting
the answer.

5 + 9 + 11 = 5 + 5 + 9 + 11 = 5 +
Way 1 Way 2

1 point for two correct, unique solutions

a This low Cronbach’s alpha was driven by the one item assessing knowledge of the structure of equations, which was slightly negatively correlated with
the other three items in the conceptual knowledge subscale (rs ranged from -.094 to -.036). Excluding this item from the scale raises alpha to a more
moderate value of .41. This item was included in the conceptual knowledge subscale to be consistent with previous research (e.g., DeCaro & Rittle-
Johnson, 2012) and with Experiment 2. In addition, excluding this item did not change the pattern of results for the conceptual knowledge subscale,
which remained statistically significant.
b Cronbach’s alpha could not be computed for the procedural knowledge subscale in Experiment 1, because six of the nine items had 100% accuracy and
thereby zero variance.

Table 3 Strategy codes for correct mathematical equivalence problems

Description Example
4 + 5 + 8 = + 8

Add–subtract Adds the numbers on one side of the equation and then subtracts the number on the other side 4 + 5 + 8 = 17
17 – 8 = 9

Equalizer Adds the numbers on one side of the equation and determines what number goes in the box
to make the other side the same; has a clear understanding that two sides must be equal

4 + 5 + 8 = 17
9 + 8 = 17

Grouping Ignores the repeated addend and adds the other numbers 4 + 5 = 9

Insufficient work The answer is correct. Either no work or partial work is shown, or the work that is shown is ambiguous.
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Results and discussion

Set problems

Accuracy on the set problems was high in both the shortcut-
first (M = 97.70%, SD = 0.70%) and complex-first (M =
98.80%, SD = 0.70%) conditions, F(1, 39) = 1.08, p = .306.
Strategy use, however, was significantly different between con-
ditions. Compared to participants in the shortcut-first condition
(56%), participants in the complex-first condition (19%) were
less likely to use the grouping shortcut strategy to solve the set
problems, χ2(1, N = 34) = 4.86, p = .028. Data from seven
participants (complex-first condition, n = 4; shortcut-first con-
dition, n = 3) were excluded from this analysis because 80% or
more of their strategies could not be coded (i.e., fell in the
Binsufficient work^ category; see Table 3). The findings for
the set problems establish that the complex-first condition in-
creased mental set relative to the shortcut-first condition.

Mathematical equivalence assessment

Next, analyses were conducted to examine whether inducing
mental set impacted performance on a subsequent test of
mathematical equivalence knowledge. The percentage of ac-
curacy on the four mathematical equivalence assessment sub-
scales was examined as a function of condition by conducting
separate ANOVAs. As shown in Fig. 1, no significant differ-
ence between conditions was found for Procedural
Knowledge, F < 1, Transfer, F(1, 39) = 2.50, p = .122, or
Flexibility Knowledge, F < 1. However, participants in the
complex-first condition scored at a significantly lower level
than those in the shortcut-first condition on the Conceptual
Knowledge subscale, F(1, 39) = 4.67, p = .037, ηp

2 = .11.
In addition to the Flexibility Knowledge subscale, we exam-

ined the flexible use of procedures, which is a more advanced
assessment of flexibility thought to build on flexibility knowl-
edge (Rittle-Johnson et al., 2012; Star & Newton, 2009).

Flexible use of procedures was calculated as the number of
different correct strategies used on the Procedural Knowledge
items (see Table 3). Data from six participants were cut from this
analysis for having 80% or more strategies that could not be
coded (complex-first condition, n = 2; shortcut-first condition,
n = 4). As shown in Fig. 2, participants in the complex-first
condition used significantly fewer correct strategies at posttest
than participants in the shortcut-first condition, F(1, 33) = 4.91,
p = .034, ηp

2 = .13, indicating less flexible use of procedures. As
shown in Table 4, this effect appears to be driven by a decreased
use of the grouping strategy in the shortcut-first condition (M =
39.87, SD = 36.65; CI [21.02, 58.71]); complex-first condition
(M = 20.37, SD = 32.84), d = .56.

Together, these findings support the hypothesis that mental
set can be induced in the context of mathematical equivalence
problems. More importantly, these findings demonstrate that
such mental set limits conceptual understanding and subse-
quent flexibility in strategy use. Experiment 2 aimed to repli-
cate and extend these results to a classroom setting, with
elementary-school children. In addition, a measure of working
memory capacity was administered. Working memory capac-
ity predicts performance on an array of academic skills, in-
cluding mathematical problem solving (e.g., Barrett, Tugade,
& Engle, 2004; Bull, Espy, & Wiebe, 2008; Swanson, 2011).
This measure was included to determine that the impact of set
condition occurs regardless of cognitive ability measures (i.e.,
for both low- and high-capacity students).

Experiment 2

Method

Participants

Participants (N = 87, 48% female) were fifth-grade (n = 64)
and sixth-grade (n = 23) students from two private schools

Fig. 1 Percent correct on the four mathematical equivalence test
subscales as a function of set condition in Experiment 1. Error bars
represent standard errors

Fig. 2 Flexible use of procedures on the mathematical equivalence test in
Experiment 1 as a function of condition. Error bars represent standard errors
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in Kentucky and Tennessee (fifth-grade only) for whom
parental consent and student assent were obtained.
Additional students were tested but not included in the
study for scoring below 85% correct on the set problems
(n = 22). This sample was chosen to ensure that students in
the dataset were able to solve the problems and thereby
attain mental set (see Beilock & DeCaro, 2007; Gasper,
2003; Schultz & Searleman, 1998). Three additional par-
ticipants were excluded because they did not finish the
mathematical equivalence test packet.

Procedure

Participants completed the study in their mathematics classes.
An experimenter read all instructions, and students worked
individually. Students completed the set problems, followed
by the mathematical equivalence assessment. Students were
instructed not to go backwards in their packet. The session
lasted approximately 30 to 45 minutes. On a separate day
within a week of the first session, students were given the
working memory assessment individually in a quiet location
in their school.

Set problems

Set problems were the same mathematical equivalence prob-
lems given in Experiment 1 (see Table 1). As in Experiment 1,
students were asked to show their work and to try to use fast
and correct ways to solve the problems. Participants were
randomly assigned to work on different packets within the
same classroom, depending on condition. Students in the
complex-first condition (n = 43) completed the complex prob-
lems first, followed by the shortcut problems. Students in the
shortcut-first condition (n = 42) completed the shortcut prob-
lems, followed by the complex problems.

Mathematical equivalence assessment

The mathematical equivalence assessment was the same as
that used in Experiment 1, with one exception. Two additional
Conceptual Knowledge items were included, based on previ-
ous research (e.g., DeCaro & Rittle-Johnson, 2012; Rittle-

Johnson & Alibali, 1999). For these two items, students were
shown a mathematical equivalence problem for 5 seconds and
were asked to write down the problem from memory. These
items assess students’ encoding of the problem structure, such
as the presence of numbers on both sides of the equal sign
(McNeil & Alibali, 2004). Also in contrast to Experiment 1,
each section was given an approximate time deadline that was
not announced to students. However, the experimenter did not
move on in the packet until the majority of the students were
finished with a section. Students were instructed to wait at the
end of each section and to move forward on the assessment as
a class. Then, the instructions for each section were read aloud
to students.

Working memory measure

Working memory capacity was measured using the back-
wards digit span task from the Wechsler Intelligence Scale
for Children (WISC-IV) Working Memory Index
(Wechsler, 2003). In this task, individual students are read
a series of numbers at a rate of one per second and asked to
repeat the numbers in reverse order. Number series lengths
begin at two and end at a maximum of eight. There are two
items per series length. The task is discontinued when a
student recalls both items in a series of a given length
incorrectly. Working memory scores consist of the number
of series that the student correctly recalls in backward or-
der. The forward digit span task, a measure of short-term
memory, was administered prior to the backwards digit
span, to provide students with practice on the procedure
and to be consistent with prior methods of administration.
However, scores on the forward digit span task were not
relevant to this study and were not examined further.

Coding

As in Experiment 1, two raters independently coded 20% of
items requiring a written explanation, and the percentage of
agreement was high across subscales (90%–95%). In addition,
written strategies were coded by two raters, using the catego-
ries presented in Table 3. Percentage of agreement was high
(95%–98%).

Table 4 Mean percent correct strategy use on posttest problems by experiment and condition (95% CIs in brackets)

Experiment 1 Experiment 2

Complex-first condition Shortcut-first condition Complex-first condition Shortcut-first condition

Grouping 20.37 [4.04, 36.70] 39.87 [21.02, 58.71] 11.97 [3.05, 20.88] 23.04 [11.80, 34.27]

Add–subtract 40.12 [17.85, 62.40] 31.37 [14.57, 48.18] 53.28 [38.28, 68.27] 55.28 [41.14, 69.43]

Equalizer 27.78 [10.08, 45.48] 20.26 [3.82, 36.70] 25.36 [11.78, 38.93] 19.24 [7.35, 31.14]
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Results and discussion

Working memory capacity

Two participants did not complete the backwards digit span,
which removed their data from all analyses including this
variable. Working memory scores did not differ between con-
ditions (complex-first condition: M = 5.56, SD = 1.79;
shortcut-first condition:M = 5.19, SD = 1.70), F < 1, indicat-
ing that random assignment was successful. In addition, pre-
liminary regression analyses including working memory
(centered), condition (effects coded), and a Working
Memory × Condition interaction term demonstrated that
working memory capacity did not interact with condition to
predict any of the primary dependent measures (βs = -.125 to
.103, ps = .379 to .657). Collapsing across condition, higher
working memory capacity was associated with better perfor-
mance on two mathematical equivalence subscales:
Conceptual Knowledge, r(85) = .291, p = .007, and
Transfer, r(85) = .310, p = .004. Working memory capacity
was not significantly correlated with accuracy on the other
subscales: Procedural Knowledge, r(85) = .198, p = .070;
Flexibility Knowledge, r(85) = .152, p = .164; flexible use
of strategies, r(79) = .179, p = .114.Workingmemory capacity
was also not correlated with use of the grouping strategy on
the set problems, r(82) = .130, p = .244.

Thus, working memory capacity was associated with
better performance on Conceptual Knowledge and
Transfer, regardless of condition. Working memory capac-
ity was included as a covariate in the analyses of condition
reported below, to ensure that effects of condition occur
beyond any influence of working memory ability.
Removing this covariate from analyses does not change
the pattern of results.

Set problems

Students performed at an equally high level on the set prob-
lems across both conditions (complex-first condition:
M = 96.51%, SD = 4.16%; shortcut-first condition:
M = 97.02%, SD = 4.04%), F < 1. However, students in the
complex-first condition were less likely to use the grouping
shortcut strategy to solve the set problems, χ2(1, N = 66) =
5.21, p = .022. Ten percent of students in the complex-first
condition used the shortcut strategy, compared to 30% of stu-
dents in the shortcut-first condition. Data from four students
(complex-first condition, n = 3; shortcut-first condition, n = 1)
were excluded from this analysis because 80% or more of
their strategies could not be coded.

Thus, as in Experiment 1, students demonstrated greater
mental set in the complex-first condition. Moreover, these
findings demonstrate that mental set can be instantiated based

on a single mathematical problem-solving experience, with
children, in an educational setting.

Mathematical equivalence assessment

As shown in Fig. 3, no difference between conditions was
found for two of the math equivalence subscales: Procedural
Knowledge, F(1, 82) = 1.11, p = .295, and Transfer, F < 1. In
contrast, a significant effect of condition was found for two
subscales: Conceptual Knowledge, F(1, 82) = 5.13, p = .026,
ηp

2 = .06, and Flexibility Knowledge, F(1, 82) = 6.54, p =
.012, ηp

2 = .07. Students in the complex-first condition scored
at a lower level than students in the shortcut-first condition. In
addition, as shown in Fig. 4, students in the complex-first
condition demonstrated less flexible use of procedures on
the test problems, F(1, 76) = 5.29, p = .024, ηp

2 = .065. As
shown in Table 4, this effect was driven by a decreased use of
the grouping strategy in the complex-first condition
(M = 11.97, SD = 27.50; CI [3.05, 20.88]); shortcut-first con-
dition (M = 23.04, SD = 35.61), d = .35.

These results replicate those of Experiment 1, demonstrat-
ing that instantiatingmental set leads to worse performance on
subsequent measures of conceptual understanding and less
flexible use of strategies. Students in Experiment 2 showed
an additional detriment in the complex-first condition for flex-
ibility knowledge. Flexible use of strategies is thought to build
on flexibility knowledge (Rittle-Johnson et al., 2012; Star &
Newton, 2009). Compared to the undergraduate student sam-
ple in Experiment 1, students in Experiment 2 likely had less
experience solving mathematical equivalence problems. It is
not surprising, then, that the younger students would demon-
strate less flexibility knowledge, particularly when primed by
complex strategies. Such findings indicate that mental set may
be even more detrimental to procedural flexibility for younger
students with less experience with the mathematics domain,
by limiting both knowledge and flexible use of multiple
procedures.

Fig. 3 Percent correct on the four mathematical equivalence test
subscales as a function of set condition in Experiment 2. Error bars
represent standard errors
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General discussion

In two experiments, mental set was induced in the context of
mathematics problems. Undergraduate (Experiment 1) and
fifth- and sixth-grade (Experiment 2) student participants
solved a set of mathematical equivalence problems in one of
two conditions. In the complex-first condition, participants
first solved problems without a repeated addend (e.g., 7 + 5
+ 9 = 3 + _) that required multiple steps to complete (e.g.,
using the add–subtract strategy). Then, these participants
solved problems with a repeated addend (e.g., 7 + 5 + 9 = 7
+ _), for which a simpler shortcut strategy could be used (e.g.,
the grouping strategy). Participants in the shortcut-first condi-
tion solved these same problem sets but began with the short-
cut problems. In both experiments, participants in the
complex-first condition were more likely to use a complex
strategy to solve the mathematical equivalence problems
when a shortcut was available. These findings mirror classic
laboratory mental set effects (e.g., Luchins, 1942; Wiley,
1988) using an ecologically valid mathematics task.

These findings also extend prior research to examine the
impact of mental set on subsequent assessments of mathemat-
ics knowledge and procedure use. In both experiments, no
condition differences were found on measures of problem-
solving ability or transfer. However, participants for whom
mental set was induced (complex-first condition) demonstrat-
ed less conceptual understanding and procedural flexibility, in
that they were less likely to use multiple procedures to solve
mathematical equivalence problems given on a separate post-
test. In Experiment 2, participants also demonstrated less
knowledge of multiple correct solution strategies in the
complex-first condition. Interestingly, except for this differ-
ence, undergraduates (Experiment 1) showed the same pattern
of findings as children (Experiment 2). Other work has simi-
larly shown that undergraduates sometimes use less advanced
strategies than might be otherwise expected (see McNeil &

Alibali, 2005; McNeil et al., 2010). Here, we see that similar
to children, undergraduates can fall prey to the negative effects
of a mathematics problem-solving context, even if they other-
wise know the domain well.

These findings extend laboratory research on mental set,
demonstrating that the effects of set can reach beyond
problem-solving strategies to one’s conceptual understanding
of the problem domain. These findings suggest that mental set
has implications for the ways in which the problems are con-
ceptually represented (e.g., Alibali et al., 2009). Individuals
who become used to solving problems a certain way may
overlook important problem features (e.g., the presence of a
repeated addend on both sides of the equal sign; Alibali et al.,
2009; McNeil & Alibali, 2004, 2005), which may limit both
flexible use of strategies and consideration of the underlying
mathematics concepts (e.g., that the equal sign means that two
quantities are the same). This conceptual link between proce-
dural flexibility and conceptual understanding is consistent
with a great deal of correlational evidence (see Schneider
et al., 2011). The current work demonstrates a causal impact
of inducing mental set on both procedural flexibility and con-
ceptual understanding.

Working memory capacity

It is of interest that working memory capacity did not moder-
ate the effects of condition (Experiment 2). Higher working
memory capacity is associated with better performance on a
range of skills, including academic tasks such as mathematical
problem solving (e.g., Barrett et al., 2004; Bull et al., 2008;
Swanson, 2011). This effect was generally present in the cur-
rent results as well. Higher working memory predicted higher
scores on the Conceptual Knowledge and Transfer subscales
and was positively, but not significantly, associated with
scores on the remaining subscales. However, working memo-
ry capacity did not impact susceptibility to mental set in this
study. Indeed, the effects of condition remained when control-
ling for working memory capacity, suggesting that the effects
of mental set occurred regardless of individual differences in
this cognitive ability.

The sample used in Experiment 2 may have limited the
ability to find effects of working memory capacity on proce-
dural flexibility. Specifically, working memory capacity was
measured with children who solved the set problems at a rel-
atively high rate of accuracy. One possible prediction would
be that individuals with lower working memory capacity may
be less capable of switching strategies in the complex-first
condition, due to reduced ability to flexibly switch task sets
(cf. Bull, Johnston, & Roy, 1999; Bull & Scerif, 2001).
However, such findings are typically seen with children with
lower mathematics ability (e.g., Bull & Scerif, 2001), who
may have been largely excluded from the current sample.
An opposite prediction could be that individuals with higher

Fig. 4 Flexible use of procedures on themathematical equivalence test in
Experiment 2 as a function of condition. Error bars represent standard
errors
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working memory capacity would be less capable of switching
strategies in the complex-first condition, because of a tenden-
cy to persist in using complex strategies (e.g., Beilock &
DeCaro, 2007; DeCaro, Thomas, & Beilock, 2008).
However, such findings have been shown with adults, who
demonstrate generally higher working memory capacity than
children (cf. Alloway, 2006), andmay therefore bemore likely
to utilize these resources. More work is needed to determine
when working memory capacity will either enable or reduce
flexibility and subsequent performance outcomes.

Strategy efficiency

Mental set in this study led to less demonstrated conceptual
knowledge and, in Experiment 2, less demonstrated knowl-
edge of multiple procedures—both inarguably less than opti-
mal performance outcomes. Mental set also resulted in less
flexible use of procedures to solve the problems. However,
this pattern of behavior may not necessarily be inefficient.
Although the shortcut (grouping) strategy in this study re-
quired fewer computations, problem-solving accuracy across
all problems was very high. Thus, although unmeasured, the
primary benefits to using the shortcut were presumably in
reduced time and cognitive demand to solve the problems.

Yet, there is also a cost to switching strategies. Specifically,
research has demonstrated that switching between complex
and shortcut strategies incurs a cost to reaction time (e.g.,
Lemaire & Lecacheur, 2010; Luwel, Schillemans, Onghena,
& Verschaffel, 2009; Schillemans, Luwel, Bulté, Onghena, &
Verschaffel, 2009). This cost likely reflects both interference
from a previously used strategy and a need to use executive
control processes to activate the new strategy and deactivate
the previously used strategy (Lemaire & Lecacheur, 2010).
Thus, it is possibly equally efficient to continue using a com-
plex strategy, even when a shortcut is available. More research
is needed, to determine the relative efficiency of switching to
shortcut strategies on outcomes such as accuracy, reaction
time, and cognitive load.

What is less debatable, however, is the finding that a failure
to use shortcut strategies on set problems limits one’s thinking
about the problems. Thus, even though flexible use of strate-
gies might not always be inefficient, when considering the
costs associated with switching, such inflexibility may bias
one’s conceptual understanding in addition to one’s
problem-solving approaches.

Implications for educational practice

These findings also have potential implications for education-
al practice, suggesting that the context in which students solve
problems may impact their understanding of the problems.
Strategy selection is often automatic, rather than executed
via deliberative choice (Siegler & Jenkins, 1989; Verschaffel

et al., 2009). Students in our experiments had prior knowledge
of solution strategies, yet priming certain strategies impacted
their strategy use in one experimental session. In educational
practice, students are often taught complex strategies exclu-
sively, and only later (sometimes) are taught more efficient
solution methods (Hiebert et al., 2003). As students gain more
experience with a particular strategy, they are increasingly less
likely to use other strategies (McNeil & Alibali, 2005;
Schillemans et al., 2009; Siegler, 2002). Thus, early, focused
instruction on complex strategies may unnecessarily lead to
mental set over time, or an emphasis on complex solution
methods. Consequently, students may overlook important
problem features that enable them to flexibly adapt these pro-
cedures (e.g., to use conceptually driven shortcuts) and under-
stand the underlying mathematical concepts (Verschaffel
et al., 2009). Future research is needed to investigate the im-
pact of teaching students new mathematics strategies on the
establishment of mental set and conceptual understanding
over time.

One area of research within the mathematical equivalence
domain is consistent with these ideas. Previous studies have
demonstrated that students can become Bentrenched^ in using
arithmetic procedures that lead them to overlook important
features of mathematical equivalence problems (namely, the
presence of addends on both sides of the equal sign; Alibali et
al, 2009; McNeil & Alibali, 2004). Specifically, children often
begin solving mathematics problems with the equal sign at the
end of the problem (e.g., 7 + 3 = _). These early experiences
often lead students to misperceive the equal sign as meaning
Bget the answer^ or Bfind the total^ (Baroody & Ginsburg,
1983; Carpenter, Franke, & Levi, 2003; McNeil & Alibali,
2005). This misperception leads to difficulty in learning to
solve and understand mathematical equivalence problems.
For example, students will give the answer B10^ to a problem
such as B7 + 3 = _ + 4.^ Thus, early experience with certain
problem-solving contexts can lead students to apply incorrect
strategies to solve problems that differ in important features
(McNeil, Fyfe, & Dunwiddie, 2015; McNeil et al., 2010). The
current studies go beyond this work to suggest that certain
problem-solving experiences may also limit flexibility in ap-
plyingmultiple correct problem-solving procedures, as well as
conceptual understanding, even after students demonstrate an
ability to solve problems in this domain. Thus, the current
findings offer potential new insights for educational practice
(seeMayer, 2001), while providing new information about the
impact of problem context on conceptual representation.
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