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Abstract One debate in mathematical cognition centers on
the single-representat ion model versus the two-
representation model. Using an improved number Stroop par-
adigm (i.e., systematically manipulating physical size dis-
tance), in the present study we tested the predictions of the
two models for number magnitude processing. The results
supported the single-representation model and, more impor-
tantly, explained how a design problem (failure to manipulate
physical size distance) and an analytical problem (failure to
consider the interaction between congruity and task-irrelevant
numerical distance) might have contributed to the evidence
used to support the two-representation model. This study,

therefore, can help settle the debate between the single-
representation and two-representation models.

Keywords Arabic numeral . Distance effect . Congruity
effect . Number representation . Stroop interference

Many studies have documented the distance effect in numer-
ical processing (Banks & Flora, 1977; Moyer & Landauer,
1967; Schwarz &Heinze, 1998): Number pairs that are farther
apart in magnitude (e.g., 2 vs. 8) are easier to discriminate than
number pairs that are closer to each other in magnitude (e.g., 2
vs. 3). The distance effect occurs even when participants are
not required to process the magnitude information (e.g.,
Besner & Coltheart, 1979; Dehaene & Akhavein, 1995;
Duncan & McFarland, 1980). For example, Dehaene and
Akhavein asked participants to decide whether two numbers
were physically the same (e.g., 2 2 or TWOTWO) or different
(2 3 or 2 TWO). Although magnitude information was not
needed to perform this same–different task, participants still
showed the distance effect, suggesting that magnitude infor-
mation was automatically processed. On the basis of such
evidence, Dehaene and Akhavein (1995) proposed that num-
bers’ magnitude information has a single mental representa-
tion (i.e., one part of their triple-code model) that is automat-
ically processed, even if it is not required in a given task.

However, not all studies have shown automatic processing
of numbers’ magnitude information when it is task-irrelevant
(e.g., Ganor-Stern & Tzelgov, 2008; García-Orza, Perea, Abu
Mallouh, & Carreiras, 2012; Goldfarb, Henik, Rubinsten,
Bloch-David & Gertner, 2011; Rubinsten, Henik, Berger, &
Shahar-Shalev, 2002). For example, using the selection ver-
sion (i.e., comparing two numbers presented on the screen) of
the number Stroop task, Rubinsten et al. did not find the nu-
merical distance effect for physical size judgments (i.e., which
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number is bigger in physical size?), although they did find the
numerical distance effect for numerical magnitude judgments
(i.e., which of the two presented numbers is bigger in numer-
ical magnitude?). These results are inconsistent with Dehaene
and Akhavein’s (1995) model of single representations of
number magnitude. Therefore, Rubinsten et al. proposed a
two-representation model of numerical magnitude processing.
The first representation is an internal number line, which is
subject to the distance effect. When making numerical com-
parisons, the participants apply algorithm-based processes to
retrieve the required information from the mental number line.
The second representation is composed of specific instances
of Arabic numeral pairs. According to Rubinsten et al., after
years of schooling and using numbers, adults have accumu-
lated many instances of comparisons between number pairs,
and can thus retrieve such number pairs directly. The process-
ing of directly retrieved number pairs would not be subject to
the distance effect.

However, we suspected that two aspects of Rubinsten
et al.’s (2002) study might have contributed to their results.
First, they did not examine potential interactions between con-
gruity and numerical distance. Such interactions might have
led to a nonsignificant main effect of task-irrelevant numerical
distance because the positive distance effect under the congru-
ent condition would cancel out the negative distance effect
under the incongruent condition. Indeed, in their study using
the classification version (i.e., comparing a number presented
on the screen to a standard reference—e.g., 5) of the number
Stroop paradigm, Schwarz and Ischebeck (2003) found two
significant interactions. One was the overadditive interaction
between congruity and task-relevant distance: Increasing the
distance of the relevant attribute from close to far decreased
the congruity effect (see their Fig. 4, p. 513). The other was the
underadditive interaction between congruity and task-
irrelevant distance: Increasing the distance of the irrelevant
attribute from close to far enhanced the congruity effect (see
their Fig. 5, p. 513). In the present study, we extended
Schwarz and Ischebeck’s procedure of data analysis to the
selection version of the Stroop paradigm (used by Rubinsten
et al., 2002), to investigate whether potential interactions
might have confounded Rubinsten et al.’s results.

Second, like most previous studies using the number
Stroop paradigm, Rubinsten et al.’s (2002) experimental de-
sign was asymmetrical. That is, the reaction times (RTs) in the
physical size judgment task were much shorter than those in
the numerical magnitude judgment task, with an RT difference
of about 100 ms. Other studies have found even bigger differ-
ences, such as 125 ms in Henik and Tzelgov (1982) and
180 ms in Girelli, Lucangeli, and Butterworth (2000). In other
words, this asymmetry stacked the deck against the slower
numerical-value dimension interfering with the faster
physical-size dimension (MacLeod, 1991). In addition, most
of these number Stroop studies have had more levels of

numerical distance than of physical size distance (or physical
size ratio). For example, the numerical distance has been giv-
en two (e.g., Besner & Coltheart, 1979; Tzelgov, Meyer, &
Henik, 1992; Vaid, 1985; Vaid & Corina, 1989), three (e.g.,
Girelli et al., 2000; Henik & Tzelgov, 1982), or more than
three (e.g., Zhou et al., 2007) levels, but physical size distance
has had just one level. More recently, Cohen Kadosh, Henik,
and Rubinsten (2008) controlled for this asymmetry in the
design of their Experiment 2, by creating three numerical dis-
tances and three physical distances, which matched the RTs
for the numerical and physical comparisons and achieved a
symmetrical design (see also Algom, Dekel, & Pansky, 1996;
Leibovich, Diesendruck, Rubinsten, & Henik, 2013; Pansky
& Algom, 1999, 2002). Cohen Kadosh et al. did not find a
main effect of numerical distance in physical comparisons, but
they did find an interaction between congruity and task-
irrelevant numerical distance. Unfortunately, they did not re-
port separately the negative and positive effects of numerical
distance for the congruent and incongruent conditions, and did
not examine whether such effects were modulated by the
physical size distance.

To overcome the two limitations mentioned above, in the
present study we manipulated physical size distance system-
atically (with six levels; see the Method section for details).
This design would allow us to determine whether the absence
or the small effects of numerical distance in physical compar-
isons reported in previous studies were due to a lack of ma-
nipulation of physical distance. When more levels of physical
size distance were used, we expected that both positive and
negative effects of numerical distance would become more
salient, because they would systematically affect the speed
of processing of both numerical value and physical size
(Algom et al., 1996; Noël, Rousselle, & Mussolin, 2005). In
the case of the numerical task, both single- and two-
representation models predicted a significant numerical dis-
tance effect, because the numerical value was task-relevant.

Method

Participants

Thirty-six right-handed undergraduate volunteers (22 female
and 14 male; mean age = 22.4 years, ranging from 20 to
25 years) from Beijing Normal University were recruited for
this study. All participants had normal eyesight in both eyes
and gave written informed consent before the experiment.

Stimuli and tasks

All participants performed both the numerical magnitude and
physical size judgment tasks. In the numerical magnitude
judgment task (referred to as the numerical task hereafter),
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they were asked to judge the numerical value (magnitude) of
Arabic numbers, and in the physical size judgment task (re-
ferred to as the physical task hereafter), they were asked to
judge the physical size of Arabic numbers. For each task, 432
pairs of digits were used as the stimuli (144 each for the con-
gruent, neutral, and incongruent conditions). A congruent
stimulus was defined as a pair of digits in which a given digit
was larger in both the numerical and physical dimensions
(e.g., 3 7). An incongruent stimulus was defined as a pair of
digits in which a given digit was larger in one dimension and
smaller in the other dimension (e.g., 3 7). The neutral stimuli
were different in the two comparison tasks. For the physical
task, the neutral stimuli included the same digit presented in
two different physical sizes (e.g., 3 3). For the numerical task,
the neutral stimuli included different numbers of the same
physical size (e.g., 3 7). There were two numerical distance
levels: close (2–3, 3–4, 2–4, 7–8, 8–9, and 7–9) and far (2–7,
2–8, 3–7, 3–9, 4–8, and 4–9). Likewise, there were six differ-
ent physical size distance levels: 9:10, 8:10, 7:10, 6:10, 5:10,
and 4:10, in terms of the heights of the digits. The biggest
stimulus size for the numbers was 2.29° (vertical) × 1.43°
(horizontal)—about 16 mm in height and 10 mm in width in
Arial font. The smallest stimulus size for the numbers was
0.86° (vertical) × 0.57° (horizontal)—about 6 mm in height
and 4 mm in width. Selection of the physical size distances
(the number and the range) was based on a pilot study con-
ducted to ensure that the six levels would cover all relative
speed difference patterns illustrated in MacLeod’s review
(1991; see his Fig. 1, p. 189).

Participants were seated about 40 cm from the computer
screen. To counterbalance, one half of the participants (ran-
domly selected) performed the numerical task first, followed
by the physical task, and the other half completed the tasks in
the reverse order. Before each task began, participants were
given a block of 12 practice trials, and they were permitted to
start the task only if they showed a thorough understanding of
the task instructions (with more than 90 % accuracy for the
practice trials). The instructions emphasized both speed and
accuracy. Each trial began with the presentation of a fixation
point BO^ for 500 ms. After the disappearance of the fixation
point, a pair of digits (15 mm apart from each other) appeared
and remained on the screen until the participant pressed a key.
The digits were white characters on a black background.
Participants were asked to press the LEFT key if the left nu-
meral was bigger, and to press the RIGHT key if the right
numeral was bigger. A new trial began 1,000 ms after the
participant responded.

Statistical analysis

Repeated measures analyses of variance (ANOVAs) were
conducted using Bonferroni correction, and the ensemble-
adjusted p values are reported. The independent variables
were task (numerical vs. physical comparison), congruity
(congruent vs. incongruent), numerical magnitude distance
(close vs. far), and physical size distance (9:10, 8:10, 7:10,
6:10, 5:10, and 4:10). RT outliers (beyond 3 SDs; about
1.47 % of trials for the numerical task, and about 2.12 % for
the physical task) were excluded from the analyses. Neutral
trials were excluded from ANOVAs because they had zero
physical or numerical distance. After the four-way ANOVA
showed significant omnibus effects, we followed up with a
three-way ANOVA for each task to help us interpret the re-
sults. To ensure that the omnibus Type I error rate was .05, we
used Bonferroni correction to adjust the p values.

Results

The mean RTs for the numerical task are shown in Table 1,
and those for the physical task are shown in Table 2. Themean
RTs for the neutral conditions in both the numerical and phys-
ical tasks are shown in Fig. 1. The effect sizes of congruity as a
function of physical size distance are shown in Fig. 2. Then, a
2 (task) × 2 (congruity) × 2 (numerical distance) × 6 (physical
size distance) ANOVAwas conducted on the RT data, with the
neutral conditions excluded. Numerical comparison was sig-
nificantly slower than physical comparison (483 vs. 426 ms)
[F(1, 35) = 30.73, p < .001].We also observed a main effect of
congruity [F(1, 35) = 291.49, p < .001]. The interaction be-
tween congruity and task was significant [F(1, 35) = 14.89, p
< .001], with significant congruity effects being detected in

Fig. 1 Mean reaction times for the neutral condition in the numerical task
(numerical distance: close vs. far), and mean reaction times and standard
errors for neutral conditions in the physical task (six physical size
distances represented by six ratios)
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both tasks [numerical task, F(1, 35) = 190.30, p < .001; phys-
ical task, F(1, 35) = 66.61, p < .001]. The main effect of
numerical distance was significant [F(1, 35) = 56.70, p <
.001], and the simple effects of numerical distance were sig-
nificant for both tasks [numerical task, F(1, 35) = 111.92, p <
.001; physical task, F(1, 35) = 5.50, p < .024], even though the
interaction between numerical distance and task was also sig-
nificant [F(1, 35) = 82.21, p < .001]. Similarly, the main effect
of physical size distance was significant [F(5, 175) = 57.96, p
< .001], as were the simple effects of physical distance for
both tasks [numerical task, F(5, 31) = 18.63, p < .001; phys-
ical task, F(5, 31) = 31.40, p < .001], even though the inter-
action between physical size distance and task was also sig-
nificant [F(5, 175) = 96.00, p < .001]. Finally, although this
was tangential to our hypotheses, all other interactions except
for two were significant. Specifically, the significant interac-
tions were the ones between congruity and physical size dis-
tance [F(5, 175) = 4.00, p < .002]; between numerical distance
and physical size distance [F(5, 175) = 3.10, p < .05]; among
task, congruity, and numerical distance [F(1, 35) = 91.54, p <
.001]; among task, congruity, and physical size distance [F(5,

175) = 66.60, p < .001]; among congruity, numerical distance,
and physical size distance [F(5, 175) = 7.28, p < .001]; and
among task, congruity, numerical distance, and physical size
distance [F(5, 175) = 10.80, p < .001]. The two nonsignificant
interactions were the interaction between congruity and nu-
merical distance, and the one among task, numerical distance,
and physical size distance (both ps > .30).

After finding the significant main and interactive effects,
we proceeded to test directly whether the task-irrelevant dis-
tance effect occurred under either the congruent or incongru-
ent conditions or under both, and examined whether these
effects depended on task relevance. Specifically, Congruity

Table 1 Mean reaction times and standard errors for each condition in
the numerical task

Congruent Neutral Incongruent

Close Far Close Far Close Far

Numerical Task

9:10 464 ± 11 452 ± 12 505 ± 11 457 ± 10

8:10 466 ± 9 439 ± 9 521 ± 12 491 ± 11

7:10 465 ± 13 444 ± 10 540 ± 12 485 ± 11

6:10 452 ± 11 431 ± 11 552 ± 11 489 ± 11

5:10 465 ± 12 440 ± 11 539 ± 11 511 ± 11

4:10 459 ± 11 429 ± 10 562 ± 12 533 ± 10

1:1 486 ± 10 461 ± 10

Physical size distances are represented by ratios

Table 2 Mean reaction times and standard errors for each condition in
the physical task

Congruent Neutral Incongruent

Close Far Close Far

Physical Task

9:10 488 ± 21 458 ± 19 491 ± 17 545 ± 19 590 ± 25

8:10 419 ± 11 413 ± 11 426 ± 9 454 ± 14 486 ± 15

7:10 389 ± 9 394 ± 8 404 ± 9 423 ± 12 435 ± 12

6:10 393 ± 8 383 ± 7 396 ± 8 410 ± 11 411 ± 10

5:10 391 ± 8 386 ± 9 388 ± 8 389 ± 9 404 ± 12

4:10 387 ± 8 389 ± 8 379 ± 8 394 ± 9 400 ± 11

Physical size distances are represented by ratios

Fig. 2 Congruity effect sizes (RTincon – RTcon) and standard errors in
both the numerical and physical tasks as a function of physical size
distances

Fig. 3 Mean reaction times and standard errors in the numerical task as a
function of congruity and the task-relevant numerical distance
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(congruent vs. incongruent), Numerical Distance (close vs.
far), and Physical Size Distance (9:10, 8:10, 7:10, 6:10,
5:10, and 4:10) were entered as main within-subjects factors
in ANOVAs for the numerical and physical tasks separately.

In the numerical task, the interaction among congruity,
physical size distance, and numerical distance was significant
[F(5, 175) = 6.16, adjusted p < .001]. The main effect of
numerical distance was significant [F(1, 35) = 111.92, adjust-
ed p < .001], as was its interaction with congruity [F(1, 35) =
30.26, adjusted p < .001; see Fig. 3]. Although the congruity
effect was significant for both the close and far conditions, the
effect appeared greater in the close than in the far condition
[close, F(1, 35) = 210.28, adjusted p < .001; far, F(1, 35) =
125.34, adjusted p < .001]. Both physical size distance and
congruity had significant main effects on the mean RTs [F(5,
175) = 19.23, adjusted p < .001, and F(1, 35) = 190.30, ad-
justed p < .001, respectively]. Their interaction was also sig-
nificant [F(5, 175) = 38.11, adjusted p < .001; see Fig. 4]. To
further investigate the significant interaction between congru-
ity and physical size distance, we performed simple-effect
analyses to examine the task-irrelevant physical size distance
effects for the congruent and incongruent conditions separate-
ly. Under the congruent condition, we observed a significant
and positive physical size distance effect [F(5, 31) = 5.82,
adjusted p < .01]. Under the incongruent condition, we instead
found a significant and negative physical size distance effect
[F(5, 31) = 45.11, adjusted p < .001].

In the physical task, the interaction among congruity, nu-
merical distance, and physical size distance was significant
[F(5, 175) = 11.98, adjusted p < .001]. The main effect of
physical size distance was significant [F(5, 175) = 86.45, ad-
justed p < .001], as was its interaction with congruity [F(5,
175) = 37.50, adjusted p < .001]: The congruity effect was
reduced with decreasing physical size ratio (see Fig. 5). Both
numerical distance and congruity had significant main effects
on the mean RTs [F(1, 35) = 5.55, adjusted p < .05; F(1, 35) =

66.61, adjusted p < .001, for numerical distance and congruity,
respectively]. Their interaction was also significant [F(1, 35) =
32.99, adjusted p < .001]. Simple-effect analyses showed that,
under the congruent condition, the positive numerical distance
effect was significant [F(1, 31) = 10.77, adjusted p < .01], and
under the incongruent condition, the negative numerical dis-
tance effect was also significant [F(1, 35) = 20.69, adjusted p
< .001]. The Congruity × Numerical Distance × Physical Size
Distance interaction was significant [F(5, 175) = 11.98, ad-
justed p < .001]. Following the procedure used by Pinhas,
Tzelgov, and Ganor-Stern (2012), we conducted a trend anal-
ysis of the effect sizes. The results showed a significant de-
creasing linear trend of the interaction between congruity and
task-irrelevant numerical distance [F(1, 35) = 7.78, p < .01;
see Fig. 6]. Specifically, the interaction effects were significant
for the close physical size distance levels [9:10, F(1, 35) =
31.22, adjusted p < .001; 8:10, F(1, 35) = 21.16, adjusted p <
.001], but not for the other physical size distance levels (all
adjusted ps > .005). To explore the interaction of congruity
and numerical distance, we examined the task-irrelevant nu-
merical distance effect on each physical size distance level for
the congruent and incongruent conditions separately. The neg-
ative distance effect in the incongruent condition was statisti-
cally significant for the 9:10 trials [F(1, 35) = 14.81, adjusted
p < .001] and the 8:10 trials [F(1, 35) = 16.69, adjusted p <
.001], whereas the positive distance effect in the congruent
condition was significant only for the 9:10 trials [F(1, 35) =
10.98, adjusted p < .005].

Although this was tangential to our study, we also exam-
ined whether the congruity effect was derived from interfer-
ence or facilitation and whether the results varied by physical
distance (Kallai & Tzelgov, 2012; see also MacLeod, 1991,
for a review of the Stroop effect that discusses the difference
between interference and facilitation). Following the proce-
dure used by Kallai and Tzelgov (2012), we conducted

Fig. 4 Mean reaction times and standard errors in the numerical task as a
function of congruity and the task-irrelevant physical size distance

Fig. 5 Mean reaction times and standard errors in the physical task as a
function of congruity and the task-relevant physical size distance
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repeated measures ANOVAs excluding numerical distance,
for the numerical and physical tasks separately. We found
the typical pattern of greater interference than facilitation (as
was also found in Kallai & Tzelgov, 2012), which was mod-
ulated by the physical size distance. Specifically, the main
effect of effect direction (facilitation vs. interference) was sig-
nificant [numerical task, F(1, 35) = 31.32, p < .001; physical
task, F(1, 35) = 22.46, p < .001], as was its interaction with
physical size distance [numerical task, F(5, 175) = 19.23, p <
.001; physical task, F(5, 175) = 5.82, p < .001].

The overall error rate was low (2.95 %). In the numerical
task, errors increased from 0.47 % to 1.44 % to 8.38 % across
the congruent, neutral, and incongruent conditions. In the
physical task, the error rates were 0.79 %, 1.24 %, and
5.38 % under the congruent, neutral, and incongruent condi-
tions, respectively. A correlation analysis was conducted be-
tween RTs and error rates and showed that there was little RT–
accuracy trade off (r = .13).

Discussion

We investigated the impacts of numerical distance (close vs.
far), physical size distance (from 9:10 to 4:10), and congruity
(congruent, neutral, and incongruent) on RTs in the number
Stroop paradigm. The main results included: (a) For both nu-
merical and physical tasks, main effects emerged of both con-
gruity and task-relevant distance; (b) the congruity effect was
reduced with increasing numerical distance (i.e., an
overadditive interaction) for the numerical task, and with in-
creasing physical size distance (from 9:10 to 4:10) for the
physical task; and (c) a reliable positive task-irrelevant

distance effect was apparent under the congruent condition,
as well as a reliable negative task-irrelevant distance effect
under the incongruent condition (i.e., the underadditive inter-
action; see Fig. 4 for the numerical task and Fig. 6 for the
physical task, with the latter effect being mainly driven by
the 9:10 and 8:10 physical size distance levels).

Asymmetry versus symmetry

Amain pattern of results from the classic color-naming Stroop
studies is the asymmetry of faster word reading than color
naming (MacLeod, 1991). According to the relative-speed-
of-processing account, the faster task-irrelevant dimension
should interfere more with the slower task-relevant dimension
(MacLeod, 1991, p. 189). Therefore, the above asymmetry
could explain the reliable interference when participants have
to name the presentation color (i.e., the irrelevant word mean-
ing interferes with naming the color), but less reliable interfer-
ence when participants were asked to read the color words
(i.e., the irrelevant color does not interfere with processing
the word meaning). Researchers have mainly used three ma-
nipulations to reduce the asymmetry between word reading
and color naming: practicing the color-naming response ex-
tensively (e.g., MacLeod & Dunbar, 1988), reducing the leg-
ibility of the word (e.g., Gumenik & Glass, 1970), and
previewing the slower dimension (e.g., Glaser & Glaser,
1982; Glaser & Düngelhoff, 1984). However, the existing
results showed that such manipulations have not always
succeeded in classic color-word Stroop tasks.

Compared with color-word Stroop studies, the results from
number Stroop studies are less asymmetrical. In other words, the
congruity effects are significant and robust in both the numerical

Fig. 6 Task-irrelevant negative numerical distance effect (for the incongruent condition) and task-irrelevant positive numerical distance effect (for the
congruent condition) for the physical comparison task as a function of physical size distance
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and physical tasks (Girelli et al., 2000; Henik & Tzelgov, 1982;
Kaufmann et al., 2005; Rubinsten et al., 2002; Szűcs & Soltész,
2007; Szűcs, Soltész, Jármi & Csépe, 2007). Furthermore, the
asymmetry between the task-relevant and task-irrelevant dimen-
sions can be reduced by manipulating the physical size dis-
tance, as was done in the present study as well as in previous
studies (Algom et al., 1996; Cohen Kadosh et al., 2008; Noël
et al., 2005; Schwarz & Ischebeck, 2003).

We can draw three conclusions from the results of our study.
First, the congruity effects found in both numerical and physi-
cal tasks implied that not only physical size, but also numerical
value, is processed automatically. Second, with the relatively
short mean RTs (~380 ms), the interference for physical com-
parisons from the task-irrelevant numerical-value dimension
reached its limit, whereas the interference for numerical com-
parisons from the task-irrelevant physical size did not (see
Fig. 2). Third, for the physical size distances of 8:10 and 9:10
(see Figs. 1 and 2), we observed, respectively, a symmetric
pattern (i.e., in both physical and numerical tasks, influence
from the task-irrelevant dimension on the task-relevant dimen-
sion were similar) and a reversed, asymmetric pattern (i.e., the
physical-size dimension interfered with, rather than being inter-
fered with by the numerical-value dimension). In the following
section, we discuss the necessity of reducing the asymmetry
between the task-relevant and task-irrelevant dimensions, par-
ticularly for detecting the task-irrelevant positive and negative
effects of numerical distance on the potential underadditive
interaction in physical comparisons.

Dissociation of the congruity and distance effects

Many number Stroop studies have demonstrated that the con-
gruity effect was found for both numerical and physical tasks
(e.g., Henik & Tzelgov, 1982; Rubinsten et al., 2002; Tzelgov

et al., 1992), but some studies have shown that the numerical
distance effect was found only for numerical judgment, not for
physical size judgment in adults (Girelli et al., 2000; Rubinsten
et al., 2002; Tzelgov et al., 1992). Furthermore, Rubinsten et al.
(2002) found an asymmetrical pattern—that is, a distance effect
without a size congruity effect—in children at the beginning of
the first grade. Rubinsten et al. suggested that such a dissocia-
tion of the congruity and numerical distance effects was evi-
dence for their two-representation model.

Our study was designed to investigate whether the apparent
dissociation was due to the asymmetrical designs of and an
analytical issue in the previous studies. With improvements in
the study design and analytical approach, we could show that
there was no dissociation between congruity and numerical dis-
tance in adults. Therefore, it is possible that Rubinsten et al.’s
(2002) finding (i.e., no numerical distance effect for the physical
task) was due to their aggregation of the data from all three
Stroop conditions: the congruent, neutral, and incongruent con-
ditions in physical comparisons. Their way of aggregating the
data across conditions had two potential problems. First, it in-
cluded the neutral condition in the examination of the numerical
distance effect, even though this condition did not involve any
numerical distance. Second, the combination of the incongruent
and congruent conditions might also have obscured potential
interaction effects (the underadditive interaction), which was
indeed what we found (see Figs. 4 and 6). Consistent with our
argument, previous studies (e.g., Cohen Kadosh et al., 2008;
Henik & Tzelgov, 1982; Ito & Hatta, 2003) have shown, but
have not paid much attention to, very similar interactive effects
between numerical distance and congruity conditions.

When we directly tested whether the task-irrelevant numer-
ical distance effect occurred under either the congruent or the
incongruent condition, the observed pattern (see Fig. 6) pro-
vided a possible explanation for why most of the previous

Fig. 7 Architectures for models of number-size Stroop interference for
numerical comparisons (left panel) and physical comparisons (right
panel). The processing of the task-relevant stimulus dimension is

represented by the bold black arrows and boxes, whereas the processing
of the task-irrelevant dimension is represented by thin black arrows and
boxes
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number Stroop studies, particularly those using the selection
version, did not detect the task-irrelevant numerical distance
effect in the physical task. That is, these previous studies were
based on an asymmetrical design, with only one physical size
distance level, and did not attempt to reduce or reverse the
asymmetry of the task-relevant and task-irrelevant dimensions
(faster physical size processing vs. slower numerical value
processing). In the present study, we showed that, with a sym-
metrical design and a Breversed^ asymmetrical design (i.e., by
creating more physical size distance levels, including the
Bclose^ distances of 8:10 and 9:10), we could detect the ef-
fects of the task-irrelevant dimension on the potential
underadditive interaction (Fig. 7).

In summary, our results suggest that the lack of attention to
the potential interactions and the use of an asymmetrical de-
sign might have contributed to some earlier findings of the
dissociation between the congruity and numerical-distance
effects. Because such findings have provided the main evi-
dence for Rubinsten et al.’s (2002) two-representation model
of numerical magnitude processing, our study calls for a re-
evaluation of their model and adds empirical support to sev-
eral researchers who have aired doubts concerning the validity
of the two-representation model in explaining the data on the
development of children’s magnitude representation (for a de-
tailed discussion, see Noël et al., 2005, p. 189).

Conclusion

To summarize, in the present study we attempted to reevaluate
the two-representation model of numerical magnitude pro-
cessing. Our results indicate that the seemingly contradictory
findings in previous studies can be traced to methodological
deficiencies and a biased asymmetrical design exemplified in
Rubinsten et al.’s (2002) study. We have provided evidence in
favor of Dehaene and Akhavein’s (1995) original conclusions
about the automaticity of number magnitude processing under
the theoretical framework of Schwarz and Ischebeck’s (2003)
coalescence model.
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