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Abstract Across lexical processing tasks, it is well
established that words with richer semantic representations
are recognized faster. This suggests that the lexical system
has access to meaning before a word is fully identified, and
is consistent with a theoretical framework based on interactive
and cascaded processing. Specifically, semantic richness ef-
fects are argued to be produced by feedback from semantic
representations to lower-level representations. The present
study explores the extent to which richness effects are medi-
ated by feedback from lexical- to letter-level representations.
In two lexical decision experiments, we examined the joint
effects of stimulus quality and four semantic richness dimen-
sions (imageability, number of features, semantic neighbor-
hood density, semantic diversity). With the exception of se-
mantic diversity, robust additive effects of stimulus quality
and richness were observed for the targeted dimensions. Our
results suggest that semantic feedback does not typically reach
earlier levels of representation in lexical decision, and further
reinforces the idea that task context modulates the processing
dynamics of early word recognition processes.

Keywords Stimulusquality . Semantic richness .Visualword
recognition . Lexical decision . Semantic feedback . RT
distributional analyses

Introduction

Across a number of lexical processing paradigms, including
perceptual identification, lexical decision (i.e., classifying let-
ter strings as words or nonwords such as flirp), speeded pro-
nunciation (i.e., reading letter strings aloud), and semantic
categorization (e.g., classifying words as animate or inani-
mate), it is well established that semantically rich words,
which are associated with relatively more semantic informa-
tion, are recognized faster (Pexman, Hargreaves, Siakaluk,
Bodner, & Pope, 2008; Yap, Pexman, Wellsby, Hargreaves,
& Huff, 2012). Importantly, the richness of a word’s semantic
representation is not a unitary construct and can be reflected
by a number of dimensions, including the number of semantic
features associated with its referent (McRae, Cree,
Seidenberg, & McNorgan, 2005), its semantic neighborhood
density (Shaoul & Westbury, 2010), its number of senses
(Hoffman, Lambon Ralph, & Rogers, 2013; Miller, 1990),
the number of distinct first associates elicited by the word in
free association (Nelson, McEvoy, & Schreiber, 1998),
imageability, the extent to which the word evokes mental im-
agery (Cortese & Fugett, 2004), body-object interaction, the
extent to which a human body can interact with the word’s
referent (Siakaluk, Pexman, Aguilera, Owen, & Sears, 2008),
sensory experience ratings, the extent to which a word evokes
a sensory or perceptual experience (Juhasz & Yap, 2013), and
emotional valence (i.e., whether a word is positive, negative,
or neutral; Yap & Seow, 2014).

These findings collectively converge on the idea that the
lexical system has access to meaning before a word is fully
identified (Balota, 1990). While the mere existence of
meaning-based influences on visual word recognition is no
longer contentious, the processes and mechanisms underlying
these influences remain poorly understood (for reviews, see
Balota, Ferraro, & Connor, 1991; Pexman, 2012). For
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example, the role of word meaning is minimal in theories of
lexical access (Larsen, Mercer, Balota, & Strube, 2008), and
this is reflected in how computational models of word recog-
nition have generally not implemented semantics (but see
Harm & Seidenberg, 2004, for a notable exception).

Richness effects through semantic feedback

An influential theoretical framework used to explain semantic
richness effects is based on the interactive activation and com-
petition (IAC) model of letter perception (McClelland &
Rumelhart, 1981). The IAC model was originally proposed
to explain the word superiority effect, which refers to the
counterintuitive finding that letters are identified more accu-
rately when embedded in words, compared to when presented
in isolation (Reicher, 1969; Wheeler, 1970). As can be seen in
Fig. 1, the IAC model has three levels of representation (fea-
tures, letters, and words), and is both interactive (i.e., activa-
tion can flow bidirectionally between levels) and cascaded
(i.e., as soon as processing at a level begins, it sends activation
to the next level). Cascaded processing (McClelland, 1979)
contrasts sharply with thresholded processing (Sternberg,
1969), in which a later process begins only after an earlier
process is completed.

As nodes at the word level receive activation, they begin to
provide feedback to position-specific letter nodes (e.g., ‹c›
receives feedback activation from cat). In sum, the additional
top-down influence of word- on letter-level representations
accounts for the word superiority effect. Using an embellished
interactive activation model which incorporates meaning-
level representations (see Fig. 2), Balota (1990; see also
Balota et al., 1991) suggested that semantic influences on
word recognition can be similarly accommodated by feedback
from semantic-level to lexical-level (i.e., word-level) repre-
sentations. Specifically, semantically richer words (e.g.,
high-imageability words or words with many semantic fea-
tures) generate more semantic-level activity, resulting in stron-
ger feedback to lexical-level units. If we assume that lexical
decision and speeded pronunciation responses are respective-
ly driven by lexical-level orthographic and phonological ac-
tivity, the semantic feedback received by lexical-level units
will consequently speed up lexical decision and pronunciation
times (Hino & Lupker, 1996; Pexman, Lupker, & Hino,
2002). Feedback activation from phonological to orthographic
representations has also been invoked as an explanation for
the homophone effect, which refers to the finding that words
like maid and made (i.e., words with multiple spellings but a
common pronunciation) produce longer lexical decision laten-
cies than control words (Pexman, Lupker, & Jared, 2001;
Rubenstein, Lewis, & Rubenstein, 1971). According to
Pexman et al. (2001), presenting a homophone (e.g., maid)
activates its phonology (i.e., /me d/) which, via feedback, ac-
tivates the homophone’s matemade. Competition between the

two orthographic representations (i.e., maid and made) delays
responses to homophones.

While the feedback activation account is predicated on the
idea that lexical-level activity drives responses on word rec-
ognition tasks, there exist competing theoretical accounts
which can accommodate semantic richness effects in lexical
decision without requiring semantics-to-orthography feed-
back. For example, according to Borowsky and Besner’s
(1993) multistage activation model, lexical decisions are pri-
marily based on activity within the semantic system; such a
framework yields semantic effects without feedback. Howev-
er, Pexman and Lupker (1999) have argued that certain em-
pirical findings are difficult to reconcile with this perspective.
Specifically, if we assume that lexical decisions are driven by
semantic-level activity, it is unclear how a common process
can simultaneously explain effects of homophony (i.e., slower
responses for homophones) and number of senses (i.e., faster
responses for words with many senses) in lexical decision. For
example, suppose the delayed responses for homophones
(e.g., maid) are due to their activating multiple semantic rep-
resentations (i.e., those formade andmaid) which subsequent-
ly compete with each other, thereby prolonging semantic set-
tling times. If this view is correct, then words with many
senses (e.g., bank), which map onto multiple semantic repre-
sentations, should also elicit slower responses. However,
when the effects of number of senses and homophony were
examined simultaneously within the same lexical decision ex-
periment, response times (RTs) were slower for homophones
but faster for words with many senses (Pexman & Lupker,
1999). The feedback account explains these findings in a prin-
cipled and unified manner. Specifically, feedback from pho-
nological to orthographic representations underlies the homo-
phone effect, while feedback from semantic to orthographic
representations underlies the number of senses effect.

The present study

In summary, the available evidence is consistent with the
idea that feedback activation between different levels of
representation in the lexical system is necessary for ac-
commodating both semantic richness and homophone ef-
fects in the word recognition literature. While researchers
have explored feedback from semantic- to lexical-level
representations (Pexman et al., 2002), and from phonolog-
ical to orthographic representations (Pexman et al., 2001),
the role of word-to-letter feedback has received less atten-
tion. As described earlier, the classic explanation for the
word superiority effect is based on the top-down influence
of word- on letter-level representations (McClelland &
Rumelhart, 1981). As a result, the architectural assump-
tion of word-to-letter feedback is a fundamental aspect of
influential word recognition models, including the dual-
route cascaded (DRC) model (Coltheart, Rastle, Perry,
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Langdon, & Ziegler, 2001), the multiple read-out model
(Grainger & Jacobs, 1996), the bimodal interactive acti-
vation framework (Grainger, Muneaux, Farioli, & Ziegler,
2005), and the CDP+ and CDP++ models (Perry, Ziegler,
& Zorzi, 2007; Perry, Ziegler, & Zorzi, 2010).

More pertinently, the interaction between semantic
priming and target degradation has been explained using
semantic feedback to letter-level representations by way
of lexical-level representations. For example, in lexical
decision, words are recognized more quickly when pre-
ceded by a semantically related word (e.g., doctor –
NURSE) than by an unrelated control (e.g., porter –
NURSE); this is known as the semantic priming effect.
A robust finding in the semantic priming literature is that
semantic priming effects are larger when targets are visu-
ally degraded, compared to when they are presented clear-
ly (Balota, Yap, Cortese, & Watson, 2008; Meyer,
Schvaneveldt, & Ruddy, 1975). Using an interactive acti-
vation framework (Stolz & Besner, 1996; 1998) much like
the one depicted in Fig. 2, McNamara (2005) suggested
that this interaction arises because the presentation of a
prime word (e.g., doctor) activates the semantic represen-
tations of related concepts (e.g., nurse, medicine, sick),
and these related concepts, through feedback pathways,
will then preactivate their respective lexical- and letter-
level representations (see also Brown, Stolz, & Besner,

2006). As a consequence of this compensatory feedback,
targets preceded by related, compared to unrelated, primes
will be disrupted to a lesser extent by visual degradation,
thereby yielding the overadditive priming × stimulus qual-
ity interaction.

Despite the pervasiveness of the assumption that
meaning-level information reaches the letter level, this
assumption has not, to our knowledge, been empirically
tested. In two experiments, we explore the role of word-
to-letter feedback in mediating semantic richness effects,
by studying the joint effects of stimulus quality (clear vs.
degraded) with four theoretically important richness di-
mensions (E1: imageability & number of features; E2:
semantic neighborhood density & number of senses). As-
suming that semantic richness effects reflect partially ac-
tivated letter-level representations, the predictions are
straightforward. Specifically, in addition to the main ef-
fects of stimulus quality and richness, one should observe
an overadditive interaction wherein the effects of stimulus
degradation are smaller for words which are semantically
richer.

In order to characterize observed effects in a more fine-
grained manner, the data are examined both at the level of
mean RTs and at the level of RT distributional characteristics.
Analyzing the influence of factors on mean RTs alone has
been shown to be inadequate and indeed sometimes

Fig. 1 McClelland and Rumelhart’s (1981) interactive activation model
of letter recognition. From BAn Interactive Activation Model of Context
Effects in Letter Perception: Part 1. An Account of Basic Findings^ by J.

L. McClelland and D. E. Rumelhart, 1981, Psychological Review, 88, p.
380. Copyright 1981 by the American Psychological Association.
Reprinted with permission
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misleading (see Balota & Yap, 2011, for a review). For exam-
ple, Heathcote, Popiel, and Mewhort (1991) examined color-
naming RTs to congruent (e.g., RED displayed in red) and
neutral (e.g., XXX displayed in red) Stroop stimuli, and found
no difference in mean RTs. However, when they analyzed the
effect of variables on different portions of the RT distributions,
they found a facilitatory effect of congruency (i.e., congruent
faster than neutral) on the modal portion of the RT distribution
but an inhibitory effect (i.e., congruent slower than neutral) in
the slow tail of the distribution. These opposing effects can-
celled each other out, thereby producing a spurious null effect
in means.

In the present study, empirical RT distributions are
fitted to the theoretical ex-Gaussian function, which is a
convolution of a normal and exponential distribution. This
yields three parameter estimates: μ and σ (mean and

standard deviation of the normal distribution) and τ (mean
of the exponential distribution). Ex-Gaussian analysis al-
lows us to evaluate the extent to which an effect is
reflected by distributional shifting (μ) and/or an increase
in the tail of the distribution (τ). These analyses are
complemented by quantile plots, which provide a graphic
representation of distributional effects. These distribution-
al analyses will fulfill two important objectives. First, our
results will help shed more light on the impact of seman-
tic richness on RT distributions. For example, Yap and
Seow (2014) reported that emotional valence effects in
lexical decision (i.e., slower responses to neutral words,
relative to positive and negative words) reflected both
distributional shifting and an increase in the tail of the
distribution. These results are difficult to reconcile with
the view that valence effects in lexical decision are fully
attributable to early, preconscious processes (cf. Kousta,
Vinson, & Vigliocco, 2009); relatively automatic effects
(e.g., masked repetition or semantic priming) are typically
mediated exclusively by distributional shifting (Balota
et al., 2008; Gomez, Perea, & Ratcliff, 2013). Instead,
the findings are more consistent with the idea that positive
and negative words, which are semantically richer, elicit
stronger semantic feedback to word-level representations,
thereby making lexical decision less attentionally de-
manding (Balota & Chumbley, 1984) for such words. It
is unclear if other semantic richness effects (e.g.,
imageability, number of features, semantic neighborhood
density, number of senses) are similarly mediated by dis-
tributional shifting and changes in the slow tail.

More importantly, there is compelling evidence that
semantic richness effects do not tap a single undifferenti-
ated dimension, but instead reflect distinct theoretical
frameworks (Pexman, Siakaluk, & Yap, 2014). Consistent
with this, intriguing between-task dissociations have been
reported in the literature. For example, semantic neighbor-
hood density facilitates lexical decision performance, but
has no effect on semantic classification performance (Yap
et al., 2012). Likewise, while words with more senses
(i.e., more ambiguous) enjoy a processing advantage in
lexical decision, the effect of ambiguity is less clear in
tasks which place an emphasis on semantic activation,
such as semantic categorization or semantic relatedness
(i.e., are these two words related?). Specifically, there is
in some cases an ambiguity disadvantage in semantic re-
latedness (Hoffman & Woollams, 2015; Pexman, Hino, &
Lupker, 2004; Piercey & Joordens, 2000) while ambiguity
effects are either inhibitory or null in semantic categori-
zation (Hino, Lupker, & Pexman, 2002). By ascertaining
how stimulus quality and semantic variables modulate the
shape, rather than just the mean, of distributions, one may
find dissociations that are apparent only at the level of
distributional characteristics.

Fig. 2 An embellished interactive activation framework incorporating
meaning-level influences
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Experiment 1

Method

Participants

Forty undergraduates (31 females) from the National Univer-
sity of Singapore participated for partial course credit. The
participants’ first language was English, and they had normal
or corrected-to-normal vision.

Design

Two 2 × 2 designs were incorporated within the same exper-
iment, with non-overlapping items used to examine the effects
of each variable. Specifically, we examined Stimulus Quality
(clear or degraded) × Imageability (high or low) and Stimulus
Quality × Number of Features (high or low). All variables
were manipulated within-participants and the dependent vari-
ables were RTs and accuracy rates.

Stimuli

A total of 240 words (see Appendix for a full list of
stimuli) were selected, with 120 words (60 high and 60 low)
each for imageability and number of features. Imageability
ratings were based on the norms collected by Cortese and
Fugett (2004) and Schock, Cortese, and Khanna (2012). Num-
ber of feature values were taken from McRae et al. (2005).
Word sets in each of the experimental conditions were
matched on number of letters, number of syllables, ortho-
graphic neighborhood size, log-transformed subtitle-based
contextual diversity (Brysbaert & New, 2009), and relevant
semantic variables (see Table 1 for descriptive statistics). In
addition, 240 nonwords (120 for each semantic richness di-
mension) were generated using the multilingual pseudoword
generator, Wuggy (Keuleers & Brysbaert, 2010). These non-
words were matched to their yoked controls on number of
syllables and number of letters, as well as subsyllabic structure
and transition frequencies.

Procedure

PC-compatible computers running E-prime software
(Schneider, Eschman, & Zuccolotto, 2001) were used for
stimulus presentation and data collection. Participants were
individually tested in sound-attenuated cubicles, and posi-
tioned approximately 60 cm from the computer screen. Par-
ticipants were instructed to decide whether the letter string
presented formed a word or nonword by making the appro-
priate button press (slash key for words and Z key for non-
words). Participants were encouraged to respond quickly but
not at the expense of accuracy. There were 20 practice trials,

followed by six experimental blocks of 80 trials each, with
breaks between blocks. The order in which stimuli were pre-
sented was randomized anew for each participant. Stimuli
were presented in uppercase 14-point Courier New, and each
trial comprised the following order of events: (a) a fixation
point (+) at the center of the monitor for 400 ms, (b) a blank
screen for 400 ms, and (c) the target. The target remained on
the screen for 4,000 ms or until a response was made. If a
response was incorrect, a 170-ms tone was presented simulta-
neously with the word BIncorrect^ displayed slightly below
the fixation point for 450 ms. Half the targets were degraded
by rapidly alternating letter strings with a randomly generated
mask of the same length. For example, the mask@$#&%was
presented for 14 ms, followed by a five-letter target word for
28 ms; the two rapidly alternated until a response was detect-
ed. Mask patterns were consistent within a trial, and were
generated from random permutations of the following sym-
bols: &@?!$*%#?. Across participants, targets were
counterbalanced across degraded and clear conditions. This
degradation method has been used in a number of studies
(Balota et al., 2008; Thomas, Neely, & O’Connor, 2012;
Yap & Balota, 2007; Yap, Tse, & Balota, 2009) and has been
shown to yield qualitatively similar effects to contrast reduc-
tion (O’Malley, Reynolds, & Besner, 2007).

Results and discussion

Response errors (8.3 % across all conditions) were first ex-
cluded from the analyses. Responses faster than 200 ms or
slower than 3,000 ms were then eliminated before a mean
and standard deviation (SD) was computed for each partici-
pant. RTs beyond 2.5 SDs from each participant’s mean were
excluded, removing a further 2.6 % of the responses. Esti-
mates for ex-Gaussian parameters (μ, σ, τ) were obtained
using the quantile maximum likelihood estimation (QMLE)
procedure in the QMPE program (Version 2.18; Cousineau,
Brown, & Heathcote, 2004). QMLE has the benefit of provid-
ing unbiased parameter estimates and is particularly effective
when fitting small samples (Heathcote & Brown, 2004). All
fits converged successfully within 400 iterations. The mean
RTs, accuracy rates, and ex-Gaussian parameters are presented
in Table 2. All effects were analyzed with two-way ANOVAs.

Imageability

For RTs, the main effect of Imageability was significant by
participants, Fp(1, 39) = 25.89, p < .001,MSE = 1015.34, ηp

2

= .40, but not by items, p = .14; RTs were faster for high-
imageability words (M = 596 ms) than for low-imageability
words (M = 621 ms). The main effect of Stimulus Quality was
significant by participants, Fp(1, 39) = 119.96, p < .001,MSE
= 2178.28, ηp

2 = .75, and by items, Fi(1, 118) = 194.87, p <
.001, MSE = 2116.70, ηp

2 = .62; RTs were faster for clear
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words (M = 568 ms) than for degraded words (M = 649 ms).
The Stimulus Quality × Imageability interaction was not sig-
nificant by participants or by items, Fs < 1. In order to estab-
lish the robustness of the non-significant by-participants

interaction in RTs (see Gomez & Perea, 2014), we used the
package BayesFactor (Morey, Rouder, & Jamil, 2015) to
compute the Bayes factor (BFs) for the various alternative
hypotheses in our design (see Rouder, Morey, Speckman, &

Table 1 Descriptive statistics for the word and nonword stimuli used in Experiment 1

Imageability

Word stimuli High imageability (N = 60) Low imageability (N = 60)

Mean SD Mean SD

Imageability 6.55 0.14 2.21 0.28

Number of letters 5.83 1.25 5.82 1.36

Number of syllables 1.70 0.46 1.65 0.48

Orthographic neighborhood size 2.02 3.93 1.57 3.15

Frequency 2.29 0.75 2.33 0.68

ARC 0.52 0.13 0.54 0.13

Number of features

Word stimuli High number of features (N = 60) Low number of features (N = 60)

Mean SD Mean SD

Number of features 15.95 1.63 8.55 1.05

Number of letters 5.42 1.60 5.65 1.56

Number of syllables 1.65 0.68 1.72 0.61

Orthographic neighborhood size 4.53 5.88 3.40 4.79

Frequency 2.41 0.48 2.30 0.51

Concreteness 4.84 0.13 4.80 0.19

ARC 0.53 0.10 0.53 0.09

BOI 4.75 1.09 4.61 1.15

Note. Orthographic neighborhood size = number of words that can be formed by substituting a single letter in the target word (Coltheart, Davelaar,
Jonasson, & Besner, 1977); Frequency = log10 transformed subtitle contextual diversity (Brysbaert & New, 2009); Concreteness = concreteness ratings
(Brysbaert, Warriner, & Kuperman, 2014); ARC = semantic neighborhood density (Shaoul & Westbury, 2010); BOI = body-object interaction ratings
(Bennett, Burnett, Siakaluk, & Pexman, 2011; Tillotson, Siakaluk, & Pexman, 2008)

Table 2 Mean response times (RTs) and accuracy rates as a function of imageability/number of features and stimulus quality

RT Accuracy μ σ τ

High imageability

Clear 555 (11) .93 (.01) 448 (7) 51 (5) 106 (10)

Degraded 637 (15) .90 (.01) 497 (9) 48 (6) 139 (14)

Stimulus quality effect 82 .03 49 −3 33

Low imageability

Clear 582 (12) .93 (.01) 466 (8) 50 (5) 120 (11)

Degraded 661 (16) .90 (.01) 510 (10) 41 (6) 155 (13)

Stimulus quality effect 79 .03 44 −9 35

High number of features

Clear 535 (10) .96 (.01) 439 (9) 41 (5) 97 (7)

Degraded 616 (14) .96 (.01) 490 (10) 45 (6) 126 (12)

Stimulus quality effect 81 .00 51 4 29

Low number of features

Clear 564 (12) .95 (.01) 456 (8) 44 (5) 108 (11)

Degraded 646 (15) .92 (.01) 497 (8) 39 (5) 150 (13)

Stimulus quality effect 82 .03 41 −5 42

Note. Standard errors are in parentheses
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Province, 2012) against the null hypothesis that there are no
differences across conditions. For example, a BF of 10 means
that there is 10:1 evidence in favor of the specific alternative
hypothesis being tested. The additive (i.e., two main effects)
model was preferred over all other models, BF = 3.97 × 1023,
compared to the model with the interaction, BF = 8.77 × 1022.
Put another way, the data were 4.53 (i.e., 3.97 × 1023 / 8.77 ×
1022) times more likely to occur under the additive model,
compared to the interactive model. Turning to accuracy rates,
the main effect of Imageability was not significant by partic-
ipants or by items, Fs < 1. The main effect of Stimulus Quality
was significant by participants, Fp(1, 39) = 11.94, p = .001,
MSE = .002, ηp

2 = .23, and by items, Fi(1, 118) = 8.42, p =
.004, MSE = .005, ηp

2 = .07; accuracy rates were higher for
clear words (M = .93) than for degraded words (M = .90). The
Stimulus Quality × Imageability interaction was not signifi-
cant by participants or by items, Fs < 1.

We now turn to the ex-Gaussian parameters. For μ, the
main effect of Imageability was significant, Fp(1, 39) = 8.71,
p = .005, MSE = 1056.95, ηp

2 = .18; μ was greater for low-
imageability words (M = 488 ms) than for high-imageability
words (M = 473 ms). The main effect of Stimulus Quality was
significant, Fp(1, 39) = 54.00, p < .001,MSE = 1626.22, ηp

2 =
.58; μ was greater for degraded words (M = 504 ms) than for
clear words (M = 457 ms). The Stimulus Quality ×
Imageability interaction was not significant,F < 1. For σ, none
of the effects were significant. Finally, for τ, the main effects
of Imageability, Fp(1, 39) = 3.46, p = .071, MSE = 2540.14,
ηp

2 = .08, and Stimulus Quality, Fp(1, 39) = 10.01, p = .003,
MSE = 4603.63, ηp

2 = .20, were significant or approached
significance; τ was greater for less imageable words (M =
137 ms) than for more imageable words (M = 122 ms), and
τ was greater for degraded words (M = 147 ms) than for clear
words (M = 113 ms). The Stimulus Quality × Imageability
interaction was not significant, F < 1.

To illustrate these effects graphically, the mean quantiles
(.1, .3, .5, .7, .9) for the different experimental conditions are
plotted on Fig. 3. Theoretical quantiles are calculated by line
search along the numerically approximated cumulative densi-
ty function (see Cousineau et al., 2004, for more information).
In the top two panels of the figure, the empirical quantiles are
represented by data points and error bars, while the theoretical
quantiles for the best-fitting ex-Gaussian distribution are rep-
resented by lines. The bottom panel of the figure represents
imageability effects as a function of stimulus quality. In gen-
eral, the empirical data were well-captured by the ex-Gaussian
parameters; empirical and theoretical quantiles did not diverge
by more than one standard error.

Number of features

The main effect of Number of Features was significant by
participants, Fp(1, 39) = 32.72, p < .001, MSE = 1080.01,

ηp
2 = .46, and by items, Fi(1, 118) = 10.06, p = .002, MSE =

6212.87, ηp
2 = .08; RTs were faster for words with more fea-

tures (M = 575 ms) than for words with fewer features (M =
605 ms). The main effect of Stimulus Quality was significant
by participants, Fp(1, 39) = 161.88, p < .001,MSE = 1650.19,

400

600

800

1000

1200

.1 .3 .5 .7 .9

Re
sp

on
se

 T
im

e 
(m

s)

Imageability Effect (Clear)

Lo Img Hi Img

400

600

800

1000

1200

.1 .3 .5 .7 .9

Re
sp

on
se

 T
im

e 
(m

s)

Imageability Effect (Degraded)

Lo Img Hi Img

0

20

40

60

80

100

.1 .3 .5 .7 .9

Re
sp

on
se

 T
im

e 
(m

s)

S�mulus Quality × Imageability

Img Effect (Clear) Img Effect (Degraded)

Fig. 3 Lexical decision performance as a function of imageability and
quantiles for clear (top panel) and degraded (middle panel) words.
Empirical quantiles are represented by error bars, whereas fitted ex-
Gaussian quantiles are represented by lines. The bottom panel shows
imageability effects as a function of stimulus quality. Img = imageability
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ηp
2 = .81, and by items, Fi(1, 118) = 189.99, p < .001,MSE =

2142.63, ηp
2 = .62; RTs were faster for clear words (M = 549

ms) than for degraded words (M = 631 ms). The Stimulus
Quality × Number of Features interaction was not significant
by participants or by items, Fs < 1. For the by-participants
data, the additive model was preferred over all other models;
the data were 4.28 times more likely to occur under the addi-
tive model, BF = 4.83 × 1027, compared to the model with the
interaction, BF = 1.13 × 1027. Turning to accuracy rates, the
main effect of Number of Features was significant by partic-
ipants, Fp(1, 39) = 27.77, p < .001,MSE = .001, ηp

2 = .42, and
by items, Fi(1, 118) = 6.23, p = .014, MSE = .008, ηp

2 = .05;
accuracy rates were higher for words with more features (M =
.96) than for words with fewer features (M = .93). The main
effect of Stimulus Quality was significant by participants,
Fp(1, 39) = 7.70, p = .008, MSE = .001, ηp

2 = .16, and by
items, Fi(1, 118) = 5.34, p = .023, MSE = .003, ηp

2 = .04;
accuracy rates were higher for clear words (M = .96) than for
degraded words (M = .94). The Stimulus Quality × Number of
Features interaction approached significance by participants, p
= .06, and was significant by items, Fi(1, 118) = 4.30, p = .04,
MSE = .003, ηp

2 = .04; the degradation effect was larger for
words with fewer features than for words with more features.1

Turning to the ex-Gaussian parameters, for μ, the main
effect of Number of Features was significant, Fp(1, 39) =
5.70, p = .022, MSE = 1107.18, ηp

2 = .13; μ was greater for
words with fewer features (M = 477 ms) than for words with
more features (M = 464 ms). The main effect of Stimulus
Quality was significant, Fp(1, 39) = 67.58, p < .001, MSE =
1271.07, ηp

2 = .63; μ was greater for degraded words (M =
494 ms) than for clear words (M = 447 ms). The Stimulus
Quality × Number of Features interaction was not significant,
F < 1. For σ, none of the effects were significant, ps > .21.
Finally, for τ, both the main effects of Number of Features,
Fp(1, 39) = 6.07, p = .018, MSE = 1906.65, ηp

2 = .13, and
Stimulus Quality, Fp(1, 39) = 20.45, p < .001,MSE = 2491.02,
ηp

2 = .34, were significant. τ was greater for words with fewer
features (M = 129 ms) than for words with more features (M =
112 ms), and τ was greater for degraded words (M = 138 ms)
than for clear words (M = 102 ms). The Stimulus Quality ×
Number of Features interaction was not significant, F < 1.
These effects are graphically represented in Fig. 4.

Summary

In Experiment 1, reliable additive effects of stimulus quality
and semantic richness were observed on RTs. That is,

1 The Stimulus Quality × Number of Features interaction was
marginally significant for accuracy rates. To follow up on this,
we computed the magnitude of the Stimulus Quality × Num-
ber of Features interaction in accuracy rate and RTs for each
participant. The correlation between RT and accuracy interac-
tions was not significant, r = −.02, p = .89, confirming that the
additive pattern in RTs is not artifactually driven by a speed-
accuracy tradeoff.
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Fig. 4 Lexical decision performance as a function of number of features
and quantiles for clear (top panel) and degraded (middle panel) words.
Empirical quantiles are represented by error bars, whereas fitted ex-
Gaussian quantiles are represented by lines. The bottom panel shows
number of feature effects as a function of stimulus quality. NF = number
of features
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responses were faster for clear words and for semantically
richer words, whether semantic richness reflected
imageability or number of features, but there was no hint of
an interaction for either dimension. The RT distributional
analyses further revealed that the effects of imageability and
number of features were mediated by a combination of
distributional shifting and an increase in the tail of the
distribution, replicating the pattern observed by Yap and
Seow (2014) for emotional valence. Importantly, the interac-
tion between stimulus quality and semantic richness was not
significant for any ex-Gaussian parameter for both
imageability and number of features, confirming that the
mean-level additive effects generalize to the distributional
characteristics. Given the theoretical importance of this pat-
tern, Experiment 2 was designed to establish if these results
were replicable when one examines two additional semantic
richness dimensions, semantic neighborhood density and
number of senses.

Experiment 2

Method

Participants

Fifty-six undergraduates (42 females) from the University of
Calgary participated for partial course credit. The participants’
first language was English, and they had normal or corrected-
to-normal vision.

Design

Like Experiment 1, two 2 × 2 designs were incorporated with-
in the experiment: Stimulus Quality × Semantic Neighbor-
hood Density (dense or sparse) and Stimulus Quality × Num-
ber of Senses (high or low). All variables were manipulated
within-participants and the dependent variables were RTs and
accuracy rates.

Stimuli

A total of 240 words (see Appendix) were selected, with 120
words (60 high and 60 low) each for semantic neighborhood
density and number of senses. Semantic neighborhood density
was operationally defined by average radius of co-occurrence
(ARC; Shaoul &Westbury, 2010), which refers to the mean of
the distance between the target word and all neighbors within
a pre-specified threshold; higher ARC values indicate denser
neighborhoods. Number of senses was operationally defined
by Hoffman et al.’s (2013) recently developed semantic
diversity measure, which estimates semantic ambiguity by
tracking the variability in the contextual usage of words;

words with higher values on semantic diversity are more am-
biguous. Experimental conditions were matched on the same
control variables described in Experiment 1 (see Table 3 for
descriptive statistics). In addition, 240 nonwords (120 for each
semantic richness dimension) were generated using Wuggy
(Keuleers & Brysbaert, 2010).

Procedure

Same as Experiment 1.

Results and discussion

Response errors (10.4 % across all conditions) were first ex-
cluded from the analyses. Responses faster than 200 ms or
slower than 3,000 ms were then eliminated before a mean
and SD was computed for each participant. RTs beyond 2.5
SDs from each participant’s mean were excluded, removing a
further 3.5 % of the responses. The mean RTs, accuracy rates,
and ex-Gaussian parameters are presented in Table 4.

Semantic neighborhood density

The main effect of Semantic Neighborhood Density was sig-
nificant by participants, Fp(1, 55) = 46.81 , p < .001, MSE =
1498.84, ηp

2 = .46, and by items, Fp(1, 118) = 9.76, p = .002,
MSE = 9269.66, ηp

2 = .08; RTs were faster for words in dense
neighborhoods (M = 729 ms) than for words in sparse neigh-
borhoods (M = 764 ms). The main effect of Stimulus Quality
was significant by participants, Fp(1, 55) = 114.90, p < .001,
MSE = 10985.46, ηp

2 = .68, and by items, Fi(1, 118) = 471.98,
p < .001,MSE = 2729.66, ηp

2 = .80; RTs were faster for clear
words (M = 672 ms) than for degraded words (M = 822 ms).
The Stimulus Quality × Semantic Neighborhood Density in-
teraction was not significant by participants or by items, ps >
.17. For the by-participants data, the additive model was pre-
ferred over all other models; the data were 3.78 times more
likely to occur under the additive model, BF = 6.70 × 1033,
compared to the model with the interaction, BF = 1.77 × 1033.
Turning to accuracy rates, the main effect of Semantic Neigh-
borhood Density was significant by participants, Fp(1, 55) =
36.03, p < .001,MSE = .003, ηp

2 = .40, and by items, Fi(1, 55)
= 6.24, p = .014, MSE = .015, ηp

2 = .05; accuracy rates were
higher for words in dense neighborhoods (M = .94) than for
words in sparse neighborhoods (M = .90). The main effect of
Stimulus Quality was significant by participants, Fp(1, 55) =
41.96, p < .001, MSE = .003, ηp

2 = .43, and by items, Fi(1,
118) = 41.70, p < .001,MSE = .003, ηp

2 = .26; accuracy rates
were higher for clear words (M = .95) than for degraded words
(M = .90). The Stimulus Quality × Semantic Neighborhood
Density interaction was not significant by participants or by
items, ps > .22.
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Turning to the ex-Gaussian parameters, for μ, the main
effect of Semantic Neighborhood Density was significant,
Fp(1, 55) = 5.71, p = .020, MSE = 2117.31, ηp

2 = .09; μ was
greater for words in sparser neighborhoods (M = 567 ms) than

for words in denser neighborhoods (M = 553 ms). The main
effect of Stimulus Quality was significant, Fp(1, 55) = 58.20, p
< .001,MSE = 7108.29, ηp

2 = .51; μ was greater for degraded
words (M = 603 ms) than for clear words (M = 517 ms). The

Table 3 Descriptive statistics for the word and nonword stimuli used in Experiment 2.

Semantic neighborhood density

Word stimuli High neighborhood density (N = 60) Low neighborhood density (N = 60)

Mean SD Mean SD

ARC 0.63 0.01 0.3 0.05

Number of letters 6.73 1.12 6.8 1.13

Number of syllables 2.12 0.58 2.15 0.55

Orthographic neighborhood size 0.97 1.55 0.9 1.61

Frequency 1.93 0.44 1.88 0.36

Concreteness 2.99 0.89 2.99 0.89

Semantic diversity 1.68 0.24 1.64 0.21

Semantic diversity

Word stimuli High semantic diversity (N = 60) Low semantic diversity (N = 60)

Mean SD Mean SD

Semantic diversity 2.11 0.04 0.98 0.13

Number of letters 6.55 1.13 6.43 1.23

Number of syllables 2.18 0.57 2.18 0.57

Orthographic neighborhood size 1.25 2.31 1.38 2.38

Frequency 1.99 0.53 1.90 0.52

Concreteness 2.71 0.69 2.90 0.75

ARC 0.56 0.09 0.54 0.07

Note. Orthographic neighborhood size = number of words that can be formed by substituting a single letter in the target word (Coltheart et al., 1977);
Frequency = log10 transformed subtitle contextual diversity (Brysbaert &New, 2009); Concreteness = concreteness ratings (Brysbaert et al., 2014); ARC
= average radius of co-occurrence, a measure of semantic neighborhood density (Shaoul & Westbury, 2010)

Table 4 Mean response times (RTs) and accuracy rates as a function of semantic neighborhood density/semantic diversity and stimulus quality

RT Accuracy μ σ τ

High neighborhood density

Clear 651 (15) .96 (.01) 507 (8) 47 (4) 142 (10)

Degraded 807 (26) .92 (.01) 599 (16) 72 (8) 212 (17)

Stimulus quality effect 156 .04 92 25 70

Low neighborhood density

Clear 693 (18) .93 (.01) 528 (10) 54 (5) 166 (13)

Degraded 836 (28) .87 (.01) 608 (15) 61 (7) 233 (18)

Stimulus quality effect 143 .06 80 7 67

High semantic diversity

Clear 651 (15) .96 (.01) 513 (8) 50 (4) 138 (11)

Degraded 807 (25) .91 (.01) 594 (14) 68 (9) 215 (20)

Stimulus quality effect 156 .05 81 18 77

Low semantic diversity

Clear 691 (16) .91 (.01) 529 (11) 60 (7) 160 (12)

Degraded 842 (28) .86 (.01) 638 (21) 95 (12) 211 (17)

Stimulus quality effect 151 .05 109 35 51

Note. Standard errors are in parentheses
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Stimulus Quality × Semantic Neighborhood Density interac-
tion was not significant, p = .295. For σ, only the main effect
of stimulus quality was significant, Fp(1, 55) = 5.32, p = .025,
MSE = 2703.65, ηp

2 = .09; σ was greater for degraded words
(M = 67 ms) than for clear words (M = 50 ms). Finally, for τ,
both the main effects of Semantic Neighborhood Density,
Fp(1, 55) = 8.58, p = .005, MSE = 3397.52, ηp

2 = .13, and
Stimulus Quality, Fp(1, 55) = 44.35, p < .001,MSE = 5887.97,
ηp

2 = .45, were significant. τ was greater for words in sparser
neighborhoods (M = 200 ms) than for words in denser neigh-
borhoods (M = 177 ms), and τwas greater for degraded words
(M = 222 ms) than for clear words (M = 154 ms). The Stim-
ulus Quality × Semantic Neighborhood Density interaction
was not significant, F < 1. These effects are graphically rep-
resented in Fig. 5.

Semantic diversity

The main effect of Semantic Diversity was significant by par-
ticipants, Fp(1, 55) = 30.00, p < .001, MSE = 2555.38, ηp

2 =
.35, and by items, Fi(1, 118) = 7.06, p = .009, MSE =
12275.82, ηp

2 = .06; RTs were faster for more ambiguous
words (M = 729 ms), compared to less ambiguous words (M
= 766 ms). The main effect of Stimulus Quality was signifi-
cant by participants, Fp(1, 55) = 128.28, p < .001, MSE =
10330.36, ηp

2 = .70, and by items, Fi(1, 118) = 392.36, p <
.001, MSE = 3431.45, ηp

2 = .77; RTs were faster for clear
words (M = 671 ms) than for degraded words (M = 824 ms).
The Stimulus Quality × Semantic Diversity interaction was
not significant by participants or by items, Fs < 1. For the
by-participants data, the additive model was preferred over
all other models; the data were 5.08 times more likely to occur
under the additive model, BF = 3.22 × 1032, compared to the
model with the interaction, BF = 6.34 × 1031. Turning to
accuracy rates, the main effect of Semantic Diversity was
significant by participants, Fp(1, 55) = 50.92, p < .001, MSE
= .003, ηp

2 = .48, and by items, Fi(1, 118) = 7.28, p = .008,
MSE = .018, ηp

2 = .06; accuracy rates were higher for more
ambiguous words (M = .93), compared to less ambiguous
words (M = .88). The main effect of Stimulus Quality was
significant by participants, Fp(1, 55) = 38.74, p < .001, MSE
= .004, ηp

2 = .41, and by items, Fi(1, 118) = 45.64, p < .001,
MSE = .003, ηp

2 = .28; accuracy rates were higher for clear
words (M = .93) than for degraded words (M = .88). The
Stimulus Quality × Semantic Diversity interaction was not
significant by participants or by items, Fs < 1.

Turning to the ex-Gaussian parameters, for μ, the main
effect of Semantic Diversity was significant, Fp(1, 55) =
9.54, p = .003, MSE = 5323.75, ηp

2 = .15; μ was greater for
less ambiguous words (M = 584 ms) than for more ambiguous
words (M = 553 ms). The main effect of Stimulus Quality was
significant, Fp(1, 55) = 64.25, p < .001,MSE = 7806.66, ηp

2 =
.54; μ was greater for degraded words (M = 616 ms) than for

clear words (M = 521 ms). Interestingly, the Stimulus Quality
× Semantic Diversity interaction was significant, Fp(1, 55) =
4.59, p = .037, MSE = 2336.15, ηp

2 = .08; stimulus quality
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Fig. 5 Lexical decision performance as a function of semantic
neighborhood density and quantiles for clear (top panel) and degraded
(middle panel) words. Empirical quantiles are represented by error bars,
whereas fitted ex-Gaussian quantiles are represented by lines. The bottom
panel shows semantic neighborhood density effects as a function of stim-
ulus quality. SND = semantic neighborhood density
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effects were smaller for more ambiguous words (M = 81 ms)
than for less ambiguous words (M = 109 ms). For σ, the main
effects of Semantic Diversity, Fp(1, 55) = 6.55, p = .013,MSE
= 2821.47, ηp

2 = .11, and Stimulus Quality, Fp(1, 55) = 8.01, p
= .006, MSE = 5043.69, ηp

2 = .13, were significant. σ was
greater for less ambiguous words (M = 77 ms) than for more
ambiguous words (M = 59 ms), and σ was greater for degrad-
ed words (M = 82 ms) than for clear words (M = 55 ms). The
Stimulus Quality × Semantic Diversity interaction was not
significant, p = .151. Finally, for τ, only the main effect of
Stimulus Quality, Fp(1, 55) = 22.65, p < .001, MSE =
10174.93, ηp

2 = .29, was significant; τ was greater for degrad-
ed words (M = 213 ms) than for clear words (M = 149 ms).
These effects are graphically represented in Fig. 6.

Summary

Like Experiment 1, Experiment 2 yielded robust additive ef-
fects of stimulus quality and semantic richness on RTs, for both
semantic neighborhood density and semantic diversity. The re-
sults of the distributional analyses are less clear-cut. The pattern
for semantic neighborhood density was identical to those ob-
served for imageability and number of features in Experiment 1.
Specifically, the semantic neighborhood density effect was me-
diated by distributional shifting and an increase in the distribu-
tional tail, and this was not moderated by stimulus quality.
Unexpectedly, however, semantic diversity effects were larger
for degraded, compared to clear, words in μ. That is, if one
examines the modal portion of the RT distribution, words
higher on semantic diversity (i.e., more ambiguouswords) were
affected less by stimulus degradation. This was counteracted by
a non-significant opposing trend for the slowest RTs, wherein
more ambiguous words were associated with a larger degrada-
tion effect (see Table 4); the trade-off betweenμ and τ produced
additivity at the level of the mean. We will postpone discussion
of this intriguing pattern until the General discussion.

General discussion

In two lexical decision experiments, we examined the joint
effects of stimulus quality and four semantic richness dimen-
sions (imageability, number of features, semantic neighbor-
hood density, and semantic diversity). Although there is a
substantial literature examining the interactions between stim-
ulus quality and word-frequency (e.g., Becker & Killion,
1977; Stanners, Jastrzembski, & Westbrook, 1975), and be-
tween stimulus quality and semantic priming (e.g., Meyer
et al., 1975), this is, to our knowledge, the first study to ex-
amine whether stimulus quality and semantic richness pro-
duce additive or interactive effects. Broadly speaking, our
findings are straightforward and easy to summarize. Specifi-
cally, with the exception of semantic diversity, stimulus

quality and each of the four targeted variables produced robust
additive effects in mean RTs and RT distributional character-
istics, but there were no interactions. We will now consider the
implications of these findings.
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Fig. 6 Lexical decision performance as a function of semantic diversity
and quantiles for clear (top panel) and degraded (middle panel) words.
Empirical quantiles are represented by error bars, whereas fitted ex-
Gaussian quantiles are represented by lines. The bottom panel shows
semantic diversity effects as a function of stimulus quality. SemD = se-
mantic diversity

Mem Cogn (2015) 43:1148–1167 1159



Semantic richness effects: The role of feedback

The semantic feedback account has been an influential per-
spective for explaining semantic richness effects. Specifically,
researchers (e.g., Hino & Lupker, 1996; Pexman et al., 2002)
have argued that the facilitation afforded by semantically rich
representations is mediated by semantics-to-orthography and
semantics-to-phonology feedback. Implicit in this account is
the premise that meaning-level activation also reaches the let-
ter level by way of the word level. Indeed, such an assumption
is an integral aspect of computational models such as the
DRC, multiple read-out, and CDP+/CDP++ models. Howev-
er, the present results are difficult to reconcile with this view.
Specifically, if semantically rich words activate their corre-
sponding letter representations more strongly, then the effect
of visual degradation should be smaller for such words. In-
stead, the major finding from our study is that visual degrada-
tion effects are equivalent for words that are high and low in
semantic richness, both at the level of mean and at the level of
RT distributional characteristics. As such, feedback from se-
mantics to lexical-level representations does not appear to
extend to earlier levels of representation in lexical decision.

Although this is the first study to show that stimulus quality
and semantic richness produce additive effects in lexical de-
cision, there is a literature (e.g., Balota & Abrams, 1995;
Becker & Killion, 1977; O’Malley et al., 2007; O’Malley &
Besner, 2008; Plourde & Besner, 1997; Stanners et al., 1975;
Yap & Balota, 2007) indicating that the effects of stimulus
quality and word-frequency are similarly additive. In general,
additive effects of factors on RTs are most naturally accom-
modated bymodels based on serially organized discrete stages
where processing is thresholded (Borowsky & Besner, 1993;
Sternberg, 1969). These effects pose a special problem for
computational models incorporating cascaded and interactive
processing (O’Malley et al., 2007), which typically produce
interactions in simulations (see Reynolds & Besner, 2004). In
order for computational models to simulate the additive effects
of stimulus quality with both word-frequency and semantic
richness, a relatively simple solution is to implement
thresholded (as opposed to cascaded) output from the letter
level (Besner & Roberts, 2003; Reynolds & Besner, 2004).
Activation from the lexical level onwards is cascaded and
interactive, and semantic richness effects can then be ex-
plained by top-down semantic feedback to lexical-level ortho-
graphic and phonological representations.

Of course, this begs the question of why letter-level pro-
cessing would be thresholded. There have been suggestions
that such thresholding is adaptive and reflective of a lexical
processor that can flexibly adjust to specific task demands (see
Balota &Yap, 2006). For example, in the lexical decision task,
the ultimate goal of the participant is to discriminate between
familiar/meaningful real words and unfamiliar/meaningless
nonwords, a procedure which strongly emphasizes

familiarity-based information (Balota & Chumbley, 1984).
Yap and Balota (2007) speculated that in experimental con-
texts where familiarity is useful for driving binary decisions, it
might be necessary to perceptually normalize stimuli in order
to recover the familiarity-based information. Consistent with
this, when the utility of familiarity is undermined in lexical
decision by increasing the word-nonword overlap (e.g., by
using wordlike distracters such as brane), the effects of stim-
ulus quality and frequency are interactive in the modal portion
of the RT distribution (Yap, Balota, Tse, & Besner, 2008).
Similarly, O’Malley and Besner (2008), who found additive
effects of stimulus quality and frequency in speeded pronun-
ciation when both words and nonwords were presented, sug-
gested that thresholding helps to reduce the likelihood of lex-
ical capture for degraded words. Specifically, a degraded non-
word may activate a word strongly enough such that the par-
ticipant incorrectly reads the nonword as a word; thresholding
at the letter level reduces the likelihood of this happening.

The important implication here is that the lexical process-
ing system may not be as modular or inflexible as suggested
by frameworks such as the interactive activation model. In-
stead, in a flexible lexical processing system (Balota, Paul, &
Spieler, 1999; Balota & Yap, 2006), different processing path-
ways support the computation of orthography, phonology, and
meaning, and the influences of these pathways are modulated
by attentional control systems that are sensitive to
experimental task demands. Balota et al. (1999) mainly
discussed how particular tasks might emphasize different
pathways; for example, lexical decision is primarily driven
by the connections between orthography and meaning while
pronunciation is driven by the connections between orthogra-
phy and phonology. Our results, along with those from Besner
and colleagues, lend further support to the idea that task con-
text can also modulate the processing dynamics of early word
recognition processes, such that letter-level output can be
thresholded or cascaded.

At this point, we need to acknowledge that aspects of our
account may seem incompatible with certain theoretical
frameworks. For example, a central assumption we make is
that the influence of stimulus quality is limited to early word
processing (i.e., the feature and letter levels) and does not
extend to higher levels of representation and processing. Blais,
O’Malley, and Besner (2011) have argued that such an as-
sumption is implausible in light of the joint effects of stimulus
quality, word frequency, and repetition priming. The repeti-
tion priming effect refers to the finding that word recognition
is faster on the second presentation of a word than the first (see
Tenpenny, 1995, for a review). As described earlier, the effects
of stimulus quality and word-frequency are robustly additive
(Yap & Balota, 2007), which is consistent with these two
factors selectively and respectively influencing letter-level
and lexical-level processing. Repetition priming and word-
frequency have also been found to interact in lexical decision
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(Forster & Davis, 1984), with stronger priming for low-
frequency words, which suggests that lexical-level represen-
tations are affected by both repetition and word-frequency.
However, it is the case that stimulus quality and repetition
priming also interact (Besner & Swan, 1982; den Heyer &
Benson, 1988), with stronger priming for degraded words. If
the effect of stimulus quality indeed does not extend beyond
letter-level representations, and repetition priming’s influence
begins at the lexical level, then it is unclear why stimulus
quality and repetition priming interact.

In order to accommodate this complex constellation of
findings, Blais et al. (2011) proposed a model in which: (1)
stimulus quality affects feature-, letter-, and lexical-level pro-
cessing, (2) word-frequency, rather thanmodulating activation
levels of lexical representations, is instead reflected in the
weights between lexical and semantic representations, and
(3) processing is thresholded at the lexical, not letter, level.
While the finer details of Blais et al.’s (2011) framework are
beyond the scope of the present paper, it is able to explain the
stimulus quality × repetition priming interaction, the additive
effects of stimulus quality and word-frequency, and the joint
effects of repetition priming and word-frequency. More perti-
nently, Blais et al.’s (2011) assumption that the influence of
stimulus quality goes beyond letter-level representations ap-
pears to pose a challenge for our account. However, while
thresholding at the lexical level predicts additive effects of
stimulus quality and semantic richness (which is what we
found), this requires lexical decision to be based on semantic
activity. As already discussed in the Introduction, such a pre-
mise is difficult to reconcile with Pexman and Lupker’s (1999)
finding that a facilitatory effect of ambiguity and an inhibitory
effect of homophony can be concurrently observed in lexical
decision. Furthermore, lexical-level thresholding is largely
motivated by the empirical observation that degradation ef-
fects are smaller for repeated targets. However, the relevant
studies in this domain (e.g., Besner & Swan, 1982; Blais et al.,
2011; den Heyer & Benson, 1988) have exclusively used
unmasked primes (i.e., primes which can be consciously proc-
essed); such primes can establish episodic memory traces
which can be retrieved when the word is subsequently pre-
sented (Forster & Davis, 1984). As such, it is difficult to de-
finitively rule out the possibility that the stimulus quality ×
repetition priming interaction partly reflects episodic memory
traces, which are outside the scope of computational word
recognition models (Blais et al., 2011). For example, in For-
ster and Davis’ (1984) lexical decision study, the effects of
repetition priming and word-frequency were additive with
masked primes and overadditive with unmasked primes (see
also Versace & Nevers, 2003), suggesting that the interaction
reflected the influence of the prime’s episodic trace. To shed
more light on this issue, future researchmight explore whether
the intriguing interaction between stimulus quality and repeti-
tion priming holds up when masked primes are used.

Implications for models of lexical processing

The foregoing account suggests that in lexical decision, se-
mantic richness effects might be better accommodated by a
multistage model where early letter-level processing is
thresholded (see Fig. 7). However, while this nicely handles
the additive effects of stimulus quality and semantic rich-
ness, can such a perspective be reconciled with other em-
pirical findings, particularly those in the semantic priming
domain? As described in the Introduction, degradation
effects are larger for unrelated, compared to related, tar-
gets (Balota et al., 2008; Meyer et al., 1975), which is
consistent with the idea that related concepts preactivate
their respective letter-level representations through se-
mantic feedback, hence attenuating degradation effects
for related targets (e.g., McNamara, 2005). How else can
the interaction be accommodated if it is assumed that se-
mantic feedback is not able to reach the letter level?

Interestingly, some recent work by Thomas et al. (2012)
speaks to this issue by providing compelling evidence against
the idea that the priming × stimulus quality interaction is me-
diated by semantic feedback. In their study, they examined
how the interaction was moderated by the symmetry of the
prime-target relationship. Forward asymmetric pairs (e.g., keg
– BEER) have a strong prime-to-target association but no
target-to-prime association, backward asymmetric pairs (e.g.,
small – SHRINK) have a strong target-to-prime association but
no prime-to-target association, and symmetric prime-target
pairs (e.g., cat – DOG) are strongly related in both directions.
For our purposes, the key finding was that the priming ×
stimulus quality interaction was reliable only for pairs with a
target-to-prime association (i.e., symmetric and backward
asymmetric pairs), suggesting that the interaction was carried
by a process that depended on a relationship from the target to
the prime. This effectively ruled out spreading activation and
its attendant semantic feedback as an explanation, which pre-
dicts an interaction for pairs with a prime-to-target association
(i.e., symmetric and forward asymmetric pairs).

Instead, Thomas et al. (2012) proposed that the priming ×
stimulus quality interaction is mediated by a strategic process
called backward semantic matching, whereby participants de-
termine whether the target is semantically related to the prime
after lexical access of the target has occurred (Neely, Keefe, &
Ross, 1989). In line with this, Stolz and Neely (1995) also
reported that the interactive effects of priming and stimulus
quality became additive when relatedness proportion (i.e., the
proportion of word targets preceded by a related prime) was
decreased from .50 to .25, consistent with the idea that a low
relatedness proportion (i.e., low payoff) gives the participants
less incentive to engage the semantic matching mechanism.
Importantly, the additive effects of stimulus quality and prim-
ing (under low relatedness proportion conditions) provide
converging evidence that early processes in visual word

Mem Cogn (2015) 43:1148–1167 1161



recognition are not moderated by feedback created by spread-
ing activation or by semantically rich representations.

Effects of stimulus quality and semantic richness: Going
beyond the mean

This is the first study to explore an array of semantic richness
effects at the level of RT distributional characteristics. Across
imageability, number of features, semantic neighborhood den-
sity, and semantic diversity, our findings were relatively
straightforward. Specifically, richness effects were mediated
by distributional shifting (μ) and changes in the tail of the
distribution (τ). More simply put, as RTs become longer, se-
mantic richness effects become larger. This trend, which
closely matches what Yap and Seow (2014) reported for emo-
tional valence, is consistent with the idea that the stronger

feedback afforded by semantic richness speeds up lexical de-
cision by increasing stimulus familiarity and making word/
nonword discrimination less attentionally demanding (see An-
drews & Heathcote, 2001; Balota & Spieler, 1999). More
relevantly for present purposes, the analyses revealed that
for three of the targeted richness dimensions (imageability,
number of features, semantic neighborhood density), the joint
effects of stimulus quality and richness were additive at the
level of the mean and at the level of underlying distributional
characteristics.

There was an interesting exception to the foregoing trends.
Although the effects of semantic quality and semantic diver-
sity were additive for mean RTs, the distributional analyses
(see Table 4 and Fig. 6) revealed an unexpected trade-off
between an overadditive interaction in μ (smaller degradation
effects for more ambiguous words) and a non-significant
underadditive interaction in τ (larger degradation effects for
more ambiguous words). This suggests that words with more
senses are able to somehow compensate for the deleterious
effect of visual degradation. It is unclear why this effect is
seen only for semantic diversity (a measure of ambiguity),
but not for imageability, number of features, or semantic
neighborhood density. As discussed earlier, Yap et al. (2008)
observed a similar trade-off in their data when they examined
the joint effects of stimulus quality and word-frequency in the
context of pseudohomophones. Can the present results be
similarly explained by resorting to the idea that participants
rely less on familiarity-based information and thresholded
processing when they are presented with words that are high
and low on semantic diversity (than when presented with
words that vary on our other semantic richness dimensions)?
Unfortunately, because the degree of word/nonword overlap
was controlled for across the different semantic richness di-
mensions, this account seems implausible and we have to look
elsewhere for an answer.

There is mounting evidence in the literature that semantic
diversity/ambiguity effects diverge from other semantic ef-
fects in interesting ways (Pexman, 2012). That is, while other
the facilitatory influence of other richness effects tend to be
quite consistent across lexical decision and other semantic
tasks, the processing advantage for ambiguous words appears
to be specific to lexical decision (Piercey & Joordens, 2000);
an ambiguity disadvantage is often seen in semantic tasks
such as semantic relatedness decision (Hoffman &
Woollams, 2015; Piercey & Joordens, 2000) and semantic
categorization (Hino et al., 2002). The dissociation between
ambiguity and other dimensions is also reflected in neural
consequences. For example, although more ambiguous words
are associated with more cortical activation during semantic
categorization (Hargreaves, Pexman, Pittman, & Goodyear,
2011), words with more distinct first associates are associated
with less cortical activation (Pexman, Hargreaves, Edwards,
Henry, & Goodyear, 2007). One major difference between

Fig. 7 An interactive activation framework with thresholded letter-level
output
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ambiguity and the other three variables is that the former im-
plicates multiple referents and meanings whereas the latter
forms of richness are associated with a single referent and
meaning (Pexman, 2012). Based on their modeling work,
Hoffman and Woollams (2015) also demonstrated that the
many-to-one semantic-to-orthography mappings for semanti-
cally diverse words yielded noisy, unstable, and
underspecified semantic representations.

However, in spite of the foregoing dissociations between
semantic diversity and other richness variables, it remains un-
clear why degradation effects are smaller for more ambiguous,
compared to less ambiguous, words, particularly in the fastest
RTs. Further speculation on these findings would likely ex-
ceed the explanatory power of the present dataset. Future
work should be directed towards establishing the robustness
of this interaction with a different set of items, and determin-
ing if similar distributional trade-offs are observed in tasks
(e.g., semantic categorization) which place more emphasis
on semantic-level activity. Given the complexity of semantic
ambiguity effects, we agree with Pexman (2012) that much
remains to be worked out in future research.

Limitations and future directions

For over two decades, an embellished version of the interac-
tive activation framework (Balota, 1990; Balota et al., 1991)
has provided a useful metaphor for explaining semantic rich-
ness effects in word recognition. The results of the present
study suggest that one central aspect of this framework, the
interactive activation between letter- and lexical-level repre-
sentations, cannot be reconciled with how semantic richness
effects unfold in visual word recognition. Instead, our results
are more consistent with a flexible lexical processor which can
strategically toggle between thresholded or cascaded early
processing, depending on the specific demands of the task or
the composition of the stimuli (see O’Malley & Besner, 2008,
for a similar perspective). We have suggested that the additive
effects of stimulus quality and richness in lexical decision
might be a function of the task’s emphasis on familiarity. To
test this, a future experiment could examine the joint effects of
stimulus quality and semantic richness in other lexical pro-
cessing tasks. For example, in the semantic categorization task
(e.g., is a word abstract or concrete?), a binary decision is also
required but familiarity is not helpful in driving decisions. The
prediction is that stimulus quality and semantic richness
should interact, with larger richness effects seen for degraded
targets.

While the metaphorical framework presented in Fig. 7 pro-
vides a useful extension to Balota’s (1990) original account, it
is almost certainly too simple to accommodate the complex
joint effects of the various factors that have been shown to
influence word recognition. We have assumed that semantic

feedback to letter-level representations would yield smaller
degradation effects for semantically rich words. However, in
the absence of a specific implemented model, it is impossible
to tell in advance what feedback would do. For example,
Besner and colleagues (Besner, Wartak, & Robidoux, 2008;
Borowsky & Besner, 2006) have shown that for the parallel
distributed processing model described by Plaut and Booth
(2000), one can produce underadditivity, additivity, or
overadditivity between stimulus quality and a second factor,
depending on the portion of the input–output sigmoidal acti-
vation function being examined. We look forward to further
explorations of these effects within implemented models. Fi-
nally, Yap et al. (2009) found that the joint effects of priming
and frequency critically depended on the vocabulary knowl-
edge of the participants. Specifically, participants with more
vocabulary knowledge produced additive effects while partic-
ipants with less vocabulary knowledge produced interactive
effects. This pattern is difficult to reconcile with any theoret-
ical position that rigidly adheres to serially arranged discrete
stages or interactive cascaded processing. Instead, it is more
likely that the variable nature of activation dynamics (i.e.,
cascaded vs. thresholded) applies not only to early processes
but to processes later in the time-course.
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Appendix

Imageability

High Low

almond eagle mammoth abreast divulge occur

autumn female mittens accord earnest ought

baboon ferret monkey adjourn ever perverse

bamboo flag mountain adverse form profound

baptize flour nostril aide fulfill prudent

beetle flower palm although happen quaint

bird gangster panda apt implore quantum

bonfire geese scuba aspect imply rare

brain glacier sirloin assume indeed rely

car goatee sister assure instance require

carrot granite sled astute instead seldom

chalk head smile avail intent skew

chimney infant snorkel awhile invoke slight

cocoon khaki sparkle bestow lapse sought

country kingdom star borne mention tend
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crayon kitchen swimsuit cause mere their

dandruff kite white condone midst thorough

disco knuckle wig confound mundane urge

doctor lake world context norm whom

dolphin lawyer yogurt crude oblige woe

Number of features

High Low

balloon gate plum accordion dandelion razor

banana goat potato ball fence rice

barn hammer prune basket garage sack

bear horse radish baton gown saddle

bed jet rifle bedroom guitar salmon

bowl kettle screws beehive harp scissors

bra knife seal biscuit hatchet seaweed

cabbage lamb sheep brick leopard shawl

canoe lemon shovel bucket mackerel shell

carpet lettuce sink buckle menu spinach

cat limousine sofa bull moth squid

chicken marble spear bungalow oak stick

cougar orange spider bureau otter stone

cow ostrich spoon cabin ox sweater

crocodile pearl sword cabinet panther taxi

crown pen tangerine catfish pepper toilet

cucumber pencil toad cellar pie turnip

cushion pickle turkey chain pot vine

deer pig vulture cheetah raspberry wheel

faucet pineapple whistle cork rattle willow

Semantic neighborhood density

High Low

accuracy formally postwar adjourn hangman poking

alliance format railroad amuse happiest pricey

allied foster railway audacity headway rectify

allies founder reader belittle homesick refill

array frontier readily blindly impotent resent

boundary graphic renowned buzzing inhale sleazy

chuck gulf repair chap intrude soak

civic integral resigned chilly ironing sociable

coastal layout rural clouded jobless sparkle

compact likewise speaker clumsily loosen squeaky

consist linear spectrum dainty looser stink

correct locally tenure darken lumpy stupidly

cousin mainland titled doorbell misread tempting

craft monthly touring dreary nauseous tickled

cricket notably tourism faintly nightcap touchy

derived opposing variable fasten nodding trifling

duke orthodox variant fetching oblige twinkle

ethnic outdoor voiced freezer omelette unsteady

eventual pioneer volumes giveaway optimist whack

featured porter vote groaning orgy wretched

Semantic diversity

High Low

abandon evident pursue airliner holiness proximal

account expose reversal alpha hypnosis punk

adequate forging roughly ashore infect quantum

adopt grossly second biblical insure racism

aim handful seek bisexual jockey radial

attract inflated shorten boogie kinetic rectal

barrier keenly shorter cardiac lesbian recycle

caution lapse sided catchy logging rookie

combine lengthy singled chaser mister roundup

contain limiting sizeable diabetic movie setup

coupled mainstay solely diction oneness singles

danger measure speedy dividend parole sonic

dictate minimal spur fascist payroll sorcery

diminish narrowly stark funk penal spiny

divert noted unwise galaxy physics starring

drastic obstacle varied gel poetic stimuli

emerge occupy varying gig poetry thriller

enable outright vital herbal priestly trustee

enlarge overdue widely hertz primal turnout

erratic postpone widen highness program upgrade
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