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Abstract Making accurate predictions about events is an im-
portant but difficult task. Recent work suggests that people are
adept at this task, making predictions that reflect surprisingly
accurate knowledge of the distributions of real quantities.
Across three experiments, we used an iterated learning proce-
dure to explore the basis of this knowledge: to what extent is
domain experience critical to accurate predictions and how
accurate are people when faced with unfamiliar domains? In
Experiment 1, two groups of participants, one resident in Aus-
tralia, the other in China, predicted the values of quantities
familiar to both (movie run-times), unfamiliar to both (the
lengths of Pharaoh reigns), and familiar to one but unfamiliar
to the other (cake baking durations and the lengths of Beijing
bus routes). While predictions from both groups were reason-
ably accurate overall, predictions were inaccurate in the selec-
tively unfamiliar domains and, surprisingly, predictions by the
China-resident group were also inaccurate for a highly famil-
iar domain: local bus route lengths. Focusing on bus routes,
two follow-up experiments with Australia-resident groups
clarified the knowledge and strategies that people draw upon,
plus important determinants of accurate predictions. For unfa-
miliar domains, people appear to rely on extrapolating from
(not simply directly applying) related knowledge. However,
we show that people’s predictions are subject to two sources
of error: in the estimation of quantities in a familiar domain
and extension to plausible values in an unfamiliar domain. We

propose that the key to successful predictions is not simply
domain experience itself, but explicit experience of relevant
quantities.
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Survival depends upon making successful predictions about
the future. This is hard enough in domains with which we are
familiar but often predictions are also required in unfamiliar
domains. A prosaic example is offered by the office worker
who has a good understanding of how long to wait for the
elevator in her building; how long should she wait in another,
unfamiliar, building? If three futile minutes have already
passed, should she head for the stairs? Given that these kinds
of predictions are commonplace, two main questions arise: on
what are the predictions based and how accurate are they?

Surprisingly, there is evidence that people can make accu-
rate predictions even in domains for which they might have
limited or even no direct experience. Griffiths and Tenenbaum
(2006) asked participants to estimate quantities in several dif-
ferent domains that varied in familiarity (though they were
collectively referred to as Beveryday phenomena^), such as
male life-spans, the baking time of cakes, movie grosses,
and the lengths of pharaohs’ reigns. Participants were asked
to make a single prediction for each domain based on an
observed (probe) value of that quantity. For example, they
could be asked: given that a man is 39 years old, what is the
best estimate of his total life span? Strikingly, responses gen-
erally reflected the actual distribution of the relevant quantity
(as calculated from publicly available data), and were consis-
tent with an optimal Bayesian updating rule (see also, Griffiths
& Tenenbaum, 2011). Therefore, people behave as if they
have accurate knowledge of the distributions of both familiar
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and unfamiliar quantities in the world and can use this knowl-
edge to make sensible predictions.

The results found by Griffiths and Tenenbaum (2006) were
extended by Lewandowsky, Griffiths, and Kalish (2009) using
an iterated learning procedure (instead of the single-prediction
approach). In this procedure, participants make multiple predic-
tions in response to uniformly distributed probe values based on
their previous responses. Griffiths and Kalish (2007) had earlier
shown that this procedure converges to participants’ subjective
distribution of a quantity as long as their responses are
independent and consistent with a Bayesian updating rule.
Supporting Griffiths and Tenenbaum, Lewandowsky et al.
(2009) found that estimates of the subjective distributions of
quantities broadly matched their true distributions. Further-
more, because the estimates were based on multiple responses
from individual participants, they could show that this result
was not simply an artefact of aggregating across individuals,
each of whom was employing a simple rule or heuristic – the
so-called Bwisdom of crowds^ effect, in which an aggregated
group is found to be accurate despite the fact that separate
individuals make errors (this heuristics explanation had been
proposed by Mozer, Pashler, & Homaei, 2008).

The results found by Griffiths and Tenenbaum (2006) and
Lewandowsky et al. (2009) also contrast with a large body of
earlier research suggesting that people tend not to be sensitive
to prior probabilities but rely on simple-to-implement heuris-
tics which, while effective, may also lead to systematic errors
such as base-rate neglect (Tversky & Kahneman,
1974). Instead, Griffiths and colleagues have shown that when
people predict the total extent or duration of a real phenome-
non, they show an impressive sensitivity to the true distribu-
tion of that particular event.

If people’s predictions are based on an internal representa-
tion of the actual distribution of quantities, a new question is
posed: how is this knowledge acquired? One obvious answer is
from direct experience, which may well account for domains
such as movie run-times or cake baking times, or from indirect
experience (such as reading), which might be the case for do-
mains such as movie grosses. However, Lewandowsky et al.
(2009) found that people’s predictions of the lengths of pha-
raoh’s reigns also matched the actual distribution. It is difficult
to see how this knowledge could have been gained either di-
rectly or indirectly as it is unlikely that many of their under-
graduate participants were experts in Egyptology. Interestingly,
in the Griffiths and Tenenbaum study, participants were not as
accurate in their judgments of this quantity and, although the
distribution of responses tended to follow the correct (Erlang)
distribution, the estimates were slightly too high. To account for
this, Griffiths and Tenenbaum suggested that responses may
have been based on an analogy to the reigns of modern
monarchs, with which people would be more familiar, followed
by a downward adjustment to account for the presumed shorter
life spans of ancient Egyptians. In their study, this downward

correction was not quite sufficient, whereas in Lewandowsky
et al. this strategy appears to have been more successful.

Because we are often faced with unfamiliar events (cf. eleva-
tor example), what is the role of direct experience in generating
accurate predictions? This raises two questions. First, if people
vary in their familiarity with a domain, how are their predictions
affected? Second, how do they extrapolate their knowledge of a
familiar domain to make accurate (or perhaps inaccurate) predic-
tions in a similar but less familiar domain? Though it is likely that
some of the domains investigated by Griffiths and colleagues
were more commonplace than others, the effect of domain-
familiarity has not yet been directly studied.

In order to investigate more directly the role of familiarity
in predicting quantities, we compared two groups of people
who live in different cities, one in Australia and the other in
China. We used the same iterated learning procedure
employed by Lewandowsky et al. (2009) and elicited predic-
tions across four different domains; pharaoh reign lengths,
movie run-times, cake baking times, and the lengths of Beijing
bus routes. The last of these had not been previously investi-
gated and was selected to be familiar to the group resident in
China (Beijing) but unfamiliar to the group resident in Aus-
tralia (Adelaide). Thus, as well as providing points of compar-
ison with the results found by Lewandowsky et al., the two
groups allowed us to examine the effect of familiarity for
different groups but in the same domain. We expected that
pharaoh reign lengths would be equally unfamiliar to both
groups, that movie run-times would be equally familiar, that
cake baking times may be more familiar to Adelaide-resident
than Beijing-resident participants (because of the relative rar-
ity of traditional Western cake baking in Chinese households),
and that the lengths of Beijing bus routes would be more
familiar to Beijing residents.

Following the results of Lewandowsky et al., we expected
that both groups of participants would be equally well (or
poorly) calibrated in their judgments of pharaoh’s reign
lengths and movie run-times. Of greater interest would be
their performance in domains with which one group is more
familiar than the other: Beijing bus routes and cake baking
times. Following Griffiths and Tenenbaum, we examined
whether predictions for the relatively unfamiliar domains, (a)
conform to the shapes of the true distributions, and (b) show
evidence of some kind of adjustment.

Experiment 1

In this experiment, we used iterated learning to determine
people’s subjective prior distribution of quantities in four do-
mains: pharaoh reign lengths, movie run-times, cake baking
times, and Beijing bus route lengths. Two groups of partici-
pants were compared: a group resident in Adelaide, Australia
(a city of approximately one million people) and a group
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resident in Beijing, China (with a population of approximately
20 million). The aim of the experiment was to determine the
accuracy of predictions as a function of domain familiarity.

Method

Participants

The required sample size for each group was guided by
Lewandowsky et al. (2009; they recruited 35 participants).
Our data-collection stopping rule was 50 participants, though
for the Beijing-resident group we were constrained by a 2-
week recruitment period. The resulting Adelaide-resident
group consisted of 50 psychology undergraduates from the
University of Adelaide, who received course credit for partic-
ipation. Ages ranged from 18 to 32 years, with 14 subjects
being males. The Beijing-resident group consisted of 40 un-
dergraduate students recruited from three Beijing-based uni-
versities: China Agricultural University, Beijing Forestry Uni-
versity, and the Chinese Academy of Sciences. They were
each paid 30 RMB for participating in the experiment. Ages
ranged from 19 to 34 years, with 24 subjects being males.
Although we did not formally test this knowledge, we as-
sumed that the Beijing-resident group would be, on average,
more familiar with the Beijing bus transport system than the
Adelaide-resident group.1 The data from four Adelaide partic-
ipants and four Beijing participants were removed because
they did not follow instructions or failed to give plausible
responses.

Materials

Predictions were elicited for each of four domains: pharaoh
reign lengths, movie run-times, cake baking times, and Bei-
jing bus route lengths. According to publicly available data
collected by Griffiths and Tenenbaum (2006), actual pharaoh
reign lengths follow an Erlang distribution, movie run-times
are approximately normally distributed, while cake baking
times follow an Birregular^ distribution. We obtained a list
of the actual lengths (i.e., total number of stops) of 822 bus
routes in the Beijing metropolitan area from the website:
http://wenku.baidu.com/ (accessed November 2010).
Figure 1 shows the distribution of these lengths. Based on
visual inspection, it roughly follows a log normal distribution.

The experiment was a computer-based task using Matlab
with the Psychophysics Toolbox extensions (Brainard, 1997).
All materials were presented in English for the Adelaide-
resident group and inMandarin for the Beijing-resident group.

The stimuli consisted of eight chains of 20 prediction trials;
one chain for each domain. The four domains of interest were
intermixed with four other domains (movie grosses, poem
lengths, male life-spans, and phone waiting times) also exam-
ined by Griffiths and Tenenbaum (2006) and Lewandowsky
et al. (2009). These other domains served as filler trials de-
signed to maximize the independence of judgments by mini-
mizing the effects of memory across trials. Responses to the
filler trials were not analysed.

Table 1 shows summary statistics for the four domains of
interest. The set of seed values followed those used by
Lewandowsky et al. (2009) and are explained below. Each
participant was asked the following questions in relation to
each domain.

Pharaoh reign lengths If you opened a book about the his-
tory of ancient Egypt and noticed that in 4000 BC a particular
pharaoh had been ruling for t years, how many years total
would you expect his reign to be?

Movie lengths If you made a surprise visit to a friend’s place
and found that they had been watching a movie for t minutes,
what is your prediction about the total length of the movie (in
minutes)?

Cake baking times Imagine you are in somebody’s kitchen
and notice that a cake is in the oven. The timer shows that it
has been baking for t minutes. How long do you expect the
total amount of time to be that the cake needs to bake (in
minutes)?

Lengths of Beijing bus routes If you caught a bus in Beijing,
China and noticed that it had already passed t stops, what do

1 Anecdotally, the lack of car ownership in the undergraduate population
necessitates extensive use of the bus system for travel around Beijing. Bus
tickets are also heavily discounted for students, facilitating the use of
buses.
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Fig. 1 Actual distribution of lengths (number of stops) of Beijing bus
routes obtained from http://wenku.baidu.com/. Superimposed is the best-
fitting log normal distribution
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you think would be the total number of stops on this bus
route?

Prior to the commencement of the experiment, participants
were given a set of practice trials. Following Lewandowsky
et al. (2009), these consisted of equivalent questions about
chrysalis ages, puddle durations, house painting durations,
and shark-spotting durations.

Procedure

We used the same iterated learning procedure described by
Lewandowsky et al. (2009). Participants answered a series
of 20 questions (called a chain) for each of eight domains.
The eight chains were intermixed from trial-to-trial to maxi-
mize independence of responses within each chain. There
were always at least two trials separating trials that referred
to the same domain. Each participant answered a total of 160
questions excluding practice trials. Following Lewandowsky
et al. (2009), responses to the last ten trials on each chain were
defined as being drawn from the final Bstationary^
distribution.

The response on each trial defined the participant’s estimate
of the total quantity, ttotal, conditional on the current value, t.
On each trial, the value of t was a random sample from the
uniform distribution defined on the range, [1, ttotal(previous)],
where ttotal(previous) was the participant’s estimate of ttotal
from the previous trial in the current chain (which may have
been several actual trials before because of the intermixing of
chains). On the first trial of a chain, t was one of the corre-
sponding seed values for that chain (randomly selected; see
Table 1). Participants entered their responses using the com-
puter keyboard. Only integer values were accepted and re-
sponses could not be less than the current probe value, t. Par-
ticipants were permitted to edit their response prior to pressing
the enter key on the keyboard. Participants were then asked to
rate their confidence in their estimate (these ratings were not
analysed). The next trial commenced after 1 s.

Participants were asked to take their time and to consider
each question carefully, paying attention to the probe value.
They were told that we were interested in their intuitions and
formal calculation was not required. Before beginning the

experimental trials, participants responded once to each of
the four practice queries, presented in a random order. Overall,
the experiment took around 25–40 min.

Results

Convergence analysis

In the iterated learning procedure, chain convergence occurs
when responses are no longer dependent upon the initial seed
values. Following Lewandowsky et al. (2009), we compared
participants’ responses across the five seed conditions for each
chain using a Kruskal-Wallis test with a Bonferroni-adjusted
α = 0.0025. Convergence was defined as having occurred on
the first trial to yield a non-significant χ2 value across the five
seed groups. For both the Adelaide-resident and Beijing-
resident groups, the four critical chains converged quite quick-
ly, in only one to three trials (see Table 1). We were therefore
confident that responses from the final ten trials of each chain
could be regarded as samples from the prior distribution. The-
se final responses were aggregated across participants, consti-
tuting the stationary distribution for each domain.

Analysis of stationary distributions

Figure 2 presents histograms of the stationary distributions for
the two groups (middle and lower rows). Histograms of the
corresponding actual distributions are shown in the top row.
Visual inspection suggests that for both groups, the stationary
distributions are broadly similar in shape to the corresponding
actual distributions.

In order to determine the level of correspondence between
actual and stationary distributions, we examined the quantile-
quantile (Q-Q) plots for each domain and group. The results
are shown in Fig. 3 for the set of quantiles from 5% to 95% in
steps of 5 %. If the stationary and actual distributions are
identical then all the points on the Q-Q plot should fall on
the main diagonal (the solid line in each plot) corresponding
to an angular slope of 45°. We measured departures from
identity in two ways. First, we calculated the angular slope,
θ, of the best fitting straight line through the origin of each

Table 1 The initial seed values used on the first trial of each domain/chain and the number of trials to reach convergence on each chain for the
Adelaide-resident and Beijing-resident groups in Experiment 1

Domain/chain Seeds Trials to convergence

Australia-resident China-resident

Movie lengths 30 60 80 95 110 1 1

Reign of Pharaohs 1 2 7 11 23 2 1

Cake-baking times 10 20 35 50 70 2 2

Beijing bus routes 12 20 37 53 68 2 3
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plot. Values of θ greater than 45 indicate systematic under-
estimation of the actual quantity while values of θ less than 45
indicate systematic over-estimation. Second, we calculated

the normalized root-mean squared deviation or coefficient of
variation, V, of the points from the line of best fit (with slope θ)
through the origin. If V is substantially greater than zero then it
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Fig. 2 Histograms of the actual and stationary distributions from Experiment 1
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stationary distributions from the Australian-resident (top row) and
Chinese-resident (bottom row) groups with the actual distributions in
Experiment 1. The data points mark the quantiles in 5 % increments
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diagonal (dark line). The dotted line presents the line of best fit (with
the intercept fixed at zero). θ is the mean slope of this line in degrees
where deviation from 45 indicates departure from identity. V is the
coefficient of variation based on deviation of the points from the line of
best fit based on θ
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indicates that despite systematic over- or under-estimation, the
stationary distribution has a different shape to the correspond-
ing actual distribution. We tested the statistical significance of
the observed values of θ and V through bootstrap re-sampling
of the actual distributions. For each bootstrap sample we cal-
culated the corresponding values of θ and V and compared
them to the obtained values. We did this 10,000 times for each
chain and group and estimated the proportion of sample esti-
mates that exceeded the obtained values. The mean values of θ
and V for each group and domain are shown in Fig. 3. We
report the results of our bootstrap analysis in terms of the
standardized difference between the observed and actual pa-
rameter values (corresponding to an effect size, d), the stan-
dard error of the bootstrap sample, and the observed p-value.

Visual inspection of Fig. 3 suggests that participants in the
Adelaide-resident group were reasonably well calibrated in
their predictions of the lengths of pharaohs’ reigns, movie
run-times, and cake baking times. The subjective distribution
for each domain generally approximated the correct shape
(Erlang, normal or irregular), scale, and location. These
results replicate those found by Lewandowsky et al. (2009)
although, in the current study, some short movie run-times
were predicted despite short films not having been included
in the actual data. In contrast to the first three domains, the
Adelaide-resident group systematically over-estimated the
lengths of the Beijing bus routes although they did capture
the appropriate shape – an approximate log normal distribu-
tion. Nevertheless, using the bootstrap significance test, the
hypothesis that the observed value of θ was equal to 45 could
be rejected for movie run-times (d = -2.38, SE = 0.285, p =
.037), cake baking (d = 3.82, SE = 0.515, p = .002), and
Beijing bus routes (d = -17.86, SE = 0.764, p < .0001). Sim-
ilarly, the observed values of V were significantly greater than
zero for all four domains. In other words, although the station-
ary distributions approximated to varying degrees the actual
distributions for pharaohs’ reigns, movie run-times, and cake
baking times, the observed deviations were sufficiently great
to formally reject the hypothesis that the two sets of distribu-
tions were identical.

Visual inspection also reveals that participants in the
Beijing-resident group were similarly well calibrated in their
predictions of the lengths of pharaohs’ reigns and movie run-
times (again with some short films predicted). However, they
were poorly calibrated in the predictions of cake baking times
and, surprisingly, in their predictions of the lengths of Beijing
bus routes. This group tended to under-estimate the duration
of cake baking times and, as Fig. 2 also shows, their aggregate
stationary distribution did not capture the shape of the actual
distribution. They also systematically under-estimated the
lengths of Beijing bus routes, capturing the shape but not the
scale of the actual distribution. As for the Adelaide-resident
group, bootstrap testing revealed that the best-fitting value of θ
deviated significantly from 45 for movie run-times, cake

baking times, and lengths of Beijing bus routes (p < .0001).
As found for the Adelaide-resident group, the coefficient of
variation, V, was also significantly greater than zero in all four
domains (p < .0001).

Discussion

The aim of Experiment 1 was to examine how people’s pre-
dictions of quantities depended upon their level of experience
or familiarity with the domain in question. There were two
main results. First, we had expected that pharaoh reign lengths
would be equally unfamiliar to both groups and that movie
run-times would be equally familiar. In each domain, both
groups were reasonably well calibrated –more so for pharaoh
reign lengths than movie run times. This demonstrates that
even without direct experience, people are able to produce
estimates of quantities that largely reflect the actual
distributions.

Second, we compared domains of varying familiarity be-
tween the two groups. For cake baking times, as expected,
predictions by the Adelaide-resident group (mean θ = 46.7)
tended to be better calibrated than those of the Beijing-resident
group (mean θ = 56.2), who consistently under-estimated the
actual times and did not accurately reflect the shape of the
distribution. Following the suggestion by Griffiths and
Tenenbaum (2006), we speculate that the estimates from this
group may be based on a distribution of baking (or cooking)
times for more familiar food and insufficiently adjusted (up-
wards), although it is impossible to know the base-distribution
considered by this group.

Although we expected that Beijing bus routes would be
more familiar to the Beijing-resident group than to the
Adelaide-resident group, both groups were found to be poor-
ly calibrated in their estimates but in different ways – they
were over-estimated by the Adelaide-resident group and
under-estimated by the Beijing-resident group. It is possible
that the responses of the Adelaide-resident group are consis-
tent with the extrapolation strategy suggested by Griffiths
and Tenenbaum (2006), in which the more familiar distribu-
tion of bus routes lengths in their home city were adjusted
according to the expectation that routes in Beijing should be
longer due to the much greater size and population of that
city. However, in order to confirm this strategy, it is neces-
sary to know the subjective distribution of Adelaide bus
route lengths for this group. It is possible that this distribu-
tion matches exactly the responses made by the Australia-
resident group, suggesting that no adjustments were made
when predicting Beijing routes. Furthermore, it is notewor-
thy that participants in the Beijing-resident group tended to
under-estimate the actual lengths of the Beijing routes. This
result was unexpected as we had thought that this group
would be familiar with and well calibrated to the distribution
of bus routes in their home city. It potentially draws into
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question the idea that people are consistently able to gain
accurate knowledge of everyday events with which they are
familiar.

Experiment 2

In order to shed light on the strategies used by the Adelaide-
resident group and, indirectly, those used by the Beijing-
resident group, we conducted a second experiment. This was
identical to Experiment 1 except that all participants were
residents of Adelaide and the question concerning Beijing
bus routes was replaced by an equivalent question concerning
Adelaide bus routes. We wanted to determine the subjective
distribution of local route lengths of an Adelaide-resident
group in order to evaluate whether and how the similar group
in Experiment 1 extrapolated this knowledge to estimate the
lengths of Beijing bus routes.

Method

Participants

Because of the confirmatory nature of Experiment 2, our data-
collection stopping rule was 25 participants, though due to
non-attendance our final sample size was 24 people. The par-
ticipants were residents of Adelaide, South Australia (mostly
students of the University of Adelaide), who had lived in
Adelaide for M = 14.7 years (range 1–40 years). They re-
ceived AU$15 for their contribution. Ages ranged from 19
to 40 years, with eight subjects being males.

Materials and procedure

The stimuli were the same as those used in Experiment 1 with
one difference. The question concerning the lengths of bus
routes referred to Adelaide instead of Beijing. The same seed
values were used for this question as were used in the corre-
sponding question in Experiment 1. The procedure was the
same as in Experiment 1.

Figure 4 shows the actual distribution of bus route lengths
in the Adelaide metropolitan area based on data from http://
adelaidemetro.com.au (accessed 25 January to 7 February,
2013). It is apparent that this distribution is different to the
distribution shown in Fig. 1. First, it is not well described by a
log normal distribution and has a more irregular shape. We
have superimposed a best-fitting gamma distribution which
provided a better fit (than a log normal). Contrary to intuition,
bus routes in the Adelaide metropolitan area tend to be longer
rather than shorter than those in Beijing. This may be attrib-
utable to the relative population densities of the two cities.
Like all Australian cities, Adelaide has a relatively low popu-
lation density, estimated at approximately 600 persons per

square kilometre,2 while the population density of Beijing is
estimated at approximately 5000 persons per square
kilometre.3 With greater density, shorter bus routes can be
sustained with comparable carrying capacity.

Results

Convergence analysis

Using the same procedure as Experiment 1, we again con-
firmed that the chains from the five different seeds converged
after a maximum of two trials to a stationary distribution for
each question. The final ten responses in each chain were
aggregated across participants to form the stationary
distributions.

Analysis of stationary distributions

Figure 5 shows the histograms of the actual and stationary
distributions and corresponding Q-Q plots for the four ques-
tions of interest. Note that Bbus routes^ now refers to the
lengths of Adelaide bus routes. These results generally repli-
cated those from Experiment 1 for pharaoh reign lengths,
movie lengths, and cake baking times. Participants tended to
be well calibrated although, as found by Griffiths and
Tenenbaum (2006), the participants in Experiment 2 slightly
over-estimated pharaoh reign lengths. In this case, bootstrap
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Fig. 4 Actual distribution of lengths (number of stops) of Adelaide bus
routes obtained from http://adelaidemetro.com.au. Superimposed is the
best-fitting gamma distribution

2 From http://www.epa.sa.gov.au/soe_resources/education/population_
and_urban.pdf.
3 From http://www.newgeography.com/content/002808-world-urban-
areas-population-and-density-a-2012-update.
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tests of θ were significant for this domain (d = -2.14, SE =
1.62, p = .024) but not for movie lengths or cake baking times.
Despite this apparent correspondence, the value of V in each
domain was significantly different from zero (all p’s < .05).

The Adelaide-resident group, like the Beijing-resident
group in Experiment 1, systematically under-estimated the
lengths of their local bus routes. Before examining this sur-
prising result in more detail, we wanted to know whether
Adelaide-participants’ predictions of the lengths of Beijing
bus routes are directly based on their (under-estimation) of
the lengths of Adelaide bus routes or whether they make a
further upward adjustment based on their (erroneous) beliefs
about Beijing. This question is answered in the Q-Q plot
shown in Fig. 6 which presents percentiles of the stationary
distribution generated by the Adelaide-resident group in
Experiment 2 (estimating the lengths of Adelaide bus routes)
against those produced by the Adelaide-resident group in
Experiment 1 (estimating the lengths of Beijing bus routes).
It shows that the subjective lengths of Beijing bus routes are
over-estimated in comparison to the subjective lengths of Ad-
elaide bus routes (d = -13.07, SE = 0.699, p < .0001). This
suggests that if the Adelaide-resident group in Experiment 1
based their estimates on the lengths of Adelaide bus routes,
they adjusted these lengths upwards to compensate for the

0 30 60

0

30

60

V = 0.14

 = 41.5

Stationary

A
c
tu

a
l

0 100 200

0

100

200

V = 0.094

 = 44.4

Stationary

0 50 100

0

50

100

V = 0.092

 = 45.5

Stationary

0 75 150

0

75

150

V = 0.1

 = 50

Stationary

0 50 100

Pharaohs

0 100 200

Movies

0 60 120

Cake baking

0 100 200

Bus routes

0 50 100 0 100 200 0 60 120 0 100 200

Actual

Sta�onary

Q-Q plot
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(false) perception that the bus routes in Beijing should be
longer.

Discussion

The results of Experiment 2 support the view that the
Adelaide-resident group in Experiment 1 used an analogy-
with-adjustment strategy for predicting the unfamiliar Beijing
bus routes. This Adelaide group did not simply apply their
knowledge of local Adelaide routes (as elicited in
Experiment 2), but, if they did consider this knowledge, they
adjusted it upwards, perhaps based on the incorrect belief that
Beijing bus routes are longer.

However, the results also showed that predictions for local
bus route lengths can be systematically biased. The partici-
pants in Experiment 2, consistent with the Beijing-resident
group in Experiment 1, consistently under-estimated the
lengths of their local bus routes (d = 4.83, SE = 1.01, p <
.0001). We had expected that since participants would be fa-
miliar with their local bus system, at least as much as theymay
be familiar with movie run or cake baking times, they would
have developed an accurate representation of the lengths of
the routes. However, both Beijing-resident and Adelaide-
resident participants systematically under-estimated this quan-
tity. One possible conclusion is that the hypothesis that people
are generally able to acquire accurate knowledge of the distri-
butions of quantities in familiar domains, is not correct. How-
ever, it may also be the case that we asked the wrong question.
It is possible that people have accurate knowledge of the
lengths of bus journeys they take but have difficulty extrapo-
lating this knowledge to estimate the lengths of entire bus
routes (of which journeys are only a part).

If bus journeys are familiar events, people may well have
acquired accurate knowledge of their distribution, as with
cake baking times and movie lengths. Thus, if we ask people
to make predictions about the length of local bus journeys,
they should be better calibrated than for total route lengths.
On this scenario, people have no direct knowledge of the total
length of their bus route but must estimate it from the length of
their journey, analogous to the proposal that pharaoh reign
lengths are based on the reign lengths of modern monarchs.

Experiment 3

The aim of Experiment 3 was to determine whether Adelaide-
resident participants are calibrated in their estimates of local
bus journeys. This experiment was identical to Experiment 2
with the exception that the question concerning Adelaide bus
routes was replaced by an equivalent question about Adelaide
bus journeys.

Method

Participants

Again our data-collection stopping rule was 25 participants,
which was met. The participants were residents of Adelaide,
South Australia (mostly students of the University of Ade-
laide), who had lived in Adelaide for M = 11.3 years (range
0.5–32 years). They received AU$15 for participation. Ages
ranged from 18 to 47 years, with subjects including 14 males.
One participant was removed for failing to follow instructions.

In order to evaluate the extent of their direct experience,
after the experiment we asked participants about whether they
travelled by bus Bmultiple times per week,^ Ba few times per
month,^ Ba few times per year,^ Bonce per year or less,^ or
Bnever^ (or Bother,^ which was never selected). The modal
response was Bmultiple times per week,^ with all participants
catching the bus at least Ba few times per year.^We also asked
for the details of their most frequent bus trip and used this to
calculate their average journey and route lengths (for this trip).
The average journey length was 20.4 stops (SD = 13.8) and
the average route length was 56.8 stops (SD = 24.2).

Materials and procedure

The stimuli and procedure were the same as in Experiments 1
and 2, with one difference. The bus question was changed to
the following:

Imagine you are on a bus in Adelaide and a stranger tells
you she has already passed t stops since she got on the
bus. What do you think would be the total number of
stops along her journey, including the one where she
gets off? (Do not count the stop at which she got on.)

In order to acquire the actual distribution for bus journeys
in Adelaide, we surveyed people waiting at ten bus stops in the
Adelaide central business district during the evening rush
hour, from 4.45 pm to 6 pm, on 6 August 2014. The ten bus
stops were selected to capture a wide range of bus routes,
heading out from the city centre in a variety of different direc-
tions. Two researchers were stationed at each bus stop, and
they approached as many waiting commuters as they could,
ultimately contacting 855 valid responders. No personal de-
tails were collected.

The survey asked individuals to report the number of the
bus they were waiting to catch and the name (or number) of
the bus stop at which they would get off the bus. Based on this
information, we calculated the actual length of each person’s
journey and the associated actual route length (based on based
on data from http://adelaidemetro.com.au; accessed 14
August to 9 September 2014). In addition, we also asked the
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survey participants to estimate the length of their journey and
the associated total route length.

Figure 7 shows the obtained distributions of actual bus
route lengths and journey lengths based on the commuter
survey. The distribution of route lengths is irregular and ap-
pears to selectively omit shorter routes that are present in the
complete set of Adelaide bus routes (cf. Fig. 4). On the other
hand, the distribution of journey lengths appears more system-
atic and is well described by a Weibull distribution.

As they necessarily are, journey lengths are shorter on av-
erage (M = 20.3 stops; SD = 11.4) than total route lengths (M =
54.9 stops; SD = 22.5). We note that these values are close to
those reported by the participants in the iterated learning part of
this experiment, suggesting that they are representative of the
larger surveyed sample.

Results and discussion

Convergence analysis

Using the same procedure as Experiments 1 and 2, for each
iterated learning question we again confirmed that the chains
from the five different seeds converged after a maximum of
two trials to a stationary distribution. The final ten responses
in each chain were aggregated across participants to form the
stationary distributions.

Analysis of stationary distributions and survey estimates

Figure 8 shows the histograms of the actual and stationary
distributions and corresponding Q-Q plots for the four critical
questions. Note that Bbus journeys^ refers to the lengths of
Adelaide bus journeys (as opposed to the lengths of entire
routes) compared to the distribution of bus journey lengths
obtained from the commuter survey. These results generally

replicated those from Experiments 1 and 2 for pharaoh reign
lengths, movie lengths, and cake baking times. Participants
tended to be well calibrated, although again the participants
in Experiment 3 slightly over-estimated pharaoh reign lengths,
and the irregular distribution for cake baking times was not
captured quite so well. However, bootstrap tests of θ were all
significant except for cake baking times while the tests of V
were all significant (p’s < .05).

Of most interest were the results for local bus journeys. In
this case, although we had expected them to have well cali-
brated knowledge of a familiar domain, the participants in
Experiment 3 consistently under-estimated the lengths of local
bus journeys (d = 2.36, SE = 1.61, p < .02).

It is possible that this under-estimation may have been an
artefact of the iterated learning procedure. However, the re-
sponses made by participants in this task are remarkably sim-
ilar to those found in the commuter survey. As part of this
survey, we asked respondents to estimate the number of stops
they expected to pass from the current bus stop to when they
got off the bus. Figure 9 (left panel) shows the Q-Q plot of
these estimates plotted against the stationary distribution for
bus journeys (based on the iterated learning task in
Experiment 3). The two sets of estimates are quite closely
calibrated (d = -1.21, SE = 1.18, p = 0.17). Interestingly, the
same correspondence is found for estimates of the total
lengths of the bus routes (i.e., comparing responses from the
survey against those from Experiment 2; Fig. 9, right panel), d
= 0.52, SE = 1.07, p = 0.40.

In summary, despite the apparent familiarity of the domain,
people are not well calibrated in their estimates of the lengths
of bus journeys they typically take. Estimates obtained from
the commuter survey (assessing the length of the forthcoming
journey) and estimates obtained from the iterated learning task
(assessing the lengths of typical journeys), while equivalent,
both under-estimated the actual lengths of journeys.
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Fig. 7 Actual distribution of route lengths and journey lengths obtained from the commuter survey. The dotted line in the right hand panel shows the
best-fitting Weibull distribution
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Both Adelaide residents and Beijing residents also under-
estimated the total lengths of their local bus routes. It is pos-
sible that this under-estimation is a direct consequence of the
under-estimation of journey length. That is, although people
under-estimate their journey length they correctly estimate the

proportion of the total route length that the journey forms. To
check this, we calculated the mean actual journey and route
lengths from the commuter survey and compared these to the
mean estimated journey and route lengths (from the same
survey). The mean actual journey length was 20.3 stops and

0 50 100

Pharaohs

0 100 200

Movies

0 60 120

Cake baking

0 40 80

Bus journeys

0 50 100 0 100 200 0 60 120 0 40 80

0 50 100

0

50

100

V = 0.14

 = 41.2

Stationary

A
c
tu

a
l

0 100 200

0

100

200

V = 0.051

 = 43.3

Stationary

0 60 120

0

60

120

V = 0.18

 = 45.4

Stationary

0 40 80

0

40

80

V = 0.11

 = 52.2

Stationary

Actual

Sta�onary

Q-Q plot

Fig. 8 Results for Experiment 3. Top row: Histograms of actual
distributions, now including Adelaide bus journeys. Middle row:
Histograms of stationary distributions. Bottom row: Q-Q plots showing
correspondence of stationary distributions with actual distributions. The
data points mark the quantiles in 5 % increments from the 5th to the 95th
percentiles. If the stationary and actual distributions are identical, all the

data points should fall on the main diagonal (dark line). The dotted line
presents the line of best fit (with the intercept fixed at zero). θ is the mean
slope of this line in degrees where deviation from 45 indicates departure
from identity. V is the coefficient of variation based on deviation of the
points from the line of best fit based on θ

0 10 20 30 40

0

10

20

30

40

V = 0.13

 = 46.4

Stationary journey length

E
s
ti
m

a
te

d
 j
o
u
r
n
e
y
 l
e
n
g
th

0 20 40 60 80

0

20

40

60

80

V = 0.095

 = 44.4

Stationary route length

E
s
ti
m

a
te

d
 r

o
u
te

 l
e
n
g
th

Fig. 9 Left panel: Q-Q plot showing the correspondence of the stationary
distribution for estimates of Adelaide bus journeys in Experiment 3
against estimates of bus journeys from our survey. Right panel:
corresponding Q-Q plot showing the stationary distribution for

estimates of Adelaide bus routes in Experiment 2 against estimates of
bus routes from our survey. The data points mark the quantiles in 5 %
increments from the 5th to the 95th percentiles

Mem Cogn (2015) 43:1007–1020 1017



the mean actual route length was 54.9 stops. The former is
0.37 of the latter. The mean estimated journey length was 16.4
stops (an under-estimate) and the mean estimated route length
was 34.7 stops (also an under-estimate). The mean estimated
journey length is therefore 0.47 of the mean estimated route
length. We tested the hypothesis that these two proportions are
equal using bootstrap resampling4 which led to its easy rejec-
tion (p < .0001). As well as under-estimating journey length,
participants also over-estimated the extent to which this jour-
ney forms part of the total route.

General discussion

Across three experiments, we explored how people use their
existing knowledge and experience to predict quantities in
familiar and unfamiliar domains. Our results revealed three
main findings. First, consistent with similar results found by
Griffiths and Tenenbaum (2006) and Lewandowsky et al.
(2009), people are reasonably well calibrated in their under-
standing of the distribution of quantities in several different
domains. That is, their estimates did not markedly over- or
under-estimate the quantity of interest although, in many
cases, even relatively small deviations are statistically signif-
icant. Thus, we found that four different groups, three resident
in Australia and one in China, were able to generate well
calibrated predictions for a domain with which all might be
expected to have direct experience – movie run-times. In ad-
dition, the same groups (although less so for the groups in
Experiments 2 and 3) were able to generate well calibrated
predictions in a domain with which they were likely to have
little direct experience – the lengths of the reigns of pharaohs
of ancient Egypt. This suggests that at least in some situations,
people are able to extrapolate knowledge from one or more
familiar domains (presumably including knowledge of life
spans) to an unfamiliar domain. Yet this is not without its
limits. The Beijing-resident group in Experiment 1 were un-
able to extrapolate to the unfamiliar domain of cake-baking
times, generating predictions that deviated from both the
shape and scale of the actual distribution.

Second, in contrast to previous research, we found that peo-
ple may be surprisingly poorly calibrated even in highly famil-
iar domains. We had initially supposed that people would be
familiar with the lengths of bus routes in their city but found
that these were systematically under-estimated (Experiments 1
and 2). On reflection, it was apparent that people would rarely
have direct experience of a journey along an entire bus route

and so we supposed that they might be well calibrated on the
more familiar journey length. Instead, people also systemati-
cally under-estimated this quantity (Experiment 3).

Third, an additional source of error (beyond inaccurate
knowledge of a familiar domain) can be introduced when
people need to extrapolate from a familiar to an unfamiliar
domain. Although Adelaide residents systematically under-
estimated the lengths of their local bus routes, they systemat-
ically over-estimated the lengths of Beijing bus-routes. As
suggested by Griffiths and Tenenbaum (2006), we hypothe-
size that these estimates were based on estimates of local bus
routes adjusted by a factor to compensate for the larger size of
Beijing. This factor was an (excessive) over-estimate. Indeed,
if participants had offered their unadjusted under-estimates of
the lengths of (the longer) Adelaide bus-routes, they would
have been more accurate. Similarly, we also found systematic
errors when people extrapolated from estimates of local jour-
ney lengths to total route lengths. In this case, people over-
estimated the proportion of the total route that was their jour-
ney, which led to an additional under-estimation of the total
route length.

Another unanticipated finding was that people assume that
their own experiences are representative of typical quantities
(or at least treat them as such). We found a close corres-
pondence between judgments of typical local bus routes and
journeys (as queried in our iterated learning experiments) and
judgments of people’s own forthcoming route and journey
(from the commuter survey). If people apply their own expe-
riences to events in general then their predictions can be ac-
curate only to the extent that this is a sound assumption, and
indeed to the extent that their own experiences are correctly
understood or estimated.

An outstanding question is why people under-estimate
even their own journey lengths. In a typical case, a journey
would be experienced multiple times, yet when asked in our
survey, people reported approximately 80% of the true length.
We suspect that if given sufficient time (or accuracy incen-
tive), many people would be able to bring to mind the correct
sequence of stops and calculate the correct answer (cf. the well
known mnemonic of the Bmethod of loci^). However, people
often use a variety of heuristics to avoid this kind of mental
effort. One possible candidate is the availability heuristic
(Tversky & Kahneman, 1973) combined with anchoring-
and-adjustment (Tversky & Kahneman, 1974). On this view,
when participants are asked to estimate a bus journey length,
they first generate a sample of stops that are readily accessible
from memory. The number of such stops serves as a self-
generated anchor that requires adjustment upwards (Epley &
Gilovich, 2001), which tends to be insufficient because of the
mental effort required (Epley & Gilovich, 2006). That is, peo-
ple progressively adjust and test their estimate until it reaches
a plausible range at which point the process terminates,
resulting (in this case) in an under-estimate.

4 This consisted of the following four steps: (1) fit a model to the observed
means that minimized sum of squared error subject to equal ratios; (2)
shifted the data by subtracting the observed means and adding the best
fitting estimates from (1); (3) bootstrap resampled the shifted data and fit
the model from (1) to the means of each sample; (4) calculated p as the
proportion of bootstrap model fits that exceed the observed model fit.
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The under-estimation of local route lengths can be similarly
explained. In this case, people are anchored by their (under-
estimate of) actual or typical journey lengths. This anchor is
also adjusted until a plausible range is reached, leading to a
further under-estimation of the route length and concomitant
over-estimation of the relative journey length. A similar pro-
cess may lead to over-estimation of the route lengths of Bei-
jing buses by Adelaide residents. In this case, the self-
generated anchor is the under-estimated route length of a typ-
ical Adelaide bus. This, in turn, is adjusted until a plausible
value is reached. However, what counts as a plausible value is
a generous over-estimate of the actual lengths of Beijing bus
routes.

At the outset, we asked: what is the role of familiarity or
direct experience in generating accurate predictions? It seems
that domain familiarity itself is not crucial, because people
make errors even for familiar bus routes and journeys. Instead,
we suggest that it is the type of relevant experience that is
important. It is possible that a key to success for familiar
domains such as cake baking times (for residents of Australia)
and movie lengths (for residents of Australia and China) is
having explicit experience of ttotal, the value to be predicted.
We suggest that people have access to a discourse in which the
total duration of movies and baking times are explicitly (al-
though separately) discussed and that it is this knowledge that
is applied to generate their predictions. Even for Pharaoh reign
lengths, people can also draw upon relevant explicit examples,
such as known life-spans, also frequently discussed. In con-
trast, people are unlikely to have access to a discourse on the
lengths of bus routes and journeys (unless they happen to
work in the public transport sector). Thus, while people are
familiar with various buses, stops, and key destinations, they
typically are not told that a given bus has a route or journey of
34 stops (for example). Perhaps people encode their own bus
journeys in terms of typical durations rather than the number
of stops, and so would be better calibrated if they were instead
queried about average journey durations (though it would be
difficult to obtain the actual distribution of bus journey dura-
tions for comparison). In short, for some predictions people
have domain knowledge that is explicitly represented in a
form that is useable, while for other (even familiar) domains,
knowledge is embedded in an activity where it is rarely ex-
plicitly noticed, though possibly encoded in an alternative unit
of measurement (e.g., duration rather than number of stops).

This explanation of our results is related to the Bestimation
modes^ proposed by Brown (2002) to account for people’s
estimates of specific real-world quantities, such as the popu-
lation of Los Angeles. One mode is numerical retrieval, in
which an estimate is based on the recollection of at least one
relevant numerical fact. Within this mode, there are various
processes that may occur: people may be able to directly
retrieve the value of interest (3.9 million people), or retrieve
a related value that must be adjusted or transformed (e.g., a

few years ago the population was 3.5 million people). In the
absence of such retrievable facts, Brown (2002) has suggested
that people engage in an alternative mode, called ordinal
conversion. This is a more complex process that involves
establishing a plausible response range, then judging where the
target item (e.g., the population of Los Angeles) is situated rela-
tive to other relevant items (e.g., the populations of other cities).

We suggest that in the present series of experiments, when
people are asked about familiar quantities that they have ex-
perienced as explicit facts (such as movie run times), they
engage in a form of direct numerical retrieval, the products
of which tend to closely match the actual distribution. In con-
trast, when people are asked about familiar or unfamiliar
quantities that they have not experienced as explicit facts
(such as bus journey lengths), they cannot rely on direct nu-
merical retrieval and instead engage in more complex process-
es, analogous to retrieval-with-adjustment or ordinal conver-
sion. The products of this may be subject to anchoring and
adjustment biases and not reflect the actual distribution, unless
by chance. This hypothesis could be tested in future research
that directly contrasts novel domains constructed to contain
explicit experience of ttotal (permitting direct numerical
retrieval) with the same domains constructed to contain expe-
rience of ttotal embedded in other activities (preventing any
form of numerical retrieval), and with domains constructed
to contain explicit experience of a related but different ttotal
(permitting numerical retrieval with adjustment or
transformation).
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