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Abstract Research has shown that category learning is
affected by (a) attention, which selects which aspects of
stimuli are available for further processing, and (b) the
existing semantic knowledge that learners bring to the task.
However, little is known about how knowledge affects what
is attended. Using eyetracking, we found that (a) knowl-
edge indeed changes what features are attended, with
knowledge-relevant features being fixated more often than
irrelevant ones, (b) this effect was not due to an initial
attentional bias toward relevant dimensions but rather
emerged gradually as a result of observing category
members, and (c) this effect grew even after a learning
criterion was reached, that is, despite the absence of
negative feedback. We argue that models of knowledge-
based learning will remain incomplete until they specify
mechanisms that dynamically select prior knowledge in
response to observed category members and which then
directs attention to knowledge-relevant dimensions and
away from irrelevant ones.
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Introduction

Selective attention has played a prominent role in theories
of category learning ever since the finding that learning
difficulty correlates with the number of stimulus dimen-
sions needed for classification (Shepard, Hovland, &
Jenkins, 1961). In both exemplar (Medin & Schaffer,
1978; Nosofsky, 1986) and prototype (Hampton, 1995;
Nosofsky, 1992; Smith & Minda, 1998) models, selective
attention is formalized in terms of weights that different
stimulus dimensions have on classification. Rule-based
models also assume that learners selectively attend to the
dimensions referred to by the current hypothesis being
tested (Smith, Patalano, & Jonides, 1998; also see Maddox,
2002; Maddox & Dodd, 2003). Furthermore, some models
include mechanisms specifying how selective attention
changes with learning (Kruschke, 1992; Kruschke &
Johansen, 1999; Nosofsky, Palmeri, & McKinley, 1994).

Another important finding is that the learning of
categories is affected by whether the new category can
be related to existing semantic knowledge (see Murphy,
2002, for a review). For example, in Murphy and
Allopenna’s seminal study (1994), subjects learned two
categories in which features of each category could be
related to a particular theme. Features of one category
included “drives on glaciers,” “made in Norway,” and
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“heavily insulated” and those for another included “drives
in jungles,” “made in Africa,” and “lightly insulated.”
Subjects learned to distinguish these categories far faster—
presumably because the features could be subsumed under
the themes—as compared to categories whose features
shared no theme (see also Rehder & Ross, 2001). Subjects
also show better learning of theme-related features versus
those that are unrelated (Heit & Bott, 2000; Kaplan &
Murphy, 2000).

But although selective attention and prior knowledge
both affect the learning of categories, little is understood
about how knowledge affects attention. This question is
important because any theory of how knowledge influences
learning is incomplete without an account of how it alters
what category information is attended and thus processed.
For example, although category learning models such as
Baywatch (Heit & Bott, 2000) and KRES (Rehder &
Murphy, 2003; Harris & Rehder, 2006) account for effects
of knowledge by assuming that it moderates basic
associative learning mechanisms, neither model postulates
changes to selective attention per se, an important
omission given the importance of attention cited above.
However, this omission is understandable given that
virtually nothing is known about how knowledge alters
what is attended: modeling is impossible if there is no data
to model. Thus, to further our understanding of knowledge
effects in particular, and category learning in general, a
first step is to establish some basic empirical facts
regarding how knowledge modulates attention. To this
end, we used eyetracking as a relatively direct measure of
selective attention during knowledge-based category
learning.

How knowledge might affect attention

Our study is guided by three open questions regarding how
prior knowledge might affect attention during learning1.
The first question concerns whether knowledge induces any
change to what is attended. On one hand, many theorists
have suggested that knowledge exerts its effect by directing
attention to some sources of information at the expense of
others (Murphy & Medin, 1985; Pazzani, 1991; Wisniewski,
1995). For example, if a subset of category features can be

related to a common theme, it is natural to suspect that
thematic knowledge might direct attention to those features
and away from others (see Kaplan & Murphy, 2000, for
discussion). However, there is also ample reason to believe
that knowledge affects learning not via attention but rather
by changing how features are encoded. It is well known that
memory depends on the “depth” or meaningfulness of the
encoding process (e.g., Bower, Clark, Lesgold, & Winzens,
1969; Craik & Lockhart, 1972; Craik & Tulving, 1975),
suggesting that knowledge might speed category learning
simply because of the better feature memory it supports. In
addition, knowledge might allow classification to become an
act of inference based on semantic understanding of the
category. Consistent with these possibilities, research has
shown that models like Baywatch and KRES that incorpo-
rate encoding and inferential processes but not selective
attention are nonetheless sufficient to account for numerous
effects of knowledge on category learning. Thus, our first
goal is to determine whether knowledge indeed has any
effect on selective attention.

Assuming that knowledge affects attention, a second
question concerns the time course of that effect. Some
theorists suggest that the role of knowledge is to preselect
dimensions (or hypotheses) for further testing (Keil,
1981). For example, Pazzani’s (1991) rule-based PostHoc
model initially tests hypotheses involving features that are
relevant to goals (knowledge) associated with the catego-
ry. Kruschke (1993) suggested that his ALCOVE model
can account for prior knowledge by setting initial attention
weights on the related dimensions higher than on the
unrelated ones. Consistent with this proposal, some studies
have reported an effect of knowledge that emerged very
early in category learning (e.g., Heit, 1995; Kaplan &
Murphy, 2000). Alternatively (or in addition), the effect of
knowledge might increase during the course of learning as
a result of observing category members. Because prior
knowledge consists of representations in semantic memo-
ry, people may need to observe multiple category
exemplars in order for a common theme to become
sufficiently active in memory and thus noticed (see Heit
& Bott, 2000, for discussion). In addition, a learner may
only begin to make use of knowledge when a simpler
strategy (e.g., one-dimensional rule-testing) fails to yield
an acceptable solution. Thus, our second question is
whether any effect of knowledge on attention is limited
to which sources of information learners initially consider
or whether it can emerge as a result of experience with
category members.

Assuming that attention shifts as a result of observing
category members, a third question concerns whether error
feedback is required to mediate those shifts. Popular models
that account for category learning in the absence of prior
knowledge assume that learners respond to error feedback

1 We use the term “attention” to refer to the overt perceptual attention
required to obtain information about features of a stimulus. This
notion of attention should be distinguished from an alternative
interpretation common in the category learning literature in which
attention refers to the weight that a stimulus dimension has on the
ultimate categorization decision (also referred to as “decision
weights”). This distinction is important because, for example,
although a categorizer may obtain feature information from many
stimulus dimensions via overt (perceptual) attention, those dimensions
may have unequal influence on how an object is classified.
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by shifting attention to stimulus dimensions that will reduce
error in the future (e.g., Kruschke, 1992, 2001). This error-
driven account might be extended to thematic category
learning, because, for example, negative feedback might
serve as a cue indicating to the learner to use prior
knowledge (or to use different knowledge), which in turn
might induce a shift in attention to features related to that
knowledge. Alternatively, shifts in attention may also arise
in the absence of error. That prior knowledge affects how
subjects spontaneously sort exemplars into categories
(and possibly which features are attended) in category
construction tasks in which corrective feedback is absent
(e.g., Kaplan & Murphy, 1999; Medin, Wattenmaker, &
Hampson, 1987; Spalding & Murphy, 1996) suggests that
attention may shift even on those trials during a supervised
learning task in which error is absent (Blair, Watson, &
Meier, 2009a).

To address these three questions, we conducted an
eyetracking study of supervised category learning in which
a subset of each category features could be related to a
common theme. In cognitive research, eyetracking has
been proven to be an effective tool to study on-line
attention (e.g., Ferreira & Clifton, 1986; Haider &
Frensch, 1999; Just & Carpenter, 1984; Lee & Anderson,
2001; Rayner, 1998). In recent years, it has been
successfully applied to studying selective attention in
category learning in the absence of knowledge (Blair et al.,
2009a; Blair, Watson, Walshe, & Maj, 2009b; Rehder &
Hoffman, 2005a, 2005b; Rehder, Colner, & Hoffman, 2009;
Watson & Blair, 2008). We now use eyetracking to study
how attention is affected by prior knowledge.

Overview of experiments

We constructed two categories of ants labeled “Dax” and
“Kez” from six binary dimensions. Figure 1 presents an
example of the prototypes of the Dax and Kez categories.
Unlike previous studies of thematic category learning
using verbal feature descriptions, we used spatially
separated pictorial features suitable for eyetracking.

Category exemplars were constructed using a one-away
structure that included prototypes of each category
(Table 1). In each category, four related features were
associated with a theme by describing them as useful in
either a cold or a hot climate. The other two neutral
features were unrelated to these themes. Table 2 presents
example feature descriptions for the prototypes in Fig. 1,
where antenna, mouth, forearm, and foot are theme-
related, and tail and wing are neutral. Participants learned
these feature descriptions prior to training to determine
how the themes of cold and hot climate would affect their
subsequent learning. They were provided with no initial
information regarding which feature went with which
category.

Because our materials were novel and required partic-
ipants to first associate each feature to its theme (also see
Krascum & Andrews, 1998), in Experiment 1 we first
conducted a non-eyetracking study to establish whether this
“prior knowledge” will induce standard knowledge effects.
First, to confirm whether such knowledge allows faster
learning, we compared learning performance in the related
condition in which themes were present (as described
above) to an unrelated condition in which themes were
absent (i.e., all six dimensions were neutral to the themes).
Second, in the related condition, we compared learning of
the related dimensions to the neutral ones, to confirm that
the former were learned better than the latter (as in, e.g.,
Heit & Bott, 2000). In Experiment 2, we conducted an
eyetracking study to address the main questions surround-
ing attention and prior knowledge.

Experiment 1

Method

Materials

Dax and Kez categories were constructed from six binary
dimensions: antenna, mouth, forearm, foot, tail, and wing.

A. Dax: Prototype (111111) B. Kez: Prototype (000000)
Fig. 1 Example prototypes
of the Dax and Kez categories
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Table 1 presents a category structure in which the Dax and
Kez prototypes were 111111 (Fig. 1a) and 000000 (Fig. 1b),
respectively. Across subjects, there were four assignments
of features to the Dax/Kez prototypes: 111111/000000,
101010/010101, 010101/101010, and 000000/111111. This
balancing resulted in each feature being paired with each
other and the two themes an equal number of times. In the
related condition, Daxes were related to the cold, tundra-
like theme and Kezes to the hot, desert-like theme. To relate
categories to the themes, four of the six dimensions were
accompanied with theme-related descriptions and the
remaining two had neutral descriptions (see Table 2 for an
example). To cancel out any effect of dimension’s screen
location (e.g., top vs. bottom) or type (e.g., head vs. tail),
different physical dimensions instantiated the roles of the
related and neutral dimensions. Across subjects, the neutral
dimensions were either tail/foot, wing/mouth, or forearm/
antenna, with the remainder being theme-related. In the
unrelated condition, all dimensions were neutral. The
Appendix presents the three types of descriptions (tundra,
desert, or neutral) for each of the 12 features in Fig. 1. The
two experimental conditions (related vs. unrelated), four

Table 1 Abstract structure for the Dax and Kez categories

Dimensions

Exemplars Tail Foot Wing Mouth Forearm Antenna

Dax

D0 1 1 1 1 1 1

D1 1 1 1 1 1 0

D2 1 1 1 1 0 1

D3 1 1 1 0 1 1

D4 1 1 0 1 1 1

D5 1 0 1 1 1 1

D6 0 1 1 1 1 1

Kez

K0 0 0 0 0 0 0

K1 0 0 0 0 0 1

K2 0 0 0 0 1 0

K3 0 0 0 1 0 0

K4 0 0 1 0 0 0

K5 0 1 0 0 0 0

K6 1 0 0 0 0 0

Table 2 Example feature descriptions for the Dax and Kez prototypes in Fig. 1. Four related dimensions were associated with either a cold or a
hot climate. The other two neutral dimensions were unrelated to these themes

Dimension Dax [tundra/cold theme] Kez [desert/hot theme]

Related

Antenna Because the temperature is very low,
parts of ants' eyes (e.g., cornea, iris, pupil)
often freeze and the ants become blind.
When that happens, this thread type of flexible
antennae is used to detect close objects.

Because the air is hot and dry,
the ants are vulnerable to dehydration.
To maintain hydration, the ants use this
fan type of antennae to absorb water
vapor from the air.

Mouth Because the ground is frozen, the ants
need to cut and break tough soil in
search of their food. This type of
mouth with sharp incisors serves
this function.

Because sources of food are covered
with sand, they need to be cleared
before swallowing. The inner surface
of the ants' mouth has short but stiff
hairs that filter out these impurities.

Forearm Because of frequent blizzards,
the ants need to anchor themselves
during high winds. This type of forearm
allows the ant to hold its position.

Because the ants' preys (e.g., fleas) hide
in sand, the ants use this type of
forearm to sweep the sand and
detect the prey.

Foot Because the ground surface is slippery,
the ants need to have wide feet to
maintain their footing.

Because the ground surface is extremely
hot, the ants switch the toe that comes
into contact with the ground in each
step to avoid burning.

Neutral

Tail The ants feed proteins stored in the
humps to their larvae using the sharp
nozzle in the end of tail.

The ants lay a large number of eggs
at a time. This trumpet-shaped tail
allows the ants to deliver a large number
of eggs.

Wings While flying, the ants control
their rapid changes in direction
by adjusting the fore- and rear-flaps
in each wing.

The ants have red spots in the wing ends.
The color becomes brighter in the mating
season by the hormones produced in the gray area.
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assignments of features to categories and three assignments
of related/neutral dimensions resulted in 24 experimental
cells.

Participants

Participants were 30 New York University undergraduates
who volunteered for course credit. They were randomly
assigned to the 24 cells with the constraint of at least one
person in one cell. This resulted in 14 and 16 participants in
the related and unrelated conditions, respectively.

Procedure

The experiment consisted of three phases: knowledge
acquisition, category learning, and a single-feature test.
During knowledge acquisition, participants studied 12
features. Each screen displayed an ant with one visible
feature and the other five features were hidden behind gray
rectangles (see Fig. 2, for an example). Below the ant were
descriptions about the visible feature. Participants studied
the 12 features at their own pace by navigating 12 screens
with left/right arrow keys. The bottom of each screen
displayed its number (1–12), and the presentation order of
the features was randomized for each participant. At this
point, no information was provided regarding which
category a feature would be associated with during
training.

To ensure learning, participants were required to take a
multiple-choice test followed by a recall test. Both tests
consisted of 12 questions, one for each feature. In the
multiple-choice test, a question presented an ant with one
visible feature, and participants chose one of the four
alternatives (Fig. 2). The order of the questions was
randomized for each subject. Immediate feedback was
provided for each question, and after the test, the total

number of errors. When any error occurred during the test,
participants were returned to the initial screens for
additional study and then retook the test that presented
only the questions they missed. This process repeated until
all questions were answered correctly.

The recall test ensured that participants could not only
recognize but also recall the feature descriptions
during category learning (otherwise, there would be no
effects of knowledge). This test was the same as the
multiple-choice test except that participants verbally
described each feature instead of making a choice. The
experimenter provided feedback for each question, and
after the test, the total number of errors. Any error during
the recall test obligated the participant to restart
the knowledge acquisition phase including initial learn-
ing, multiple-choice, and recall tests. This process
repeated until participants answered all recall test ques-
tions correctly. The knowledge acquisition took about 12
minutes.

The category learning phase began with two practice
trials. Training blocks then presented the 14 training
exemplars (Table 1) in random order. Each trial began
with a cross fixation (+) appearing for 1.8 s followed by
presentation of an exemplar. Participants classified the
exemplar by pressing “z” for Dax or “?/” for Kez.
Feedback was provided in words below the exemplar
(“Correct” or “Wrong”) and the exemplar remained visible
for 3.8 s after the response. For the practice trials, features
were replaced with geometric shapes, and one trial
displayed positive feedback and the other trial displayed
negative feedback. Training ended after two errorless
blocks in a row or after the 15th block. Participants were
informed of how close they were to this goal after each
block.

In the single-feature test, participants classified 12
features (as they did during training) randomly presented
in each trial (as in Fig. 2). No feedback was provided. After
each choice, participants rated confidence in the decision by
positioning a slider on a scale whose left and right ends
were labeled “Very Uncertain” and “Very Certain.” The
slider could be set to 21 distinct positions, and responses
were scaled to a range from 0 to 100. The whole
experiment took about 50 minutes.

Results

There were no effects of the counterbalancing factors in any
of the following analyses, and thus the results are collapsed
over these factors. Participants were very accurate in the
tests during knowledge acquisition. No participant made
more than a total of seven errors; 22 participants committed
no errors. Related (0.97) and unrelated (0.98) participantsFig. 2 An example of a multiple-choice question
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were both equally accurate (t < 1), suggesting that the
materials were easy to learn.

In category learning, 12 (of 14) related and 14 (of 16)
unrelated participants reached the learning criterion of two
consecutive errorless blocks. The related learners reached
the criterion in fewer blocks (5.50) than the unrelated
learners (8.57), t(24) = 2.85, p < .01, while committing
fewer total errors (8.67 vs. 19.07), t(24) = 3.29, p < .01.
These results replicated past findings (e.g., Murphy &
Allopenna, 1994) and confirm effectiveness of our material
in inducing the knowledge effect. Classification RTs
decreased during training with no differences between the
related versus unrelated conditions.

In the single-feature test, we asked whether related
learners showed better learning of the related dimensions
than the neutral ones (e.g., Heit & Bott, 2000). Table 3
indicates that the related learners were more accurate on
the related dimensions (0.89) than the neutral ones (0.71),
t(11) = 1.79, p = .10. They also classified the related
dimensions faster (2.9 s) than the neutral ones (4.1 s), t(11) =
1.48, p = .17. Although these effects did not reach full
significance, to obtain a more sensitive measure, we
computed signed confidence ratings in which the ratings
for correct trials were set to [0–100] and those for
incorrect trials were negated to [–100–0]. More positive
signed confidence ratings reflect more accurate and
confident responding; zero reflects chance responding.
Consistent with the accuracy and RT measures, the ratings
in the related condition were significantly higher for the
related (67.1) than for the neutral dimensions (37.0),
t(11) = 1.82, p < .05.

We also compared learning of the neutral dimensions
across conditions. We found that the neutral dimensions
were learned no worse in the related condition as compared
to the neutral condition (ps > .20 on all measures), a result
consistent with previous studies showing that prior knowl-
edge helps learning without hurting learning of knowledge-
unrelated information (e.g., Kaplan & Murphy, 2000). In

the General Discussion we will consider reasons for this
lack of difference in the learning of neutral features.

Discussion

Experiment 1 replicated standard results in thematic
category learning. First, learning occurred in fewer blocks
with fewer total errors in the related than in the unrelated
condition. Second, single-feature tests showed better learn-
ing of the related dimensions than the neutral ones
(marginal differences on accuracy and RT, significant
differences on signed confidence ratings). Together, these
results confirm that the knowledge effect is obtained even
when the “prior knowledge” is acquired during an
experimental session.

Experiment 2

The goal of Experiment 2 was to answer our three main
questions about how knowledge affects attention to theme
related versus neutral dimensions during learning by
replicating Experiments 1’s related condition with an
eyetracker. Because the purpose of the unrelated condition
was only to confirm that our new materials induced
standard knowledge effects, that condition was omitted in
Experiment 2.

Method

Materials

The materials were the same as in Experiment 1.

Participants

Participants were 24 New York University undergraduates
who volunteered for $10. They were randomly assigned in

Related condition Unrelated condition

Related dimensions Neutral dimensions Neutral dimensions

Experiment 1

Accuracy 0.89 0.71 0.76

Signed confidence rating 67.1 37.0 43.8

RT (seconds) 2.9 4.1 3.5

Experiment 2

Accuracy 0.91 0.70

Signed confidence rating 73.6 29.1

RT (seconds) 2.6 4.0

Table 3 Single-feature
test results from Experiments 1
and 2 (learners only)
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equal numbers to one of the four assignments of features to
categories and to one of three assignments of related/neutral
dimensions.

Procedure

The procedure was the same as in Experiment 1, with a
few additional steps for eyetracking during category
learning. Participants were first fitted and calibrated to
the eyetracker (SMI system sampling left-eye at 250 Hz).
Each trial began with a drift correction that compensated
for small movements of the eyetracker on the participant’s
head. To ensure participants’ use of focal vision to obtain
feature information, we used a gaze-contingent display in
which all areas of the screen were blurred except for a
circular area around their current point of fixation. After
each classification response, auditory feedback was
provided, and the whole exemplar was blurred but
remained on the monitor for 4 s after the response.
Following two practice trials, each training block ran-
domly presented 14 exemplars. The experiment lasted
about an hour.

Eyetracking measures

The eyetracker yields, for each trial, a stream of fixations
and their corresponding x-y screen locations and durations.
We defined six circular areas of interest (AOIs) that
encompass the features displayed on the screen2. Using
the fixations that occurred within the AOIs and before the
classification response, we computed four measures in each
trial.

The first is the number of dimensions observed in each
trial. This was a binary measure for each dimension (i.e.,
observed or unobserved), and thus it ranged from 0 to 4 for
the related dimensions and from 0 to 2 for the neutral ones.
The second, fixation probability (0–1), indicates the
probability that a related or a neutral dimension was
fixated in a trial. It was computed by dividing the number
of dimensions observed by 4 for the related and by 2 for
the neutral dimensions. The third, proportion fixation
number (0–1), was computed by dividing the number of
fixations to the related dimensions by total number of
fixations to all dimensions. The fourth, proportion fixation
time (0–1), was computed by dividing the fixation time to
the related dimensions by total fixation time to all
dimensions. The proportion measures were compared
against 0.67 (= 4/6) to reflect the different number of
related and neutral dimensions.

Results

Basic learning results

Once again, participants were very accurate (0.97) in the
tests during knowledge acquisition. No participant com-
mitted more than a total of seven errors; 12 committed no
errors. During training, 20 (of 24) participants reached the
learning criterion of two consecutive errorless blocks (6.5
blocks; cf. 5.5 in Experiment 1) while committing an
average of 10.60 errors (cf. 8.67 in Experiment 1).
Classification RTs decreased with more trials but on
average they were 0.9 s slower than the related learners
in Experiment 1 (possibly because subjects wore eye-
tracker and were unable to use peripheral vision to obtain
feature information, i.e., gaze-contingent display).

Single-feature test

Table 3 presents single-feature test results. Consistent with
Experiment 1, learners were more accurate on the related
dimensions (0.91) than the neutral ones (0.70), t(19) =
3.31, p < .01. Signed confidence ratings were higher for
the related dimensions (73.6) than for the neutral ones
(29.1), t(19) = 5.75, p < .001. Finally, related features were
classified faster (2.6 s) than the neutral ones (4.0 s),
t(19) = 2.92, p < .01.

Eye fixations

Figure 3 shows the eye-fixations results averaged over the
20 learners during the course of training. Each data point
represents fixations averaged over a subblock of four trials.
In addition, we assumed that learners’ eye movements
would have been identical to those in their last subblock
had they continued classifying for the full 15 blocks (so that
every subject contributes to each data point).

Figure 3a shows that learners initially observed about
three of four related dimensions and gradually increased
fixations to those dimensions over the course of training. In
contrast, they initially observed about 1.5 of the two neutral
dimensions and those fixations gradually decreased.
Figure 3b presents fixation probabilities that equate
different number of related and neutral dimensions. The
figure indicates that learners fixated the two types of
dimensions with about equal probability at the start of
training but became more (less) likely to fixate the related
(neutral) dimensions. By the end of training, they were
more than twice as likely to fixate the related dimensions
than the neutral ones (0.89 vs. 0.35).

A 2 × 2 within-subjects ANOVA was conducted on the
fixation probabilities in Fig. 3b with dimension type
(related vs. neutral) and subblock (first vs. last) as factors.

2 For the 20 subjects who learned, 81% of the fixations during training
were to those AOIs and the rest were to other areas of the screen.
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There was a main effect of dimension type, F(1, 19) =
17.61, MSE = .087, p < .001, confirming the greater chance
of fixating the related dimensions. There was no main
effect of block (p > .10) but a significant interaction
between dimension type and subblock, F(1, 19) = 26.53,
MSE = .051, p < .001, confirmed the increase (decrease) in
fixating the related (neutral) dimensions. Paired t-tests in
each subblock (Fig. 3b) revealed that learners were more
likely to fixate the related dimensions than the neutral
ones in all subblocks, p’s < .05, except subblocks 1, 2, 3,
and 6, indicating that they did not have a preference for
attending to the related dimensions until after almost a full
training block.

These results are further supported by the more
sensitive proportion measures in Fig. 3c. Because there
were four related and two neutral dimensions, a value of
0.67 (= 4/6) reflects a bias toward neither dimension type.
The figure shows that both proportion fixation number and
time start off around 0.67 and then shift in favor of the
related dimensions. T-tests comparing the first and last
subblock confirmed increase in both proportions, p’s <
0.001. In addition, both proportions were greater than 0.67
in all subblocks, p’s < .05, except subblocks 1, 2, 5, 6, 7,
and 8. These results are consistent with the fixation
probabilities in Fig. 3b indicating that learners’ preference
for the related dimensions emerged only after the
observation of category members (and the receipt of error
feedback).

Backward learning curves

The previous analyses indicate learners’ gradual shift in
attention to related dimensions during the course of
training. We also asked how that shift relates to error, that
is, whether negative feedback is required for shifts in
attention. To answer this question, we created backward
learning curves (Fig. 4) by translating each subject’s trial
numbers so that their last error occurred on trial 0 (and thus
subblock 0 always included the last error trial). Figure 4
includes ~10 blocks before the last error and ~3 blocks
after. (Trials after the last error include those from the last
two error-free blocks plus those correct trials from the end
of the previous block.) We padded out learner’s eye
movements in their first and last subblocks to the left and
right of Fig. 4, respectively, so that every subject contrib-
utes to each data point.
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Figure 4a presents the number of dimensions observed
in each subblock. Of greater interest are Figs. 4b and c
which present fixation probabilities and proportion fixa-
tion number and time, respectively. First, consider the eye
fixations that occurred before the last error (i.e., on
negative blocks). Figure 4b indicates that the two
probabilities were initially indistinguishable but gradually
increased for the related dimensions and decreased for the
neutral ones. Likewise, Fig. 4c shows that both propor-
tions were initially around 0.67 but gradually increased in
favor of the related dimensions. Paired t-tests in each
subblock that compared fixation probabilities between
related versus neutral dimensions (Fig. 4b) revealed that
learners were more likely to fixate the related dimensions
from the subblock indicated by an arrow, p’s < .05. Both
the proportion fixation number and time measures
(Fig. 4c) were also significantly greater than 0.67 from
the same subblock indicated by an arrow, p’s < .05.
These results indicate that learners began to direct their
attention to the related dimensions a few blocks before the
last error.

Next, consider the eye fixations after the last error. Both
Figs. 4b and c indicate that the shift in attention continued
after the last error, that is, despite the absence of negative
feedback. After the last error, fixation probabilities for the
related dimensions rose from 0.78 to 0.90, and those for the
neutral dimensions dropped from 0.57 to 0.36. A 2×11
within-subjects ANOVA was conducted on the fixation
probabilities (Fig. 4b) with dimension type (related vs.
neutral) and subblock (1 to 11) as factors. There was a
main effect of dimension type, F(1, 19) = 22.92, MSE =
.717, p < .001, confirming the greater chance of fixating
related dimensions. There was no effect of subblock (F < 1),
but a significant interaction between dimension type and
subblock, F(10, 190) = 5.58, MSE = .027, p < .001,
indicated the increase (decrease) in fixating the related
(neutral) dimensions. Considering the two types of dimen-
sions separately, fixation probabilities increased from sub-
block 1 to subblock 11 for the related dimensions and
decreased for the neutral dimensions, p’s < .05. In Fig. 4c,
the two proportions also showed a reliable increase from the
subblock 1 to 11, p’s < .01.

Individual variation

We asked whether the patterns of eye fixations in Figs. 3
and 4 were manifested consistently by all learners. We
identified six learners whose eye movements were similar

Fig. 4 Backward learning curves from Experiment 2. (a) Number of
related/neutral dimensions fixated. (b) Probability of fixation to the
related/neutral dimensions. (c) Proportion fixation number/time
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to one another but distinct from the group average. As
compared to other subjects, this group fixated all six
dimensions at the start of training, showed at best only a
small preference for the related dimensions before commit-
ting their last error, and learned the categories very quickly
(average number of total errors was 3.0). Although we do
not wish to over-interpret the performance of a small
number of subjects, we think it likely that these individuals
recognized the category themes before the start of classi-
fication training (i.e., during the knowledge acquisition
phase), and thus learned the categories quickly because
they only needed to learn which theme went with which
category label. Nevertheless, just as with the group data in
Fig. 4, these subjects shifted attention away from neutral
dimensions after their last error. Note that the gradual shift
of attention away from neutral dimensions implied by
Figs. 3 and 4 was not an artifact of averaging over subjects;
examination of the eye movements of individual subjects
revealed that those shifts were indeed gradual for the large
majority of subjects.

Relating eye fixations to feature learning

Finally, we investigated whether more eye fixations to a
dimension during training resulted in better learning of
that dimension. Accordingly, we performed a simple
regression for each participant where a proportion fixation
number was used to predict the signed confidence ratings
from the single-feature test (average R2 = .45). The
weight assigned to the proportion fixation number aver-
aged over subjects (298.0) was significantly greater than
0, t(19) = 4.33, p < .001, indicating that for each 0.10
increase in the proportion fixation number, the signed
confidence rating increased by 29.8. That is, more
fixations to a dimension led to better learning of that
dimension. In addition, the mean intercept (9.1) did not
differ from 0 (t < 1), indicating that no learning of a
dimension occurred if it was never fixated. Similar results
were obtained when proportion fixation time was used as a
predictor.

We also asked whether the better learning of related
dimensions could be explained solely by the greater number
of fixations they received. We conducted additional per
subject regressions in which a variable coding whether the
dimension was related (1) or neutral (0) was added to the
proportion fixation number as a predictor. In this analysis
(average R2 = .70), both proportion fixation number
(209.3), t(19) = 2.66, p < .05, and dimension type (28.8),
t(19) = 2.45, p < .01, were significant predictors. That is,
the signed rating increased by 20.9 for each 0.10
increase in proportion fixation number and by 28.8 when
a dimension was related rather than neutral. Thus, the

better learning of related versus neutral dimensions was
partially but not fully mediated by the extra attention
they received. Similar results were obtained when
proportion fixation time was used as a predictor.

Discussion

Experiment 2 answered our three main questions regarding
the effects of knowledge on attention. First, eye fixations
showed that prior knowledge indeed affects what category
information is attended, as learners ended up allocating
more attention to related dimensions than neutral ones.
Second, learners showed no initial tendency to fixate
related dimensions. Rather, they gradually shifted attention
to related dimensions during the course of training. Third,
this shift in attention continued after the classification
problem was solved, that is, in the absence of negative
feedback. Finally, although eye fixations during training
were a significant predictor of feature learning at test, they
did not fully mediate the better learning of the related
dimensions.

General discussion

This article has addressed how prior knowledge affects
attention to features of to-be-learned categories. Although
numerous investigators have considered the possibility that
knowledge affects attention, without direct evidence such
proposals have remained speculative. We now discuss the
implications our results have for the three questions we
posed in the Introduction and for models of knowledge-
based category learning. The final section relates knowl-
edge’s effect on attention to others it has on category
learning.

An effect of prior knowledge on attention

Our first question was whether in fact knowledge induces
any change to selective attention. Earlier we noted how
knowledge might exert its effect solely through how
category information is encoded or by allowing classifi-
cation to become an act of inference in which people
reason from features to category membership. Instead, we
found that a preference for the related versus neutral
features emerged in learners after about a block training.
By the end of training, these subjects were more than
twice as likely to fixate the related features. This finding
is the first direct confirmation of the proposal that
knowledge directs attention to knowledge-relevant infor-
mation (e.g., Heit & Bott, 2000; Kruschke, 1993; Murphy
& Medin, 1985; Murphy & Allopenna, 1994; Pazzani,
1991).
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These results have implications for models of knowl-
edge-based learning. Past studies have shown that both
KRES and Baywatch correctly predict the faster learning in
the presence of knowledge and the better learning of related
features versus neutral ones (Heit & Bott, 2000; Rehder &
Murphy, 2003). However, these models predict poorer
learning of neutral features not because of reduced attention
but because of various forms of cue competition that arise
from error-driven learning. The processes used to explain the
better learning of related features are analogous to those used
by the Rescorla-Wagner learning rule to account for the
phenomenon of overshadowing in animal learning (Kamin,
1969; Rescorla & Wagner, 1972); the faster learning of the
related features results in error being reduced more rapidly,
which slows the formation of associations between the
neutral features and the category label.

However, it is well known that many standard effects of
cue competition can arise from not only error-driven
learning but also from attentional mechanisms (Kruschke,
2001, 2003; Kruschke & Blair, 2000; Kruschke et al., 1999;
Macintosh 1975; Sutherland & Mackintosh, 1971). The
present results show that attentional effects occur in knowl-
edge-based category learning as well—because learners
attend the neutral features less often, they will be learned less
well than the related ones. Thus, neutral features are likely at a
double disadvantage in learning, as both reduced error and
reduced attention result in them being more weakly associated
with the category label. (Later we will identify additional
processes that may compensate for this reduced learning of
neutral features).

The second implication that our eye movement results
have for models concerns how items ended up being
categorized at the end of training. That neutral features
are less strongly associated with the category label of
course means that they contributed less to learners’
accurate classification performance. But on top of that,
at the end of training the neutral features were fixated less
often than the related ones. In other words, the neutral
features were at a double disadvantage in classification as
well—they provided a relatively weak source of evidence
for category membership that was largely ignored
anyway.

Other studies provide evidence suggestive of an effect of
knowledge on attention during classification. For example,
Lin and Murphy (1997) found that subjects were more
sensitive to features of novel artifacts that were relevant to
the artifacts' stated purpose as compared to unrelated
features even when the stimuli were presented for only
50 ms (and followed by a mask) (also see Luhmann, Ahn,
& Palmeri, 2006; Palmeri & Blalock, 2000). But these
results may have been due either to the greater weight on
knowledge related features during classification or to the

greater attention those features received during training. In
contrast, the present study provides unambiguous evidence
for an effect of knowledge on attention during both initial
learning and subsequent classification.

That models like Baywatch and KRES ignore the fact
that neutral features receive fewer attentional resources
means that they have mistakenly attributed the poorer
learning of those features solely to effects of error-driven
cue competition. And, doing so means that they have
mistakenly attributed neutral features’ limited influence
on final classification performance solely to their poorer
learning. In other words, in the absence of attentional
mechanisms that direct resources toward knowledge
relevant information, Baywatch and KRES mischaracter-
ize the effects of prior knowledge on how features
are learned and their ultimate role in classification
performance.

Knowledge selection and construction in response
to observed category members

The second question we asked concerned the time course of
the effect of knowledge on attention. Earlier we reviewed
proposals suggesting that the impact of knowledge con-
sisted solely of selecting which sources of information are
considered at the start of learning (e.g., Heit, 1995;
Kruschke, 1993; Pazzani, 1991). Instead, we found that
learners’ preference for the knowledge-related dimensions
increased as training progressed. Indeed, at the start of
training learners were no more likely to fixate related
dimensions than neutral ones.

It is important to note that the studies of Heit (1995) and
Pazzani (1991) that documented early effects of knowledge
differed from the present one in a crucial way, namely, that
the category labels being predicted (attending parties and a
balloon inflating, respectively) were already familiar to
subjects and so provided, right from the start of learning, a
cue to what prior knowledge was likely to be relevant (also
see Wisniewski & Medin, 1994; Wisniewski, 1995). But
although category labels are sometimes familiar, the labels
of most new categories are themselves new (e.g., the label
“iPod” was initially as opaque to you as “Kez” was to our
subjects). In these cases, prior knowledge must enter
instead through the semantic associates of features of
category members. But because there are many features
and each have many associations, determining which
semantic representations are relevant to the current learning
problem will often occur only after several category
members are observed.

Heit and Bott (2000) labeled the process by which
observations activate relevant semantic representations as
a “knowledge selection,” and, like us, emphasize that
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many observations may be required before relevant
knowledge is identified. For example, although our
subjects may have tried to make use of feature descriptions
with phrases such as “slippery ground”, “low tempera-
ture”, and “hard soil”, it may not have been immediately
obvious how those phrases were related to each other.
However, repeated presentation of the features (and
repeated recall of the feature descriptions) eventually
allowed them to triangulate onto what these features had
in common: that the ground was slippery because it was
icy (rather than merely wet), that the soil was hard because
it was frozen (rather than just highly compacted), and both
of these things were true because the temperature was not
just “low” but below freezing. And of course learners only
began to direct attention toward theme-relevant features
after they started to realize that the ant was adapted to a
cold, icy environment. In contrast, models like Baywatch
and KRES, assume that knowledge is in place from the
start of training rather than being constructed in response
to observed category members.

Of course, how quickly relevant knowledge is activated
will depend on how effectively observed category members
serve as retrieval cues for that knowledge. Although it
appeared to start only at the end of the first block of
training in our study, it may occur more quickly with other
sorts of materials. For example, whereas Heit and Bott
(2000) found that subjects were no more accurate in
classifying related features after the first training block
when learning church and office buildings (labeled “Does”
and “Lees”, respectively), they were when the categories
were types of tractors and race cars (see Kaplan & Murphy,
2000, for another example of knowledge effects that
emerge early in learning). Even in the present study, the
delayed effect of knowledge might have been due to the
fact that it was provided as part of the experiment and thus
may not have been encoded as strongly (or retrieved as
readily) as real-world semantic representations. But regard-
less of when effects of knowledge begin, the import of the
present study is in demonstrating that those effects are not
limited to merely preselecting which stimulus dimensions
are attended.

The unnecessary role of error in attending
knowledge-relevant information

Our third question was whether error feedback is required
to mediate shifts in attention to knowledge-relevant
information. We noted that all current accounts of how
attention changes during learning are based on error. For
example, ALCOVE predicts gradual shifts in attention to
stimulus dimensions that reduce error (Kruschke, 1992).

Hypothesis testing models also assume that attention shifts
between dimensions when classification errors result in the
rejection of old rules (Nosofsky et al., 1994; also see
Kruschke & Johansen, 1999). But, contra this account,
attention continued to shift to the related dimensions even
after subjects learned to classify all items, that is, in the
absence of negative feedback. Thus, error is not a necessary
condition for knowledge-induced changes in attention.

We propose two possible explanations for shifts in
attention in the absence of negative feedback. The first is
the processes of theme discovery we have described, that is,
through the activation of semantic representations common
to several category features. In our experiments, merely
observing features of to-be-classified stimuli may have
been sufficient for learners to activate related representa-
tions, enabling the discovery of the tundra and desert
themes. In fact, the extensive literature documenting
knowledge effects in unsupervised category construction
tasks suggests that the discovery of category themes can
occur in the absence of any sort of feedback (Kaplan &
Murphy, 1999; Medin et al., 1987; Spalding & Murphy,
1996). That learners in Experiment 2 shifted attention to
theme-related dimensions after errors ceased suggests that
spontaneous theme elaboration can also occur during
supervised classification learning. For example, the relat-
edness of the four knowledge-related dimensions need not
have occurred at the same time—learners may have noticed
the thematic relationship between two or three of the related
dimensions before committing their final error and discov-
ered the others afterwards.

A second reason that attention might shift without error is
that it is likely that our cognitive systems are trying not only
to increase accuracy but also decrease response time—all
else being equal, a faster classification is more adaptive than
a slower one. Indeed, the response times of learners in
Experiment 2 decreased from 8.7 s at the point of their last
error to 4.4 s at the end of training. One way that latency can
be decreased is by gathering less information in preparation
of a decision, and of course to maintain accuracy low quality
sources of information should be discarded before higher-
quality ones. On this account, the need for speed led our
learners to recognize that fewer dimensions were needed for
accurate performance—in our category structure only three
of six dimensions were required for perfect classification.
Given a choice, the poorly learned neural dimensions were
the first to go (see Nelson & Cottrell, 2007, for one
computational implementation of this idea).

Moreover, studies have found shifts in attention in the
absence of even positive feedback. For example, Blair et al.
(2009a) found that learners continued to optimize attention
even after a criterion of 24 correct trials was reached and
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feedback stopped altogether. Of course, attentional shifts in
the absence of feedback pose problems for all category
learning models that tie attentional learning to error-driven
mechanisms (e.g., Kruschke, 1992).

These possibilities suggest that knowledge-induced
attention shifts can be both a cause and an effect of
learning. On the one hand, prior knowledge can direct
attention to information needed for learning. But attention
shifts can also reflect learning that has already occurred, as
when less valuable sources of information are bypassed in
order to respond more rapidly.

Attention versus encoding, inference, and interpretation
in knowledge-based category learning

Finally, we also asked whether the effect of prior
knowledge on category learning can be understood as
being fully mediated by its influence on attention. The
answer is that it cannot. Although eye movements to
knowledge-relevant features were indeed predictive of their
greater learning, we found that those features were learned
better than neutral ones even controlling for eye fixations.
We now review several mechanisms via which knowledge
may influence learning besides attention.

First, there is evidence for the sort of encoding
processes enabled by prior knowledge we have men-
tioned. Although we found a learning advantage for
related over neutral features in the presence of prior
knowledge in Experiment 1, we also found that these
neutral features were leaned no worse than neutral
features in the unrelated control condition. These results
replicate those by Kaplan and Murphy (2000) who also
found no evidence that neutral features were learned
worse in the presence of knowledge. These results are
surprising given the standard error-driving learning
accounts responsible for cue competition we have
reviewed. They are doubly surprising in the light of our
results that neutral features are also attended less often.
We believe that these results have arisen because
knowledge affects not just how features are attended but
also how they are processed and encoded. For example,
Kaplan and Murphy also found evidence that learners
attempted to assimilate the supposedly neutral features to
the categories’ themes (also see Heit, Bott & Briggs,
2004). In other words, when knowledge is present,
learning is not a zero-sum game. Instead, it provides the
knowledge structures that promote the effective encoding
of many sources of information, even those that are only
peripherally related to that knowledge.

Second, we have also mentioned how in many cases
prior knowledge allows classification to become an act of

inference. For example, in Heit and Bott’s (2000) study,
subjects’ mental representation of Doe buildings probably
included the fact that they were “church like,” suggesting
that during classification they used observed features to
infer the concept “church” and from that the concept label
“Doe” (this inferential process is explicit in their Baywatch
model). Consistent with this interpretation, Heit and Bott
found that learners classified a feature as “Doe” even if it
was never observed during training so long as their prior
knowledge indicated that it was typical of churches. Other
studies provide evidence of the inferences in service of
classification that knowledge supports (Rehder & Kim,
2009; Rehder & Ross, 2001). Indeed, recall Murphy and
Medin’s (1985) example of classifying a partygoer who
jumps into a pool as drunk—one reasons from aberrant
behavior to its underlying cause even if one has never before
observed drunken swimming. Clearly, classification perfor-
mance on novel items cannot be explained in terms of how
those items were attended and encoded during training.

Finally, prior knowledge can also influence how stimuli
are interpreted in the first place. For example, like the
studies of Pazzani (1991) and Heit (1995) we have
reviewed, Wisniewski and Medin (1994) used familiar
category labels but, unlike those studies, used ambiguous
pictorial stimuli. They found that the category labels
influenced how the pictures were interpreted. For example,
in the same picture, a character was interpreted either as
“dancing” when subjects were told the pictures were drawn
by creative versus noncreative kids (dancing was taken to
be a sign of creativity) or as “climbing in a playground”
when told they were drawn by children who lived in cities
versus farms (playgrounds are in cities but not on farms).
For present purposes, the important point is that these
differences in interpretation do not necessarily require
differences in attention—the same stimulus can be attended
equally, but interpreted differently.

In summary, although we think that attention is an
important vehicle by which knowledge influences category
learning, it also exerts its influence through other means,
including how stimulus items are encoded, the inferential
processes it supports, and how features are interpreted.
Nevertheless, models such as Baywatch and KRES will
remain incomplete until they include mechanisms by
knowledge activated in response to observed category
members and which then directs attention to toward
knowledge-relevant information.
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Appendix

Antenna (0)Antenna (0)

0t: The ants need to photosynthesize amino acids to sustain their life. Because 
the daytime is short, they use this fan type of antennae to maximize the 
surface area exposed to the sunlight. 

0d: Because the air is hot and dry, the ants are vulnerable to dehydration. To 
maintain hydration, the ants use this fan type of antennae to absorb water 
vapor from the air. 

0n: The ants use sunlight and moonlight to orient themselves. This fan-like 
antennae allows to absorb enough light for purpose of orientation.

0t: The ants need to photosynthesize amino acids to sustain their life. Because 
the daytime is short, they use this fan type of antennae to maximize the 
surface area exposed to the sunlight. 

0d: Because the air is hot and dry, the ants are vulnerable to dehydration. To 
maintain hydration, the ants use this fan type of antennae to absorb water 
vapor from the air. 

0n: The ants use sunlight and moonlight to orient themselves. This fan-like 
antennae allows to absorb enough light for purpose of orientation.

Antenna (1)Antenna (1) 1t: Because the temperature is very low, parts of ants' eyes (e.g., cornea, iris, 
pupil) often freeze and the ants become blind. When that happens, this thread 
type of flexible antennae is used to detect close objects. 

1d: Because the temperature is very high, the ants need to dissipate excess body 
heat. This thread type of antennae promotes heat dissipation. 

1n: The ants become blind at night and use this thread type of antennae to detect 
close objects. 

1t: Because the temperature is very low, parts of ants' eyes (e.g., cornea, iris, 
pupil) often freeze and the ants become blind. When that happens, this thread 
type of flexible antennae is used to detect close objects. 

1d: Because the temperature is very high, the ants need to dissipate excess body 
heat. This thread type of antennae promotes heat dissipation. 

1n: The ants become blind at night and use this thread type of antennae to detect 
close objects. 

Foot (0)Foot (0) 0t: Because the ground surface is extremely cold, the ants conserve body heat 
by switching the toe that comes into contact with the ground in each step. 

0d: Because the ground surface is extremely hot, the ants switch the toe that 
comes into contact with the ground in each step to avoid burning. 

0n: The ants communicate through chemicals called pheromones. Each of these 
three toes releases a unique chemical to convey different messages. 

0t: Because the ground surface is extremely cold, the ants conserve body heat 
by switching the toe that comes into contact with the ground in each step. 

0d: Because the ground surface is extremely hot, the ants switch the toe that 
comes into contact with the ground in each step to avoid burning. 

0n: The ants communicate through chemicals called pheromones. Each of these 
three toes releases a unique chemical to convey different messages. 

Foot (1)Foot (1) 1t: Because the ground surface is slippery, the ants need to have wide feet to 
maintain their footing. 

1d: Because of the sandy soil, the ants have wide feet that prevent them from 
sinking below the surface.

1n: The ants protect themselves from enemies approaching from behind by 
kicking with these sharp protrusions. 

1t: Because the ground surface is slippery, the ants need to have wide feet to 
maintain their footing. 

1d: Because of the sandy soil, the ants have wide feet that prevent them from 
sinking below the surface.

1n: The ants protect themselves from enemies approaching from behind by 
kicking with these sharp protrusions. 

Materials for Experiments 1 and 2 

The features and their associated knowledge are presented. There were 12 features, two features

for each of the six dimensions. For each feature, three types of knowledge (i.e., Tundra, Desert, & 

Neutral) were invented resulting in 36 descriptions in total.  
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Forearm (0)Forearm (0) 0t: Because the ground is slippery in the ants' environment, the forearm with 
thorn-like protrusions helps the ants to move without slipping. 

0d: Because the ants' prey (e.g., fleas) hide in sand, the ants use this type of 
forearm to sweep the sand and detect the prey. 

0n: When the ants engage in a fight, they use this saw-like forearm to tear the 
enemy apart. 

0t: Because the ground is slippery in the ants' environment, the forearm with 
thorn-like protrusions helps the ants to move without slipping. 

0d: Because the ants' prey (e.g., fleas) hide in sand, the ants use this type of 
forearm to sweep the sand and detect the prey. 

0n: When the ants engage in a fight, they use this saw-like forearm to tear the 
enemy apart. 

Forearm (1)Forearm (1)
1t: Because of frequent blizzards, the ants need to anchor themselves during 

high winds. This type of forearm allows the ant to hold its position. 
1d: Because of strong direct sunlight, the ants dig deep into the ground in order

to be cool when they rest. This type of forearm helps the ants to do the job 
easier and faster. 

1n: The ants sometimes plunder other ants' colony of eggs. This hook-type of 
forearm is useful in digging in search of the eggs.

1t: Because of frequent blizzards, the ants need to anchor themselves during 
high winds. This type of forearm allows the ant to hold its position. 

1d: Because of strong direct sunlight, the ants dig deep into the ground in order
to be cool when they rest. This type of forearm helps the ants to do the job 
easier and faster. 

1n: The ants sometimes plunder other ants' colony of eggs. This hook-type of 
forearm is useful in digging in search of the eggs.

Mouth (0)Mouth (0)
0t: Because sources of food are frozen and tough, the ants mash and grind them

using the upper and lower parts of the mouth before swallowing. 
0d: Because sources of food are covered with sand, they need to be cleared 

before swallowing. The inner surface of the ants' mouth has short but stiff 
hairs that filter out these impurities.  

0n: The ants are herbivorous. This long mouth is used to grind tough fibroid 
materials in plants before they are swallowed.

0t: Because sources of food are frozen and tough, the ants mash and grind them
using the upper and lower parts of the mouth before swallowing. 

0d: Because sources of food are covered with sand, they need to be cleared 
before swallowing. The inner surface of the ants' mouth has short but stiff 
hairs that filter out these impurities.  

0n: The ants are herbivorous. This long mouth is used to grind tough fibroid 
materials in plants before they are swallowed.

Tail (0)Tail (0)
0t: Because water tends to exist in a frozen state, the ants acquire water by 

collecting dew drops with this trumpet-shaped tail early in every morning. 
0d: Because the air is dry and water is scarce, the ants need to collect water 

whenever possible. This trumpet-shaped tail is used to collect rain during the
rare rainstorm. 

0n: The ants lay a large number of eggs at a time. This trumpet-shaped tail 
allows the ants to deliver a large number of eggs.

0t: Because water tends to exist in a frozen state, the ants acquire water by 
collecting dew drops with this trumpet-shaped tail early in every morning. 

0d: Because the air is dry and water is scarce, the ants need to collect water 
whenever possible. This trumpet-shaped tail is used to collect rain during t
rare rainstorm. 

0n: The ants lay a large number of eggs at a time. This trumpet-shaped tail 
allows the ants to deliver a large number of eggs.

 

 

 

 

 

 

 

 

 

 

Mouth (1)Mouth (1)

1t: Because the ground is frozen, the ants need to cut and break tough soil in 
search of their food. This type of mouth with sharp incisors serves this 
function. 

1d: Because the air is dry and the sunlight is strong, food dries out quickly. T
ants hold their food in the cavity of their mouth on the way to their nest so 
that the food does not become dry. 

1n: The ants need to transport food to their colony. This mouth allows them to 
hold the food in the cavity of their mouth until they arrive at their colony. 

1t: Because the ground is frozen, the ants need to cut and break tough soil in 
search of their food. This type of mouth with sharp incisors serves this 
function. 

1d: Because the air is dry and the sunlight is strong, food dries out quickly. The
ants hold their food in the cavity of their mouth on the way to their nest so 
that the food does not become dry. 

1n: The ants need to transport food to their colony. This mouth allows them to 
hold the food in the cavity of their mouth until they arrive at their colony. 
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