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Abstract The distribution of latencies and interresponse
times (IRTs) of rats was compared between two fixed-
interval (FI) schedules of food reinforcement (FI 30 s and FI
90 s), and between two levels of food deprivation.
Computational modeling revealed that latencies and IRTs
were well described by mixture probability distributions em-
bodying two-state Markov chains. Analysis of these models
revealed that only a subset of latencies is sensitive to the pe-
riodicity of reinforcement, and prefeeding only reduces the
size of this subset. The distribution of IRTs suggests that be-
havior in FI schedules is organized in bouts that lengthen and
ramp up in frequency with proximity to reinforcement.
Prefeeding slowed down the lengthening of bouts and in-
creased the time between bouts. When concatenated, latency
and IRT models adequately reproduced sigmoidal FI response
functions. These findings suggest that behavior in FI sched-
ules fluctuates in and out of schedule control; an account of
such fluctuation suggests that timing and motivation are dis-
sociable components of FI performance. These mixture-
distribution models also provide novel insights on the moti-
vational, associative, and timing processes expressed in FI
performance. These processes may be obscured, however,
when performance in timing tasks is analyzed in terms of
mean response rates.
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Computational modeling

Interval timing is the entrainment of an animal’s behavior to a
target periodicity in the environment, on the basis of an en-
dogenous time-keeping mechanism (Buhusi & Meck, 2005;
Oprisan & Buhusi, 2011). This process is often studied using
fixed interval (FI) schedules of reinforcement. In FI schedules,
the first response after some interval has elapsed is reinforced.
The behavior engendered by FI schedules is highly regular:
Following an initial pause, or latency, response rate increases
and plateaus near the end of the interval. This organization of
behavior has been observed in a wide range of species
(Lejeune & Wearden, 1991) and also in Pavlovian condition-
ing. Indeed, Pavlov observed that, in the presence of a tempo-
rally extended conditioned stimulus, well-trained animals ini-
tially pause before responding continually until the expected
time of reinforcement (Pavlov, 1927; Rescorla, 1967; Vogel,
Brandon, &Wagner, 2003). The resemblance between FI per-
formance and performance in Pavlovian analogues has stim-
ulated much theory development (Harris, 2015; Kalafut,
Freestone, MacInnis, & Church, 2014; Molet &Miller, 2014).

The foundation of many theories of timing is a basic algo-
rithm first formalized by Treisman (1963). Briefly, onset of a
stimulus, signaling the to-be-timed interval, empties an accu-
mulator and initiates the emission of pulses from a pacemaker
to the accumulator (together, these comprise the internal
clock). Once the pulse count in the accumulator becomes sim-
ilar to a pulse count criterion sampled from memory, a target
response (e.g., reporting that 10 s have elapsed) is emitted.
Following reinforcement, pulses in the accumulator update
memory. This simple structure yields a temporal distribution
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of the target response centered on a proportion of the to-be-
timed interval (Gibbon, 1977).

Theories of timing typically differ in how they instantiate the
components of the pacemaker-accumulator algorithm. For in-
stance, the behavioral theory of timing suggests that transitions
between behavioral states constitute pulses (Killeen &
Fetterman, 1988; Machado 1997), whereas the multiple time-
scales theory of timing suggests that the clock is a form of mem-
ory decay (Staddon, 2005; Staddon, Chelaru, & Higa, 2002;
Staddon & Higa, 1999). More recently, theorists have attempted
to ground this basic mechanism into biologically plausible neural
networks (Karmarkar & Buonomano, 2007; Oprisan & Buhusi,
2011) and in drift diffusion models that appear to approximate
neuronal dynamics (Simen, Balci, Desouza, Cohen, & Holmes,
2011; Simen, Rivest, Ludvig, Balcı, & Killeen, 2013). The chal-
lenge for these theories is to account for a variety of classic
properties of interval timing. In the context of FI schedules, this
includes the sigmoidal response function and the scalar property
(Guilhardi & Church, 2005; Machado, Malheiro, & Erlhagen,
2009). However, these aggregate properties of behavior provide
a relatively weak criterion for selecting among models of timing,
because most of these models, despite their different assump-
tions, provide a reasonable account of such properties. Other
properties of timing performance, such as its responsiveness to
motivational manipulations, may provide more informative
criteria for selecting between models of timing.

Accounting for the effect of motivational manipulations on
timing performance involves some substantial challenges.
Recent studies suggest that timing and motivation processes
are intimately related (Avlar et al., 2015; Balcı, 2014;
Kirkpatrick, 2014). Consistent with this notion, neural circuits
implicated in interval timing also regulate incentive motiva-
tion processes (Berridge & Kringelbach, 2013; Coull, Hwang,
Leyton, & Dagher, 2012; Kirkpatrick, 2014). However, such
conclusions are often drawn from theoretical frameworks that
assume that, while in a timing task, subjects are always en-
gaged in timing. Such an assumption is inconsistent with a
substantial amount of data that suggest that responsiveness to
the temporal regularities of periodic stimuli fluctuates between
trials (Daniels, Fox, Kyonka, & Sanabria, 2015; Daniels,
Watterson, et al., 2015; Freestone, Balcı, Simen, & Church
2015; Lejeune & Wearden, 1991; Mazur, Wood-Isenberg,
Watterson, & Sanabria, 2014; Mika et al., 2012; Sanabria &
Killeen, 2008). More specifically, these data suggest that, at
the beginning of each trial, subjects enter either a timing state,
emitting target responses generated by a timingmechanism, or
they enter a nontiming state, emitting target responses ran-
domly. Alternation between these two states may reflect a
more general fluctuation in behavioral control by operant
schedules (Brackney, Cheung, Neisewander, & Sanabria,
2011; Cheung, Neisewander, & Sanabria, 2012; Shull, 2004;
Shull, Grimes, & Bennet, 2004; Shull, Gaynor, & Grimes,
2001, 2002; Gibbon, 1995; Myerson & Miezen, 1980).

Performance in FI schedules is thus likely an expression of
cycling into and out of multiple behavioral states until reinforce-
ment is obtained. Although previous studies have attempted to
implement models embodying this notion (Guilhardi & Church,
2005; Harris, 2015; Kirkpatrick, 2002), their implementation in
FI schedules remains poorly characterized and has yet to be fully
appreciated. Validation and implementation of fluctuation
models in the analysis of FI performance would provide clarity
on whether or not timing and motivation are related processes
(Balcı, 2014; Balcı et al., 2010; Belke&Christie-Fougere, 2006;
Galtress&Kirkpatrick, 2010; Galtress,Marshall, &Kirkpatrick,
2012; Kirkpatrick, 2014; Ludvig, Balcı, & Spetch, 2011;
Ludvig, Conover, & Shizgal, 2007; Plowright, Church,
Behnke, & Silverman, 2000; Sanabria, Thrailkill, & Killeen,
2009). Specifically, if motivation and timing are not dissociable,
manipulations of motivation should influence performance in
the timing state; if motivation and timing are dissociable, ma-
nipulations of motivation should influence performance only in
the nontiming state. The latter findingwould reinforce the notion
that timing is robust to changes in the motivational state of the
animal (Gibbon, 1977, 1995).

Thus, the purpose of this study was two-fold: (1) to validate
a generative model of FI performance by isolating the poten-
tial stochastic processes underlying individual components of
FI performance, and (2) to determine which of those processes
are affected by schedule and motivational manipulations.
Using strategies formulated by Killeen, Hall, Reilly, and
Kettle (2002), this study pursued these goals by conducting
a microstructural analysis of performance (Cheung et al.,
2012) in two FI schedules and two levels of food deprivation.

Figure 1 shows a schematic of how behavior is organized in
an FI trial. In a well-trained animal, performance in an FI trial
begins with a latency, followed by responses of various dura-
tions (RDs) that alternate with interresponse times (IRTs). In this
study, a theoretically motivated generative model of latencies
and IRTs was derived from a general model of operant perfor-
mance (Brackney et al., 2011). For RDs, the empirical data were
leveraged to recover aggregate performance. According to this
general model, underlying each component is a two-state

Fig. 1 Illustrative diagram of performance in a fixed-interval (FI) trial.
Time moves from left to right. Performance begins with a latency and is
followed by a series of responses (black bars) of variable duration (RD)
separated by interresponse times (IRTs). RDs and IRTs repeat until the
reinforcer is delivered following a response
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process wherein the animal either enters a schedule-controlled
state (latencies are timed, IRTs are short) or it enters an alterna-
tive state (latencies of random length, IRTs are long). The anal-
ysis also determined the extent to which the parameters that
generate IRTs change as a function of time in the FI.

For two groups of food-deprived rats, head entries into a food
receptacle were reinforced according to an FI 30-s (group FI30)
or an FI 90-s (group FI90) schedule, until performance stabilized
according to a predefined criterion. FI90 rats were then exposed
to a prefeeding manipulation for five sessions. Following data
collection, a model-space investigation was conducted to deter-
mine whether the full complexity of a two-state static or dynam-
ic model was justified to describe each component of perfor-
mance. Then, the effects of schedule and prefeeding manipula-
tions on parameter estimates were assessed. Finally, a simulation
of FI performance based on parameter estimates was conducted
to determine the likelihood that the selected model and param-
eter estimates generates the observed performance.

Method

Subjects

Sixteen male Wistar rats (Charles River Laboratories,
Hollister, CA), divided into two cohorts (groups FI30 and
FI90), served as subjects. Rats arrived on postnatal day 60
and were pair-housed immediately upon arrival. Rats were
housed on a 12:12 h light cycle, with dawn at 1900 h; all
behavioral training was conducted during the dark phase of
the light cycle. Behavioral training and food restriction proto-
cols were implemented shortly after arrival. Access to food
was reduced daily from 24, to 18, 12, and finally 1 h/day.
During behavioral training, food was provided 30 min after
the end of each training session, such that at the beginning of
the next session weights were, on average, 85 % of mean ad
libitum weights estimated from growth charts provided by the
breeder. Water was always available in home cages. All ani-
mal handling procedures followed National Institutes for
Health guidelines and were approved by the Arizona State
University Institutional Animal Care and Use Committee.

Apparatus

Experiments were conducted in eight MED associates (St.
Albans, VT, USA) modular test chambers (305 mm long,
241 mm wide, and 210 mm high), each enclosed in a sound-
and light-attenuating box equipped with a ventilation fan that
provided masking noise of approximately 60 dB. The front and
back walls and the ceiling of test chambers were made of
Plexiglas; the front wall was hinged and served as a door to
the chamber. The floor consisted of thin metal bars positioned
above a catch pan. One of the two aluminum side panels served

as a test panel. The reinforcer receptacle was a square opening
(51-mm sides) located 15 mm above the floor and centered on
the test panel. The receptacle provided access to a dipper (MED
Associates, ENV-202 M-S) fitted with a cup (ENV-202C) that
could hold 0.01 cc of a liquid reinforcer (33 % sweetened
condensed milk diluted in tap water; Great Value brand,
Walmart, Bentonville, AK). The receptacle was furnished with
a head-entry detector (ENV-254-CB) with a temporal resolu-
tion of 10 ms. A house light located behind the wall opposite to
the test panel could dimly illuminate the test chamber.
Experimental events were arranged via a MED PC interface
connected to a PC controlled by MED-PC IV software.

Procedure

All training sessions for each group were conducted once
daily, 7 days a week.

Phase 1: Chamber and reinforcer acclimation Each session
began with a 3-min warm-up period during which the house
light was on. After completion of this warm-up period, each
trial began by turning off the house light. Reinforcement was
programmed according to a fixed-time (FT) 30-s schedule of
reinforcement for group FI30 and a FT 90-s schedule of rein-
forcement for group FI90. The end of the interval was follow-
ed by a 5-s reinforcer and onset of the house light, which was
on until the completion of the intertrial interval (ITI). The ITI
was in effect until the rat removed its head from the reinforce-
ment receptacle for 2 s. For FI30 and FI90 rats, each session
lasted 60 and 180 min, respectively, or until 60 reinforcers
were earned. Although the duration of sessions for each group
was different, it ensured a similar number of trials per session.
The number of head entries into the reinforcement receptacle
during every FT interval was measured; all rats had to make
30 or more head entries in a session to progress to the next
phase. This phase lasted five sessions.

Phase 2: FI training FI-training sessions were similar to
those in Phase 1, but reinforcement was delivered only if (a)
the rat’s head was detected inside the reinforcer receptacle,
and (b) the FT had elapsed. Reinforcement was therefore pro-
grammed on a fixed-interval (FI) 30-s schedule for group FI30
and a FI 90-s schedule for group FI90. Training continued for
a minimum of 20 sessions and until all rats demonstrated
stable temporal control. Stability was determined by a nonsig-
nificant (p > .05) regression of the median and interquartile
range (IQR) of latencies (the interval between trial onset and
first head entry) over five consecutive sessions. FI30 rats were
trained for 23 sessions; FI90 rats were trained for 25 sessions.

Phase 3: Prefeeding Sessions were similar to those in Phase
2, except that the daily 1 h of free access to food in the home
cage was provided immediately before the session instead of
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30 min after the session. This phase was implemented for five
sessions. Only rats in group FI90 were exposed to this phase.

Data analysis

During Phases 2 and 3, the time of occurrence and duration of
every head entry into the reinforcement receptacle was mea-
sured in every trial, except for the first trial in each session,
which was considered a warm-up trial. Data from the last five
sessions of Phase 2 served as steady-state baseline perfor-
mance for groups FI30 and FI90; data from the five sessions
of Phase 3 served as prefeeding performance for group FI90.
For each baseline and prefeeding trial, each component of FI
responding—latency, interresponse times (IRTs), and re-
sponse durations (RDs)—was obtained.

Latencies and IRTs were modeled and quantitatively ana-
lyzed on the basis of well-specified theories of timing and
operant behavior. Because no such theory is available for
RDs, these were not modeled and were only qualitatively
examined. Latencies and IRTs were fit to variations of a
shifted dynamic gamma-exponential mixture distribution.
Each model is described conceptually in its corresponding
results section. Appendix A details the mathematical rationale
for the latency and IRT models, and the relation between these
models.

The model of each component of FI performance contains
nested models that correspond to different hypotheses about
the distribution underlying each component. These models
were fit and validated using maximum likelihood estimates
(MLE; Myung, 2003) and the corrected Akaike information
criterion (AICc; Burnham&Anderson, 2002). AICc is a mod-
el selection criterion that favors models that balance high like-
lihood with low complexity. AICc is asymptotically equiva-
lent to the leave-one-out cross-validationmethod (Fang, 2011;
Stone, 1977). See Appendix B for further details concerning
the model selection process.

Selected models were fit to the baseline data of each FI30
and FI90 rat and to the prefeeding data of each FI90 rat. The
selected models were intended to be general-process models,
in that they provided the best account of the processes under-
lying FI performance in all rats, in two FI durations, and in two
levels of food deprivation. Individual differences are thus
reflected in the variability of parameter estimates. Estimates
of all parameters were analyzed, along with selected statistics
derived from these parameters. Selected estimates and derived
statistics were also rescaled as proportions of the FI. Parameter
estimates and derived statistics, whether rescaled or not, were
log transformed or, in the case of mixture weights, log-odds
transformed for statistical analysis (Cheung et al., 2012). A
two-tailed Grubbs’ test was performed on log-transformed
estimates before each statistical analysis, to detect potential
outliers, because the MLE method sometimes yields extreme
estimates when applied to mixture-distribution models

(Cheung et al., 2012). Outlier data were removed when they
were detected with significance criterion α = .05; in most
instances, outliers were detected with α = .01 and removal
of the outlier did not change the outcome of significance tests.
Statistical analysis consisted of independent t tests or Welch’s
t test (in the case of unequal n because of removal of an
outlier) of the effect of FI schedule (baseline FI30 vs. FI90),
and dependent t tests of the effect of prefeeding (baseline FI90
vs. prefeeding FI90), withα = .05. All parameter estimates are
reported back-transformed ±SEM.

Results

The top panel of Figure 2 shows the mean probability of a
response as a function of time in the FI 30-s and FI 90-s
schedules for groups FI30 and FI90, respectively. Baseline
behavior appears to be under temporal control of the schedule
for FI30 and FI90 rats, as suggested by the progressive in-
crease in response probability,1 plateauing close to the end
of interval. The mean probability of responding at the end of
the interval was slightly higher in FI30 (.80) than in FI90 (.70).

The middle panel of Figure 2 shows the data from the top
panel on a normalized x-axis (time divided by FI duration) and
y-axis (proportion of maximum probability of responding).
During the first 10th of the interval, response probability rose
more rapidly toward its maximum for FI90 than for FI30 rats.
In the remainder of the interval, however, the relative steep-
ness of these slopes was reversed, mostly because of changes
in the slope of response probability in FI90 rats. This suggests
that strict adherence of FI performance toWeber’s lawwas not
observed, a phenomenon reported in past research (e.g., Bizo,
Chu, Sanabria, & Killeen, 2006).

The bottom panel of Figure 2 shows the response probabil-
ity function of baseline and prefeeding FI 90-s performance.
Prefeeding appears to flatten the slope of the response proba-
bility function.

Latencies

Model-space investigation The top panel of Figure 3 shows
the mean empirical cumulative distribution of latencies for
groups FI30 and FI90; the middle panel shows the same data
normalized against the FI duration; the bottom panel shows
group FI90 performance during baseline and prefeeding

1 The representation of response functions as probability of a response
within 1-s bins has an important limitation: whether a head entry within a
bin is 10- or 1,000-ms long, it is counted as one response. Nonetheless,
binned response probability functions are only used here to represent
performance, to evaluate goodness of fit, and as a criterion for successful
simulation. The performance parameters that served as the basis for anal-
ysis were estimated from individual latencies and IRTs.

32 Learn Behav (2017) 45:29–48



conditions. Following previous research (Daniels, Fox, et al.,
2015; Daniels, Watterson, et al., 2015; Sanabria & Killeen,
2008), it was assumed that, at the beginning of a trial, subjects
often—but not always—enter a timing state, where
responding is sensitive to the periodicity of reinforcement.
Thus, the distribution of latencies was modeled as a
weighted mixture of timed (gamma distributed) and
nontimed (exponentially distributed) latencies. The pa-
rameters of the mixture distribution of latencies are listed
in Table 1 (for details, see Appendix A).

The results of the latency model-space investigation are
reported in Appendix C, Table 5. The nested gamma and
exponential models provided substantially poorer fits to mean
latencies (see Appendix C; Fig. 11). Of the three models
tested, allowing qL to vary freely between 0 and 1 provided
the best balance between fit and parsimony. The selectedmod-
el was e110 times more likely than the next-best model, in
which qL = 1. Figure 3 shows that mean fits of the selected
mixture model provided an adequate description of the mean
data (for individual fits, see Supplemental Material,
Figures S1–S3).

Fig. 2 Top panel: Mean response function for group FI30 (squares) and
FI90 (circles) as a function of time in the FI. The response function of
each rat is the probability of detecting a head entry as a function of time
(in 1-s bins) in the FI. Middle panel: Mean normalized response func-
tions. Normalization was conducted for each rat by representing time as a
proportion of the FI, and representing response probability as a proportion
of the maximum response probability. Bottom panel: Mean response
function of FI90 baseline (circles) and prefeeding (triangles) performance

Fig. 3 Top panel:Mean empirical cumulative distribution of latencies for
groups FI30 (squares) and FI90 (circles). Middle panel: Mean distribution
of normalized latencies. Normalization was conducted for each rat by
representing time as a proportion of the FI. Bottom panel: Mean distribu-
tion of latencies for FI90 baseline (circles) and prefeeding (triangles)
performance. Solid lines are mean traces of the selected gamma + expo-
nential model. Latencies are organized in 40 bins of equal number of
latencies
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Estimates of the parameters of the selected latency model
are shown in Table 2. According to these estimates, FI30 and
FI90 rats entered a timing state, on average, on 80 % of trials.
When timing, rats produced gamma-distributed latencies of
about 12 s and 45 s for FI30 and FI90, respectively. When
not timing, rats produced exponentially distributed latencies
of about 6 s and 17 s for FI30 and FI90, respectively. Figure 4
illustrates the expression of changes in qL, cL, and kL on the
cumulative distribution of latencies.

Schedule and prefeeding effects on latencies Grubbs’ test
revealed a single outlier, Rat 2 in group FI30, for the estima-
tion of εL and the derived coefficient of variation (CV), p <
.050; these measures of Rat 2 were removed from statistical
analysis. There were significant differences between FI30 and
FI90 performance in estimates of cL, t(14) = 5.549, p < .001,
and kL, t(14) = 2.227, p = .043, the mean, t(14) = 8.819, p <
.001, and standard deviation of the gamma distribution, t(14)
= 10.131, p < .001, and the mean latency predicted by the
model, t(14) = 7.809, p < .001. These parameters and derived
statistics appear to increase as the duration of the FI schedule
increases; all other tests were nonsignificant (all ps > .050).

Values in parentheses in Table 2 are parameter estimates
and derived statistics rescaled relative to FI duration; the same
outliers were detected as before. Independent t tests revealed
no significant differences between FI30 and FI90 performance
in rescaled parameter estimates and derived statistics (all ps >
.050). The absence of significant schedule effects suggests
that all mean parameter estimates and derived statistics are
approximately proportional to the duration of the FI; such a
finding is consistent with the observation of similar CVs in
FI30 and FI90.2 Surprisingly, it appears that both timed and
nontimed latencies are scalar invariant. This is because timed
pulses (which accumulate to a response threshold) and

nontimed pulses (which do not) appear to be emitted at inter-
vals (cL and kL, respectively) proportional to those between
trial onset and reinforcement.

Table 2 also shows the mean parameter estimates and de-
rived statistics for FI90 prefeeding performance. For all po-
tential comparisons, Grubbs’ test revealed a single outlier for
the estimates of εL, cL, qL, and the derived mean and CVof the
gamma distribution: Rat 6 under prefeeding (all ps < .050); it
was removed from statistical analysis for those parameters.
Prefeeding significantly reduced qL, t(6) = 3.498, p = .010,
and increased kL, t(7) = 2.675, p = .032, and the mean latency
predicted by the model, t(7) = 3.501, p = .009; all other tests
were nonsignificant (all ps > .050). These results suggest that
prefeeding increases the prevalence and length of nontimed
latencies.

Interresponse times

Model-space investigation The top panel of Figure 5 shows
the mean IRTs for groups FI30 and FI90 as a function of time
in the interval; the middle panel shows the same data normal-
ized against the FI duration; the bottom panel shows the mean
IRTs for group FI90 as a function of time in the interval during
baseline and prefeeding conditions. Following previous re-
search (Brackney et al., 2011; Shull 2004), it was assumed
that subjects cycle in and out of states of schedule engage-
ment, expressed as bouts of short exponentially distributed
IRTs separated by long exponentially distributed IRTs. Thus,
the distribution of IRTs at time t into each trial was modeled as
a weighted mixture of exponentially distributed within- and
between-bout IRTs, where the former are shorter than the
latter.

Mean IRTs of FI30 and FI90 decreased as a function of
time in the interval, suggesting that the parameters of the mix-
ture distribution of IRTs do not remain constant over the in-
terval. To account for these changes, it was assumed that the
means of the exponential distributions and the odds against
within-bout IRTs (a) could decay exponentially over the inter-
val, (b) such change does not begin until some interval has
elapsed, and (c) mean IRTs reach an asymptote greater than
zero. The parameters of the mixture distribution of IRTs are
listed in Table 3 (for details, see Appendix A). The decay

2 A Bayesian dependent t test conducted in JASP (Love et al., 2015) on
the CVrevealed a small amount of evidence for the null hypothesis but no
evidence for the alternative hypothesis (the log of the ratio of evidence for
the alternative hypothesis = -0.986, where substantial evidence for the
null hypothesis is typically below -1.098; Rouder, Morey, Speckman, &
Province, 2012; Kass & Raftery, 1995). This finding was robust to the
width of the prior distribution. This outcome supports the claim that timed
latencies adhere to Weber’s law.

Table 1 Latency Distribution Parameters (Equation A5)

Parameter Unit Interpretation

qL Proportion of timed latencies.

1 + εL pulses Number of pulses that must accumulate before emission of a timed response (scale parameter of gamma distribution).

cL s Mean interval between pulses (shape parameter of gamma distribution).

kL s Mean non-timed latency (scale parameter of exponential distribution).

Note. Parameter qL is a dimensionless proportion. The mean timed latency is cL (1 + εL); the standard deviation of timed latencies is cL√(1 + εL).
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parameters are expressed and analyzed in terms of their half-
lives, denoted as J1/2, k1/2, and c1/2.

The results of the IRTmodel-space investigation are report-
ed in Appendix C (Table 6). Of the nested models tested, the
dynamic mixture of two exponential distributions provided
the best balance between parsimony and fit to the data when
the mean within-bout IRT, cIt,, remained constant (i.e., αI = 0
and thus c1/2 is indeterminate) for every rat in both FI30 and
FI90 (see Appendix C, Figure 12). For these conditions, and
after correcting for free parameters, this model was at least
nearly as likely as the most complex model, and at least e3.3

= 27 times more likely than the next-best simpler model.
According to this model, JIt and kIt decay exponentially be-
ginning at time τI, and kIt decays to ΩI. This suggests that, as
the FI elapses, the mean bout length (1/JIt + 1) increases, and
the time between bouts decreases to an asymptote. Figure 5
shows that mean fits of the selected mixture model provided
an adequate description of the mean data (for individual fits,
see Supplemental Material, Figures S4–S6).

Estimates of the parameters of the selected IRT model are
shown in Table 4. According to these estimates, the

probability of a within-bout IRT—and, thus, bout length—
increased progressively throughout the interval. Within bouts,
rats responded 2–4 times per second. Bouts were emitted ev-
ery 7–33 s at the beginning of each interval; this time was
reduced by less than half by the end of the interval. Figure 6
illustrates the expression of changes in γI, βI, ΩI, and τI on
mean IRTs as a function of time in the FI.

Schedule and prefeeding effects on IRTs Grubbs’ test re-
vealed the estimate of J1/2 and τI for rat 1 in FI30 in FI90,
respectively, as outliers (ps < .050), and were removed from
analysis. Significant differences between groups FI30 and
FI90 were detected in estimates of kI0, t(14) = 8.85, p <
.001, cI, t(14) = 2.24, p = .042, τI, t(13) = 13.39, p < .001,
J1/2, t(13) = 5.26, p < .001, and k1/2, t(14) = 2.50, p = .025; at
every time point in the FI, estimates of mean IRTs were shorter
for group FI30 than for FI90, t(14) > 2.56, p < .050; all other
tests were nonsignificant (all ps > .050). These results suggest
that, compared to FI30, FI90 performance was characterized
by longer IRTs, with between-bout IRTs and bout lengths
declining later and more slowly.

Table 2 Mean Parameter Estimates and Derived Statistics of the Distribution of Latencies

FI 30 FI 90 FI 90 Prefeeding

M SEM M SEM M SEM

Parameter

qL 0.818 0.061 0.776 0.039 0.574 0.091

1 + εL 4.009 0.621 4.690 .549 9.137 2.527

cL 3.262 (0.109) 0.408 (0.014) 8.633 (0.096) 0.979 (0.011) 7.718 1.149

kL 5.883 (0.196) 1.979 (0.066) 16.618 (0.185) 4.525 (0.050) 34.393 6.672

Derived Statistic

Mean of gamma (s) 12.231 (0.407) 1.226 (0.041) 45.422 (0.505) 5.023 (0.056) 54.659 7.744

SD of gamma (s) 6.237 (0.208) 0.613 (0.020) 19.195 (0.213) 1.305 (0.015) 18.591 1.255

CVof gamma 0.521 0.031 0.476 0.025 0.398 0.054

Mean latency (s) 11.695 (0.389) 1.264 (0.042) 39.411 (0.438) 4.449 (0.049) 78.365 13.131

Note. For parameter interpretation, see Table 1. Values in parentheses are nonparenthetical estimates divided by the corresponding FI. Derived statistics
are computed from parameter estimates. CV is the coefficient of variation; CV = SD / mean. The means, SEM, and rescaled means and SEM do not
contain outliers detected by Grubbs’ test.

Fig. 4 Effects of changes in parameters qL, cL, and kL (Equation A5) on
illustrative cumulative distributions of latencies. Left panel: A reduction
in qL flattens the distribution of latencies and shifts it leftward if, as was
generally observed, the mean timed latency [cL(1 + εL)] is longer than the

mean nontimed latency (kL). Center panel: An increase in cL flattens the
distribution of latencies and shifts it rightwards. Right panel: A reduction
in kL reduces the mean nontimed latency, which is expressed as a steeper
Bbump^ on the left end of the distribution
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Values in parentheses in Table 4 are rescaled parameter
estimates. The same outliers as with nonrescaled parameters
were detected and removed from analysis. Significant differ-
ences between groups FI30 and FI90 were detected in rescaled
estimates of τI, t(13) = 3.96, p = .001, and k1/2, t(14) = 2.21, p
= .044. At t = FI/2, rescaled estimates of mean IRT were
shorter for group FI30 than for FI90, t(14) = 2.28, p = .038;
all other tests were nonsignificant (all ps > .050). These results
suggest that parameter estimates were largely scalar invariant,
except for between-bout IRTs and the time of decay onset,
both of which were significantly longer for group FI90 com-
pared to FI30, even when rescaled.

To determine the relative contribution of each decay pa-
rameter to the within-interval decline of IRTs, γI and βI were
each separately set to zero while keeping all other parameters
at the values reported for each condition in Table 4. Figure 7
shows the impact of each parameter manipulation on the mean
trace of the selected IRT model, compared against the mean
IRTs of FI30 and FI90. Setting γI = 0 and βI = 0 increased
AICc, respectively, for FI30 by 6,055 and 2,718, and for FI90
by 50,640 and 1,231. This analysis suggests that mean IRTs
declined over the course of the FI mainly because response
bouts increased in length over the FI.

Table 4 also shows the mean parameter estimates and de-
rived statistics for baseline and prefeeding FI90 performance.
Grubbs’ test revealed the following estimates as outliers in the
FI90 prefeeding probe: cI and k1/2 for Rat 6, kI0 and τI for Rat
2, and 1/JI0 + 1 for Rat 5; all ps < .050. A significant difference
between baseline and prefeeding was detected in the estimates
of kI0, t(6) > 3.35, p = .020, and J1/2, t(7) = 2.44, p = .044; at t =
0 and t = FI, estimates of mean IRT were longer under
prefeeding compared to baseline, t(7) > 2.64, p < .008; all
other tests were nonsignificant (p > .050). Longer prefeeding
IRTs at the beginning of the interval probably reflect longer
between-bout IRTs. Longer prefeeding IRTs at the end of the
interval appear to reflect shorter bouts: at t = FI, mean esti-
mates of kIt did not vary significantly between conditions,
baseline = 8.76 s, prefeeding = 11.85 s, t(7) = 1.41, p =
.200, whereas mean estimates of bout length (1/JIt + 1) did
vary, baseline = 39, prefeeding = 14, t(7) = 3.41, p = .009.
Taken together, these results suggest that the effects of
prefeeding are largely due to longer between-bout IRTs and
slower rates of bout lengthening, leaving the rate of within-
bout responding relatively intact.

Response durations

The top panel of Figure 8 shows the mean response duration
(RD) of groups FI30 and FI90 as a function of time in the FI;

Fig. 5 Top panel: Mean IRT as a function of time (1-s bins; IRTs were
assigned to the bin in which they started) in the interval for groups FI30
(squares) and FI90 (circles). Middle panel: Mean normalized IRTs (divid-
ed by interval duration) as a function of normalized interval.
Normalization was conducted for each rat by representing time as a pro-
portion of the FI. Bottom panel: Mean IRT as a function of time in the
interval for FI90 baseline (circles) and prefeeding (triangles) perfor-
mance. Solid lines are mean traces of the selected IRT model. Note that
the y-axis is log base 10 and the x-axis is linear

Table 3 IRT Distribution Parameters (Equations A6–A7)

Parameter Unit Interpretation

1/JIt + 1 Responses Mean bout length at time t

cI s Mean within-bout IRT at time t

kIt s Mean between-bout IRT at time t

ΩI s Asymptotic between-bout IRT

τI s Time of decay onset

γI s-1 Rate of decay of JI
αI s-1 Rate of decay of cIt
βI s-1 Rate of decay of kI
δI s Minimum IRT

Note. The selected model specified αI = 0, and thus cIt is constant across
the interval and the t from the subscript may be dropped.
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the middle panel shows the mean normalized RD as a function
of normalized time; the bottom panel shows the mean RD of

group FI90 under baseline and prefeeding conditions.
Interestingly, RDs were generally constant across the duration
of the FI (censored by the FI duration). It is unclear whether
RDs are proportional and thus scale with the FI duration. RDs
appear to be robust to the effects of prefeeding.

Monte Carlo simulation of response functions

The previous sections outlined and evaluated two stochastic
models, one for latencies and one for IRTs. To verify that these
models account for FI performance, a Monte Carlo simulation
was conducted using each rat’s estimated parameters in each

Table 4 Mean Parameter Estimates and Derived Statistics of the Distribution of IRTs

FI 30 FI 90 FI 90 Prefeeding

M SEM M SEM M SEM

Static parameters

1/JI0 + 1 1.593 0.198 1.649 0.205 1.349 0.043

kI0 7.094 (0.236) 1.123 (0.037) 24.743 (0.275) 2.052 (0.023) 32.799 5.476

cI 0.261 (0.009) 0.062 (0.002) 0.459 (0.005) 0.094 (0.001) 0.381 0.037

ΩI 3.024 (0.100) 0.864 (0.029) 6.010 (0.067) 2.221 (0.025) 6.145 2.143

τI 8.647 (0.288) 0.675 (0.022) 39.47 (0.439) 2.527 (0.028) 25.079 5.683

Decay parameters

γI 0.245 0.031 0.075 0.011 0.046 0.009

βI >100* >100* 0.188 0.138 0.051 0.019

Half-lives

J1/2 3.341 (0.111) 0.719 (0.024) 10.764 (0.119) 1.565 (0.017) 19.236 3.751

k1/2 3.053 (0.101) 1.781 (0.059) 18.696 (0.202) 5.400 (0.059) 31.569 9.822

Mean IRT

t = 0 5.041 (0.168) 1.074 (0.036) 16.794 (0.187) 2.369 (0.026) 20.551 5.029

t = FI/2 1.933 (0.064) 0.439 (0.015) 10.069 (0.112) 1.461 (0.016) 9.171 1.509

t = FI 0.408 (0.029) 0.109 (0.003) 0.845 (0.009) 0.107 (0.001) 2.221 0.534

Note. For parameter interpretation, see Table 3. The half-life of each dynamic parameter was calculated as ln(2) divided by its decay parameter [e.g., J1/2
= ln(2) / γI]. Parameter δI = 0.005 s for all rats.

*Estimates for decay rates can be inordinately high when the decay takes on the form of a step-function, that is, an abrupt change from baseline to
asymptotic parameter values.

Fig. 6 Effects of changes in parameters ΩI, τI, γI, and βI on illustrative
mean IRTs over the course of the FI. The standard IRT function (solid
lines) is based on FI30 estimates. It consists of three parts: an initial
constant mean IRT, a very rapid decline, and a subsequent slower
decline. The rapid decline is primarily due to the decay of between-bout
IRTs followed by a slow decline due to the progressive lengthening on
bouts. Top-left panel: A reduction in ΩI yields a deeper rapid decline in
IRTs. Bottom-left panel: Increasing τI delays the time of decay onset.
Top-right panel: A reduction in γI further slows down the slower decline
in IRTs. Bottom-right panel: A reduction in βI slows down the rapid
decline in IRTs

Fig. 7 Mean IRT as a function of time (1-s bins; IRTs were assigned to
the bin in which they started) in the FI for FI30 (left panel, squares) and
FI90 (right panel, circles). Lines are mean traces of the selected IRT
model (solid), changed so γI = 0 (dashed) and βI = 0 (dotted). These
curves suggest that the decline of IRTs over the FI is mainly driven by the
decay of JI, that is, by the increase in bout length. Note that the y-axis is
log base 10 and the x-axis is linear
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FI and condition in order to reproduce the response functions
in Figure 2.

Figure 9 shows a schematic of the simulator. In each trial,
the simulator first sampled either a timed latency from a gam-
ma distribution (1 + εL, cL) with probability qL, or a nontimed
latency from an exponential distribution (kL) with probability 1
– qL. The sampled latency was added to the clock t. Then an
RD was sampled from a dynamic empirical distribution (for
each rat in each condition, the FI was divided into 1 s bins;
each bin was then populated with all the RDs that began in that
bin). The sampled RD was added to t. If t ≥ FI (30 s or 90 s),
then the trial finished. If t < FI, then either a long IRT was

sampled from one exponential distribution (kIt) with probabil-
ity 1 – qIt, or a short IRTwas sampled from another exponential
distribution (cIt) with probability qIt. The sampled IRT was
added to t; then another RDwas sampled, and so on until t ≥ FI.

The simulation was conducted in MATLAB (MathWorks,
Natick, MA). Each run of the simulator consisted of 295 trials
(the approximate number of trials analyzed for each rat under
each condition); 5,000 runs were conducted per rat. Mean
response functions ±2 standard deviations were drawn from
these simulations for each rat.

Figure 10 shows the results of these simulations (see
Supplemental Material, Figures S7–S9, for simulations of in-
dividual rats). The top row of Figure 10 shows the mean
observed and simulated response functions in each FI and
condition. The second and third rows show the mean observed
and simulated response functions of two representative rats
from each group and condition. To assess goodness-of-fit,
both R2 and norm of residuals (n.o.r. = square root of the
sum of square residuals) were calculated and are reported in
Figure 10. These measures of goodness of fit suggest that the
model provides an adequate account of the data. Moreover,
almost all observed means are within 2 standard deviations of
simulated means, indicating that the FI algorithm was likely to
generate the observed data.

Discussion

Each of three components of FI performance—latency to first
response, interresponse times (IRTs), and response durations
(RDs)—was analyzed separately, testing various models
nested within a general framework (see Appendix A). Taken
together, the selected models configure the algorithm depicted
in Figure 9. This algorithm is a generative model of FI perfor-
mance that adequately reproduces the observed aggregate

Fig. 8 Top panel:Mean response duration (RD) as a function of time (1-s
bins; RDs were assigned to the bin in which they started) in the FI for
groups FI30 (squares) and FI90 (circles). Middle panel: Mean normalized
RDs (divided by interval duration) as a function of normalized interval.
Normalization was conducted for each rat by representing time as a pro-
portion of the FI. Bottom panel: Mean RD as a function of time in the
interval for FI90 baseline (circles) and prefeeding (triangles) perfor-
mance. Note that the y-axis is log base 10 and the x-axis is linear.
Plotting only uncensored RDs yielded similar graphs

Fig. 9 A generative model of FI performance, constructed from the
concatenation of latency, RD, and IRT subroutines. The latency and
IRT subroutines are selected models detailed in Appendix A; the RD
subroutine samples from a dynamic empirical distribution of RDs, here
represented by the letter E. Some of the parameters of the IRT distribution
(qIt and kIt) change exponentially as the interval progresses
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response functions (Figure 10) and their underlying compo-
nents (Figures 3 and 5). Ultimately, this generative model is a
general-process model: It reasonably reproduces the perfor-
mance of any rat, in any FI, and under any level of food
deprivation.

Latencies

The analysis of latencies suggests that they are mostly, but not
always, timed (i.e., gamma distributed, centered on a propor-
tion of the FI). On average, about 80 % of latencies were
timed, with a mean equal to about half the FI. Timed latencies
were roughly scalar invariant and robust to changes in rein-
forcer efficacy. Interestingly, such invariance appears to be
driven by changes in the scale parameter of the gamma distri-
bution, providing support to the notion that the speed of the
clock decreases as the duration of the FI increases (i.e., as the
rate of reinforcement decreases; Beam, Killeen, Bizo, &
Fetterman, 1998; Bizo & White, 1994, 1997). In contrast,
the shape parameter of the gamma distribution was not signif-
icantly affected by the schedule or by a decrease inmotivation.
Furthermore, the notion that latencies are generated by a
timing mechanism is consistent with previous research

showing that latencies account for the curvature of FI cumu-
lative records (Gentry, Weiss, & Laties, 1983), are roughly
proportional to the duration of the FI (Lowe, Harzem, &
Spencer, 1979; Lowe & Wearden, 1981; Shull, 1971;
Wearden, 1985; Zeiler & Powell, 1994), and track rapid
within-session changes in the duration of the FI (Higa, 1997;
Ludvig & Staddon, 2004; Sanabria & Oldenburg, 2014;
Wynne, Staddon, & Delius, 1996).

About 20 % of latencies were not timed and had a mean of
about one fifth of the FI. These latencies also appear to be
scalar invariant, suggesting that, similar to timed latencies,
nontimed latencies are sensitive to the passage of time.
Although timing implies sensitivity to the passage of time
and (to some extent) scalar invariance, the opposite is not true:
neither sensitivity to time nor scalar invariance implies timing,
at least not in the sense of expressing the operation of a
pacemaker-accumulator mechanism. Exponentially distrib-
uted intervals suggest a constant probability of responding,
not the accumulation of pulses leading to a response, which
is the defining feature of counting and timing. Scalar in-
variance may simply reflect a positive correlation between
rate of reinforcement and the constant probability of
responding.

Fig. 10 Top panels: Mean empirical response functions (calculated as in
Fig. 2) for each FI and condition plotted against the mean simulated
response function (solid line) ±2 standard deviations (dashed lines).
From left to right, the response functions correspond to FI30 (squares),
FI90 Baseline (circles), and FI90 prefeeding (triangles). Middle and

bottom panels: Response functions for representative rats plotted
against the output of the simulator. Note that representative rats are the
same for FI90 baseline and prefeeding. Each plot also shows mean (top
row) and individual (middle and bottom rows) R2 and norm of residuals
(n.o.r)
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Unlike timed latencies, nontimed latencies are sensitive to
changes in reinforcer efficacy. Specifically, prefeeding in-
creases both the prevalence and mean of nontimed latencies.
Taken together, these findings suggest, contrary to previous
research (Plowright et al., 2000), that parameters governing
the distribution of timed responses are robust to changes in
motivation, and that the effects of motivation on timing per-
formance reflect changes in its nontimed component.

The presence of rapid responding at the beginning of a
schedule of reinforcement is often referred to as burst
responding (e.g., Richards, Sabol, & Seiden, 1993) and has
been observed in other schedules of reinforcement, such as the
differential reinforcement of low rates (Richards et al. 1993;
Sanabria & Killeen, 2008), fixed minimum interval (Mazur
et al., 2014; Mika et al., 2012; Watterson, Mazur & Sanabria,
2015), switch task (Daniels, Fox, et al., 2015; Daniels,
Watterson, et al., 2015), and lever holding (Sanabria &
Killeen, 2008). Similar to nontimed FI latencies, burst-
generated intervals appear to be exponentially distributed
(e.g., Sanabria &Killeen, 2008) and, thus, likely not generated
by a timing mechanism. Although it is unclear what processes
modulate nontimed latencies, in contrast to timed latencies,
they appear to be elicited by the to-be-timed stimulus without
control by a timing mechanism.3 It has been proposed that a
random-response component improves the fit of timing
models to performance in FI (Lejeune & Wearden, 1991),
temporal bisection, and temporal generalization procedures
(Droit-Volet & Izaute, 2005; Droit-Volet & Wearden, 2001).
The reported model-space investigation of latencies (see
Table 5) also supports a two-state model of timing.

Interresponse times

The analysis of IRTs revealed that their distribution, both in FI
30 s and FI 90 s, was well characterized by a mixture of two
exponential distributions with parameters changing exponen-
tially as a function of time into the FI. This characterization is
consistent with those of IRTs in nontiming paradigms, such as
the variable-interval (VI) schedule of reinforcement
(Brackney et al. 2011; Cheung et al., 2012; Conover, Fulton,
& Shizgal, 2001; Shull 2004; Shull et al., 2001; Shull et al.,
2002). Also, mean IRTs in FI 30-s trials and in the last 30 s of
FI 90-s trials were remarkably similar, suggesting that IRTs
are sensitive to the expected time of food. Taken together, the
analysis of IRTs suggests that responses are organized in bouts

separated by relatively long pauses, which are sensitive to
reinforcement expectancy.

The parameters of the dynamic exponential mixture model
may be intuitively mapped onto features of FI performance.
The reciprocal of the within-bout IRT is the rate at which the
operant is emitted when rats are seeking food, often expressed
as Bpeak responding^ around the time of reinforcement
(Roberts, 1981). This IRTscaled up with a longer FI schedule,
but was robust to the proximity of reinforcement and to dep-
rivation level. Between-bout IRTs may reflect fluctuating
levels of motivation that, combined with reinforcement expec-
tancy, are low early in the interval (when the subject is en-
gaged in other, interim behaviors), and increase as the time to
reinforcement approaches (cf., Staddon & Simmelhag, 1971).
Consistent with this interpretation, between-bout IRTs were
longer under prefeeding, at least at the beginning of each
interval, when they were most visible.

Bout length appears to be particularly sensitive to the tempo-
ral proximity of reinforcement. Past research suggests that bout
length expresses a response–reinforcer association that is robust
against changes in motivation (Brackney et al., 2011; Brackney
& Sanabria, 2015). In support of this interpretation, evidence
suggests that food deprivation does not affect VI bout length,
and adding a tandem ratio requirement to a VI schedule yields
longer response bouts, even though rate of reinforcement is
mostly unaffected (Brackney et al., 2011; Brackney &
Sanabria, 2015; Shull & Grimes, 2003; Shull et al. 2004,
2001). The tandem-requirement effect appears to stem from a
selective reinforcement of longer bouts (Brackney et al., 2011;
Brackney & Sanabria, 2015; Killeen, 1969). Changes in bout
length during the FI, however, are inconsistent with this expla-
nation. Bouts initiated early in the FI are reinforced only if they
are long; such selective reinforcement should yield shorter bouts
as the FI elapses, which is the opposite of what was observed.
Moreover, bouts proximal to reinforcement appear to be sensi-
tive to changes in reinforcer efficacy in the FI 90-s schedule.

A potential solution to these inconsistencies posits that the
response–reinforcer association reflected in the length of
bouts is directly related to the underlying associative structure
supported by the schedule and is modulated by reinforcer
efficacy. In VI schedules, the distribution of intervals between
trial onset and reinforcement is typically exponential. This
distribution yields a constant hazard function of reinforce-
ment, supporting a constant subjective expectation that rein-
forcement is available now. In contrast, the hazard function of
reinforcement supported by FI schedules is positive, increas-
ing as the FI increases (Dragoi, Staddon, Palmer, & Buhusi,
2003; Kirkpatrick, 2002; Machado, 1997; Staddon et al.,
2002). It is possible that bout length is shaped by reinforce-
ment (thus explaining tandem-requirement effects in VI
schedules), but also reflects the subjective expectation of re-
inforcement (thus explaining the within-trial pattern of growth
in FI schedules).

3 Alternatively, it might be that nontimed latencies are actually timed
latencies produced by an internal clock that fails to reset between trials
(Roberts, 1981; Church, Meck, & Gibbon, 1994; Matell & Meck, 1999),
despite seemingly salient cues of trial termination (reinforcement, ITI;
Sanabria & Killeen, 2007). In particular, a gamma-exponential mixture
of latencies may result from single pulses carried over from one trial to the
next.
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There are two plausible explanations for the prefeeding-
induced shortening of bout lengths at the time of reinforce-
ment. The first explanation is that this is a mathematical arti-
fact. Reinforcement terminates the ongoing response bout, so
its uncensored length is estimated from the pattern of change of
response bouts over the FI. It is possible that this estimation is
flawed in such a way as to predict shorter (censored) bouts
when bouts are infrequent, such as under prefeeding. The sec-
ond explanation is that the interaction between reinforcer ex-
pectation and motivation directly affects bout length. It is pos-
sible that when the expectation of reinforcement is low (as in
VI schedules and early in FI trials), changes in motivation do
not affect bout length, but when the expectation is high, they
do. Future research may test these hypotheses.

It seems reasonable to propose, consistent with the two-
state description of FI performance suggested by Schneider
(1969), that the time of decay onset (τI) indicates a stepwise
change in expectancy to reinforcement (Gibbon, 1977).
However, timed latencies may also index a stepwise change
in reinforcer expectancy. Despite the similarity in sensitivity
of both parameters to the length of the FI and their robustness
to changes in reinforcer efficacy, estimates of τI were neither
scalar invariant nor positively related to timed latencies: esti-
mates of time of decay onset were either negatively correlated
(in FI 30-s, r = -.18) or nearly zero-correlated (in baseline FI
90-s, -.01 < r < 0) with mean timed latencies. Further research
appears to be necessary to establish the distinct psychological
significance of time of decay onset.

Response durations

Unlike latencies and IRTs, RDs were not modeled and their
empirical distribution was only used to recover aggregate be-
havior. Although not reported, RDs were initially modeled
similarly to latencies and IRTs, using even more complex
and flexible models, and yet simulations based on RD param-
eter estimates diverged substantially from the data. The failure
of the computational model is likely due to the absence of
guidance from a quantitative theory of RDs.

The RD data reported here merits a few qualitative obser-
vations. First, the duration of FI-reinforced head entries ap-
pears to be relatively constant across the FI (see Figure 8).
This observation is in contrast to previous reports suggesting
the duration of a lever press decreases as the time to reinforce-
ment approaches (Roberts & Gharib, 2006). Second, RDs
appear to be systematically longer in FI 90 than in FI 30-s,
even when rescaled proportionally to the FI, suggesting that
they do not follow Weber’s law. Third, RDs do not appear to
be sensitive to changes in reinforcer efficacy. These observa-
tions are potentially informative and useful for the develop-
ment of theoretical models of operant response duration (e.g.,
Gharib, Derby, & Roberts, 2001; Hurwitz, 1954).

Implications for timing research

The concatenation of the stochastic processes underlying la-
tencies and IRTs resulted in a comprehensive generative mod-
el of FI performance. This model adequately reproduced re-
sponse functions of individual animals as well as mean re-
sponse functions. The success of the simulator suggests that
the proposed generative model provides a viable route by
which to understand FI behavior.

Rescaled FI 30-s and FI 90-s response functions partially
overlapped, diverging primarily around the middle of the in-
terval between reinforcers. This divergence suggests an ex-
ception to Weber’s law. Although generally observed in the
temporal dimension (Gibbon, 1977), Weber’s law does not
appear to be universal (Bizo et al., 2006; Ivry & Hazeltine,
1995). In this study, it appears that differences in time to decay
onset (and to a lesser extent decay of between-bout IRTs)
across schedules is primarily responsible for the observed de-
viations from scalar invariance: even when expressed as a
proportion of the FI, the time of decay onset was longer in
FI 90-s than in FI 30-s, yielding a steeper rescaled response
function (see Figure 2, middle panel). The model of FI perfor-
mance proposed in this study effectively isolated this variable
from other variables that did follow Weber’s law.

The proposed generative model of FI performance also
suggests that temporal control in FI schedules is confined to
a subset of latencies and, therefore, estimates of such control
may be isolated from potentially confounding processes. Such
dissociation provides an alternative characterization of perfor-
mance in a common timing paradigm, the peak-interval pro-
cedure. Previous research suggests that the mean and disper-
sion of peak-interval gradients isolate key features of the con-
trol that periodic reinforcement exerts over behavior (Buhusi
& Meck, 2005; Roberts, 1981). This would imply that all
responses observed in the peak procedure are generated by a
timing mechanism. However, recent research suggests that
these features may be best characterized by the distribution
of latencies, or start times (Saulsgiver, McClure, & Wynne,
2006; Taylor, Horvitz, & Balsam, 2007; but see Balci, Ludvig,
& Brunner, 2010, for a discussion of stop times as a potential
measure of timing). This revised interpretation of peak perfor-
mance is consistent with present findings that suggest that (a)
the response run is characterized by random bouts whose
length grows as a function of time in the trial (potentially
driven by a timing process, though it was affected by
prefeeding), and (b) only a subset of latencies is sensitive to
the periodicity of reinforcement. Typical inferences drawn
from the peak procedure thus appear to conflate motivation
and timing (Sanabria et al., 2009).

The dissociation of processes underlying latencies and re-
sponse runs also sheds light on previous research that suggests
that peak-interval performance is sensitive to changes in rein-
forcer efficacy. Such sensitivity is demonstrated by horizontal
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shifts in the peak-interval gradient and in the distribution of
latencies (e.g., Belke & Christie-Fougere, 2006; Galtress &
Kirkpatrick, 2009; Galtress et al., 2012; Ludvig et al., 2007;
Plowright et al., 2000). Based on these effects, it has been
theorized that motivation and timing processes are intimately
connected and thus interact to produce overt behavior
(Kirkpatrick, 2014). This study suggests an alternative explana-
tion: The horizontal shift in the distribution of latencies and in
the peak-interval gradient are likely due to a decrease in the
prevalence of timed latencies, an increase in the mean of
nontimed latencies, an increase in between-bout IRTs, and a
shortening of response bouts around the time when reinforce-
ment is anticipated. These changes do not imply a change in the
operation of the pacemaker-accumulator mechanism; instead,
they suggest a reduction in motivation for the reinforcer, which
results in reduced schedule control and response rate.
Furthermore, this suggestion is consistent with the notion that
reduction in motivation for the reinforcer alters preference for
engaging the FI schedule over alternative behaviors (Gibbon,
1995; Killeen & Pellón, 2013, Sanabria et al., 2009).

The selective expression of the pacemaker-accumulator
mechanism in one component of the distribution of latencies
yields other important predictions. It predicts, for instance, that
changes in reinforcement contingencies, as long as they do not
significantly change the periodicity of reinforcement, should
have a more substantial impact on run rates and IRTs (more
specifically, on the length of response bouts) than on latencies
and postreinforcement pauses. This prediction is consistent
with reported effects of response requirement on FI and FT
performance (Morgan, 1970; Pinkston & Branch, 2004; Shull
& Brownstein, 1975; Shull, Guilkey, & Witty, 1972). The
model also predicts similar selective effects of changes in re-
sponse effort (e.g., minimum force to press a lever); the scant
empirical evidence on this effect is also consistent with quali-
tative model predictions (Gollub & Lee, 1966).

The proposedmodel is consistent with previous attempts to
characterize schedule-controlled behavior in terms of two-
state Markov models (Brackney et al., 2011; Gibbon, 1995;
Harris, 2015; Myerson &Miezin 1980; Shull et al., 2001). For
example, Harris (2015) compared two models of aggregate
fixed-time (FT) performance, a two-state and a continuous
changemodel.Within bothmodels was a nestedmixture mod-
el in which, according to some probability, animals would be
in an engaged state (emitting a response) and, with comple-
mentary probability, in a disengaged state (not emitting a re-
sponse). The two-state model assumed that, as the interval
elapsed, the probability of entering an engaged state increased;
in contrast, the continuous-change model assumed that this
probability was constant, but that the rate of responding in
the engaged stated increased as the interval elapsed. Harris
found that the two-state model provided the best description
of aggregate FT performance. This finding is consistent with
the notion, supported by the present results, that what drives

the decay of IRTs between periodic reinforcers is a progressive
lengthening of bouts (i.e., a progressive increase in the prob-
ability of a within-bout IRT). However, our analysis revealed
that, albeit to a smaller degree than bout length, between-bout
IRTs also change as the interval elapse. This suggests a com-
plexity to FI performance otherwise missed if analyses are
restricted to aggregate data (Hanson & Killeen, 1981).

The present generative performance model is also consis-
tent, to some extent, with the Packet theory of timing (Church
& Guilhardi, 2005; Guilhardi & Church, 2005; Guilhardi,
Keen, MacInnis, & Church, 2005; Guilhardi, Yi, & Church,
2007; Kirkpatrick, 2002; Kirkpatrick & Church, 2003 also see
Dragoi et al., 2003, for an alternative to Packet theory). Packet
theory is the only theory of timing that operates on the as-
sumption of bout-like behavior; it stipulates that responding
in interval schedules of reinforcement is a composite of the
temporal structure of bouts and the rate at which bouts are
generated. According to Packet theory, what drives the in-
creasing response rate across the FI is the increased expecta-
tion for the reinforcer, which yields an increased probability of
a bout. Implementations of the theory produce response bouts
such that, if in the middle of a bout another bout is generated,
then that new bout is concatenated with the previous bout
(Kirkpatrick, 2002); the concatenation of bouts therefore in-
creases as the FI elapses. This process may be reflected in the
proposed model as an increase in bout length over the course
of the FI, and is consistent with our suggestion that bout length
reflects the subjective hazard function of reinforcement sup-
ported by the schedule.

There are, however, a few important differences between
the present model and Packet theory. Packet theory assumes
that latencies are not differentiated from IRTs, both of which
are described by aWald distribution, suggesting that both arise
from a timing process. These assumptions are in conflict with
the present data and with previous research suggesting that (a)
behavior fluctuates into and out of states of schedule control
(e.g., Brackney et al., 2011; Shull et al., 2004), and (b) laten-
cies and run rates characterize two different processes (e.g.,
Gentry et al. 1983; Wearden & Lejeune, 2006). From the
present data, Packet theory would incorrectly infer that
prefeeding affects the timing process.

Limitations and future directions

Levels of food deprivation were only examined in the FI 90-s
schedule and not in the FI 30-s schedule. Although this design
precludes the analysis of any potential interaction between FI
duration and deprivation level, inferences drawn from this
study do not hinge upon the presence or absence of such an
effect. Furthermore, the observation that prefeeding reduced
schedule control without affecting parameters governing
timing or within-bout responding is consistent with previous
research on the microstructure of VI performance (Brackney
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et al., 2011). Future research may aim to generalize the present
findings to a wider range of FI schedules, to examine potential
schedule × motivation interaction effects.

Another potential limitation of the proposed model is that it
is agnostic regarding correlations within and between compo-
nents of FI performance (e.g., consecutive latencies, consecu-
tive IRTs and RDs), and it was evaluated without taking those
potential sequential dependencies into consideration. Prior re-
search has shown interesting patterns of sequential dependency
between latencies (Shull, 1971) and between IRTs (Gentry
et al., 1983). Furthermore, recent research has revealed that
even after animals are well trained, both latencies and run rates
may change as a function of time in the session (Balci et al.,
2010). Future developments of the proposed generative model
may incorporate the relation between components of FI perfor-
mance and their changes within each session.

Conclusion

This study provides evidence that timing processes may be
isolated from other confounding processes using established
models of operant performance. Timing processes appear to
be expressed in a subset of latencies to the first response,
whose distribution is scale-invariant and robust against chang-
es in reinforcer efficacy. Response runs appear to be organized
in bouts whose length increases as the time to reinforcement
approaches and is sensitive to both the duration of the FI and
reinforcer efficacy. The dissociation of these components of FI
performance, and the observation that prefeeding does not
directly affect timed latencies, provides useful insights into
the relation between timing and motivation, and for the devel-
opment of analytical tools for testing hypotheses regarding
timing and its sensitivity to reward value (Galtress &
Kirkpatrick, 2009; Ludvig et al., 2007; Plowright et al.,
2000). Specifically, timing and motivation appear to be
dissociable components of interval timing. Although these
tools were applied to a limited range of data in this study,
they are derived from a single general equation (see
Appendix A), have already been tested in other schedules
of reinforcement, and are capable of reproducing FI per-
formance at various levels of aggregation. Moreover, the
present generative model of FI performance identifies op-
portunities for progress in models of timing, highlighting
the need to refine our understanding of the microstructure
of FI performance.
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Appendix A: Derivation of latency and IRT models

General framework The model of FI latencies and the model
of IRTs are variations of a single general model of interval
production. Latencies are sampled from a mixture of
gamma-distributed (timed) latencies and exponentially dis-
tributed (nontimed) latencies. IRTs are sampled from a mix-
ture of two exponential distributions (between- and within-
bout IRTs), whose parameters change over the course of the
FI. Because setting its scale parameter to 1 reduces a gamma
to an exponential distribution, mixture models of latencies and
IRTs are special cases of a single, gamma-exponential mixture
model, described in this section.

Let X be a random variable that is exponentially distributed
with scale parameter k > 0 and shift parameter δ > 0 [i.e., X ~
exp(k,δ)]. The probability density of X = D, for D > 0, is

p X ¼ Dð Þ ¼ FX Dð Þ ¼
0; if D < δ
1

k
e−

D−δ
k ; if D≥δ

(
: ðA1Þ

Let Y be a random variable that is gamma distributed with
shape parameter 1 + ε, where ε ≥ 0, scale parameter c > 0, and
shift parameter δ > 0 [i.e., Y ~ Γ(1 + ε, c, δ)]. The probability
density of Y = D, for D > 0, is

p Y ¼ Dð Þ ¼ FY Dð Þ ¼
0; if D < δ

1

T 1þ εð Þc1þε
D−δð Þ1þε−1e−

D−δ
c ; if D≥δ

8<
: ;

ðA2Þ
where T(1 + ε) is the gamma function evaluated at 1 + ε. Note
that if ε = 0, then Equation A2 reduces to Equation A1, where
c would be the scale parameter of an exponential distribution.

If Z is a mixture of X and Y with weights of 1 – q and q,
respectively, where 0 ≤ q ≤ 1, then the probability density of Z
= D, for D > 0, is

p Z ¼ Dð Þ ¼ FZ Dð Þ ¼ qFY Dð Þ þ 1−qð ÞFX Dð Þ: ðA3Þ
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Substituting Equations A1 and A2 for FY(D) and FX(D) in
Equation A3,

p Z ¼ D
���D < δ

� �
¼ 0

p Z ¼ D
���D≥δ

� �
¼ qΓ D−δ; 1þ ε; c; δð Þ

þ 1−qð Þexp D−δ; k; δð Þ
:

ðA4Þ

Latency Let ZL be a latency emitted at time t = 0, where the L
subscript stands for latency. Following previous research
(Daniels, Fox, et al., 2015; Daniels, Watterson, et al., 2015;
Mazur et al., 2014; Sanabria & Killeen, 2008), it is assumed
that ZL is the sum of two random variables, one gamma dis-
tributed (the pacemaker model of timing yields an Erlang dis-
tribution of temporal judgments;4 the gamma distribution re-
sults from generalizing this model to allow for fractional
pulses; see Killeen, 1991) and the other exponentially distrib-
uted, with mixture weights qL and 1 – qL, respectively,

p ZL ¼ DLð Þ ¼ qLΓ DL; 1þ εL; cL; δL ¼ 0ð Þ
þ 1−qLð Þ exp DL; kL; δL ¼ 0ð Þ: ðA5Þ

The meaning of each parameter can be found in Table 1 in
the body of the article; the constraints on parameters are as
previously listed. Additionally, δL = 0 because, otherwise, it
would imply that the actual interval being timed is equal to FI
– δL instead of the FI.

Interresponse times (IRTs) Let ZIt be an IRT emitted at
time t, where the I subscript stands for IRT and t stands
for time at which the IRT began (0 ≤ t ≤ FI). Following
previous research (Brackney et al., 2011; Cabrera,
Sanabria, Jiménez, & Covarrubias, 2013; Conover,
Fulton, & Shizgal, 2001; Gibbon, 1995; Hill, Herbst, &
Sanabria 2012; Íbias, Pellón, &, Sanabria, 2015), it is as-
sumed that ZIt is the sum of two shifted exponentially dis-
tributed random variables, with scale parameters cIt and kIt,
where kIt ≥ cIt, shift parameter δI > 0, and mixture weights
1 – qIt and qIt,

p ZIt ¼ DIt

���DIt < δI
� �

¼ 0

p ZIt ¼ DIt

���DIt ≥δI
� �

¼ qItΓ DIt−δI ; 1; cIt; δIð Þ

þ 1−qItð Þexp DIt−δI t; kIt; δIð Þ

: ðA6Þ

The meaning of each parameter can be found in Table 2 in
the body of the article; the constraints on parameters are as
previously listed. Note that δI is included in the model of IRTs;
it is the minimum amount of time necessary emit a response,
typically estimated as the shortest IRT observed (Brackney
et al., 2011; Cheung et al., 2012).

To account for the change in IRTs over the course of the FI,
let JIt = (1 – qIt) / qIt (i.e., the odds against the shorter IRTs).
Assume that JIt , cIt, and kIt are constant between the onset of
the FI and a time τI, where 0 ≤ τI ≤ FI. Beginning at τI,
parameters JIt , cIt, and kIt decay exponentially as a function
of t. Parameters cIt and kIt decay to an asymptote of ΩI, where
kIt ≥ cIt ≥ ΩI.

J It ¼ J I0
cIt ¼ cI0
kIt ¼ kI0

9=
; if t ≤ τ I

J It ¼ J I0e−γI t−τ Ið Þ

cIt ¼ cI0−ΩIð Þe−αI t−τ Ið Þ þΩI

kIt ¼ kI0−ΩIð Þe−β t−τ Ið Þ þΩI

9=
; if t > τ I

: ðA7Þ

JI0, cI0, and kI0 are the parameters of Eq. A6 at the onset of
the FI; γ,α, andβ are decay rates greater than zero, whereα ≥
β (longer IRTs do not decay faster than shorter IRTs, to pre-
vent their decay functions from crossing over).

Appendix B: Model selection with AICc

A model-space investigation was conducted using data from
each group of rats under baseline conditions to determine
which free parameters in Equation A5 (the model of latencies)
and Equations A6 and A7 (the model of IRTs) were justified
for each component of FI performance. All potential nested
models of each component were fit to the data of each rat from
group FI30 and FI90 using the method of maximum likeli-
hood (Myung, 2003). For each model, the maximum likeli-
hood estimate (MLE) was used to compute the corrected
Akaike information criterion (AICc; Burnham & Anderson,
2002). Briefly, AICc favors nested models that balance
goodness of fit (higher MLE) against parsimony (fewer
free parameters); lower AICc are indicative of better bal-
ance. The analysis yielded a selection criterion ΔAICc for
each nested model; ΔAICc of nested model i is the AICc
of nested model i minus the lowest AICc across all models
compared. Thus, the nested model with the lowest AICc
has a ΔAICc = 0, and all other nested models have a
ΔAICc > 0. The simplest constrained nested models with
ΔAICc < 4 were selected (this threshold is recommended
by other researchers; see Brackney et al., 2011; Burnham
& Anderson, 2002) as the model providing the best balance
between fit and parsimony.

4 This assumes an implementation in which interpulse intervals are expo-
nentially distributed (i.e., generated by a Poisson process). Alternative
implementations include normally distributed interpulse intervals (e.g.,
de Carvalho, Machado & Vasconcelos, 2016), which yield normally dis-
tributed temporal judgments. However, when the accumulation of several
pulses is required for responding, Erlang and normally distributed tem-
poral judgments are essentially indistinguishable.
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Appendix C: Model selection outcomes

Fig. 11 Mean empirical cumulative distribution of latencies (squares) for
FI30 (top panel) and FI90 (bottom panel), and mean fit of each model in
Table 5: gamma + exponential (solid line), gamma (dashed line), expo-
nential (dotted line). Latencies are organized in 40 bins of equal number
of latencies

Table 5 Latency Model Selection

Group Model # of free
parameters

MLE AICc ΔAICc

FI30 qL, εL, cL, kL
(gamma + exp)

32 -7558.69 15182.31 0*

qL = 1, εL, cL
(gamma)

16 -7648.77 15401.76 219.49

qL = 0, kL (exp) 8 -8065.11 16146.29 1284.04

FI90 qL, εL, cL, kL
(gamma + exp)

32 -10333.50 20731.92 0*

qL = 1, εL, cL
(gamma)

16 -10675.54 21399.60 667.69

qL = 0, kL (exp) 8 -10908.78 21833.62 1101.70

Note. Models are labeled with the parameters that were allowed to vary.
The number of free parameters for each model is equal to the number of
free parameters allowed to vary multiplied by the number of rats (8).
Models were fit to 2,360 data points for FI30 and for FI90 (~295 per rat).

*The model with the fewest free parameters among those withΔAICc <
4 was selected for each group.

Table 6 IRT Model Selection

Group Model # of Free
Parameters

MLE AICc ΔAICc

FI 30 JI0, cI0 = kI0 8 −9338.13 19892.27 14745.50
JI0, cI0 = kI0, αI = βI 24 −4299.37 8646.73 3500.06
JI0, cI0, kI0, 24 −3953.15 7954.29 2807.62
JI0, cI0, kI0, γI 32 −3145.43 6354.86 1208.26
JI0, cI0, kI0, αI = βI 32 −3439.26 6942.52 1795.92
JI0, cI0, kI0, αI 32 −3684.10 7432.21 2285.61
JI0, cI0, kI0, γI, αI = βI 40 −2957.56 5995.12 848.63
JI0, cI0, kI0, γI, αI 40 −3130.44 6340.88 1194.39
JI0, cI0, kI0, αI, βI 40 −3429.25 6938.50 1792.01
JI0, cI0, kI0, γI, αI, βI 48 −2956.72 6009.43 863.07
JI0, cI0 =ΩI, kI0, γI, βI, δI, τI 48 −2542.86 5181.28 35.35
JI0, cI0, kI0, γI, αI, βI,ΩI 56 −2846.15 5804.31 658.09
JI0, cI0, kI0, γI, αI, βI,ΩI, δI 56 −2535.92 5183.85 37.63
JI0, cI0, kI0, γI, βI,ΩI, δI, τI 56 −2518.32 5143.73 2.41*
JI0, cI0, kI0, γI, αI, βI,ΩI, δI, τI 64 −2509.03 5146.05 0

FI 90 JI0, cI0 = kI0 8 −34644.27 69304.54 33352.62
JI0, cI0 = kI0, αI = βI 24 −26809.98 53668.03 17716.11
JI0, cI0, kI0, 24 −19857.39 39762.86 3810.93
JI0, cI0, kI0, γI 32 −18406.87 36877.87 925.95
JI0, cI0, kI0, αI = βI 32 −19321.66 38707.45 2755.52
JI0, cI0, kI0, αI 32 −19736.85 39537.82 3585.90
JI0, cI0, kI0, γI, αI = βI 40 −18306.65 36693.51 741.59
JI0, cI0, kI0, γI, αI 40 −18387.14 36854.49 902.57
JI0, cI0, kI0, αI, βI 40 −19313.81 38707.82 2755.90
JI0, cI0, kI0, γI, αI, βI 48 −18306.62 36709.53 757.61
JI0, cI0 =ΩI, kI0, γI, βI, δI, τI 48 −17931.15 35956.92 6.66
JI0, cI0, kI0, γI, αI, βI,ΩI 56 −18182.18 36476.75 524.83
JI0, cI0, kI0, γI, αI, βI,ΩI, δI 56 −18209.69 36171.79 219.86
JI0, cI0, kI0, γI, βI,ΩI, δI, τI 56 −17919.76 35950.26 0*
JI0, cI0, kI0, γI, αI, βI,ΩI, δI, τI 64 −17914.83 35958.18 6.25

Note. Models are labeled with the free parameters that were allowed to vary. The
number of free parameters for each model is equal to the number of free parameters
allowed to vary multiplied by the number of rats (8). Models were fit to 11447 and
16277 data points for FI30 and FI90, respectively. *The constrained model with the
fewest free parameters among those withΔAICc < 4 was selected.
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