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Abstract
Recent evidence suggests that the processing of observed actions may reflect an action prediction error, with more pronounced
mediofrontal negative event-related potentials (ERPs) for unexpected actions. This evidence comes from an application of a
false-belief task, where unexpected correct responses elicited high ERP amplitudes. An alternative interpretation is that the ERP
component reflects vicarious error processing, as objectively correct responses were errors from the observed person’s perspec-
tive. In this study, we aimed to disentangle the two possibilities by adding the factor task difficulty, which varied expectations
without affecting the definition of (vicarious) errors, and to explore the role of empathy in action observation. We found that the
relationship between empathy and event-related potentials (ERPs) mirrored the relationship between empathy and behavioral
expectancy measures. Only in the easy task condition did higher empathy lead to stronger expectancy of correct responses in the
true-belief and of errors in the false-belief condition. A compatible pattern was found for an early ERP component (150–200 ms)
after the observed response, with a larger negativity for error than correct responses in the true-belief and the reverse pattern in the
false-belief condition, but only in highly empathic participants. We conclude that empathy facilitates the formation of expecta-
tions regarding the actions of others. These expectations then modulate the processing of observed actions, as indicated by the
ERPs in the present study.
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Monitoring one’s actions plays an important role in goal-
directed behavior, making it possible to adapt performance
quickly when necessary. An important aspect of this is the
recognition of committed errors. For example, when you open
the top drawer in the kitchen looking for a spoon, although
you know that spoons are in the bottom drawer. In this case,
you usually notice your error immediately. The neural pro-
cessing of own errors has been thoroughly investigated over
the past 30 years. In the 1990s, researchers first described a
negative deflection in the event-related potentials (ERPs) of
electroencephalography (EEG) data after error commission
(Falkenstein, Hohnsbein, Hoormann & Blanke, 1991). This
component, peaking within 100 ms after error commission,
is called error negativity (Ne) or error-related negativity

(ERN; Falkenstein et al. 1991; Falkenstein, Hoormann,
Christ & Hohnsbein, 2000; Gehring, Goss, Coles, Meyer &
Donchin, 1993; see also Gehring, Liu, Orr & Carp, 2012;
Holroyd & Coles, 2002).

Error monitoring, however, is not limited to own errors. A
negative deflection in ERPs similar to the ERN has been dem-
onstrated for study participants observing others’ errors. This
deflection is referred to as observer error-related negativity
(oERN; van Schie, Mars, Coles & Bekkering, 2004; see also
Koban & Pourtois, 2014). As the ERN (Falkenstein et al.,
2000; Dehaene, Posner & Tucker, 1994; Ridderinkhof,
Ullsperger, Crone & Nieuwenhuis, 2004; Taylor, Stern &
Gehring, 2007; see also Gehring et al., 2012), the oERN dis-
plays a frontocentral topography and is believed to originate
from the anterior cingulate cortex (ACC) (Miltner, Brauer,
Hecht, Trippe, & Coles, 2004; van Schie et al., 2004; see
also Koban & Pourtois, 2014). Recent findings also indicate
the involvement of other brain regions. Ullsperger,
Danielmeier, & Jocham (2014) suggest the posterior medial
frontal cortex (pMFC) as a generator of performance monitor-
ing components, including the anterior and posterior
midcingulate cortex, as well as presupplementary and
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supplementary motor areas and the posterior dorsomedial pre-
frontal cortex. For action observation specifically, the superior
temporal sulcus might additionally contribute to oERN gen-
eration (Ninomiya, Noritake, Ullsperger, & Isoda, 2018). In
comparison to the ERN, the amplitude of the oERN is smaller
(van Schie et al., 2004; Miltner et al., 2004). Not surprisingly,
it also peaks later relative to the eliciting event (see Gehring
et al., 2012), because it is not time-locked to a self-performed
response but to an observed action. Moreover, its latency
seems to vary between 130 and 300 ms, depending on the
experimental paradigm (Bates, Patel, & Liddle, 2005;
Koban, Pourtois, Vocat, & Vuilleumier, 2010 as opposed to
Carp, Halenar, Quandt, Sklar & Compton, 2009; de Bruijn &
von Rhein, 2012; Miltner et al., 2004; van Schie et al., 2004).
The monitoring of others’ actions can be considered a social
process. For example, it is of particular importance for joint
actions, when own actions are synchronized with others’
(Loehr, Kourtis, Vesper, Sebanz, & Knoblich, 2013;
Moreau, Candidi, Era, Tieri, Aglioti, 2020).

In recent years, the understanding of how performance
monitoring is represented in the human brain and of the pro-
cesses that underlie the ERN and related ERP components has
changed. Increasing evidence supports the assumption that
unexpected events, rather than errors, mainly drive ERP com-
ponents and brain activity previously associated with error
commission or error feedback for self-performed actions
(Alexander & Brown, 2011; Ferdinand, Mecklinger, Kray,
& Gehring, 2012; Wessel, Danielmeier, Morton, &
Ullsperger, 2012). As accuracy and expectancy are usually
confounded, at least for easy tasks, in which errors are rare,
it cannot be differentiated whether an ERP component reflects
an error or an unexpected event. This further applies to the
ERPs associated with observed errors: Do they actually reflect
the accuracy or the expectancy of these actions or both? It is
assumed that when other people’s actions are observed, pre-
dictions are formed that are then compared to the actually
performed actions (i.e. the outcome of the prediction). If the
two do not match, an action prediction error occurs (Burke,
Tobler, Baddeley, & Schultz, 2010; Donnarumma, Costantini,
Ambrosini, Friston & Pezzulo, 2017; Flanagan & Johansson,
2003), which is independent of the valence of the response,
i.e., equally pronounced for an unexpected error and for an
unexpected correct action.

An expectancy effect on a mediofrontal ERP component
for observed actions has indeed been demonstrated in a pre-
vious study by our group. In that study, we applied a paradigm
in which participants observed a person playing a stimulus-
response task, the two-shell-game (seeMethods for details). In
this game, participants have to track under which of two shells
a ball is hidden. Because this task is quite easy, erroneous
responses by the observed person were unexpected (Kobza
& Bellebaum, 2013). The task, however, also entails a false-
belief condition: in this, observers had exclusive access to

task-related knowledge that made correct responses unexpect-
ed. In this condition, the mediofrontal ERP component
showed larger negative amplitudes after (unexpected) correct
than (expected) error responses.

This finding appears to support the assumption that nega-
tive medio-frontal ERPs reflect that something unexpected
happens. However, there may be an alternative interpretation.
In the task we applied, as in real life, the observed person’s
subjective error could differ from the actual, objective error.
To return to the introductory example: When you know that
the spoons have been moved to the top drawer, but the ob-
served person does not, then opening the top drawer looking
for a spoon is objectively correct, but an error from the ob-
served person’s point of view. Objective and subjective error
are dissociated in a false-belief condition, but not in the true-
belief condition. Thus, the mediofrontal ERP component may
also code vicarious error processing: Both conditions for
which higher amplitudes were found, (objective) errors in
the true-belief condition and (objectively) correct actions in
the false-belief condition, are subjective errors to the naïve
observed person. This interpretation in terms of vicarious error
processing appears to be supported by a recent study where
we found that trait empathy, measured by the empathy quo-
tient (EQ) (Baron-Cohen & Wheelwright, 2004), was related
to the processing of those actions in the two-shell-game that
represented errors from the observed person’s perspective
(Bellebaum, Ghio, Wollmer, Weismüller, & Thoma, 2020).
In participants with higher empathy scores, particularly large
amplitudes of the mediofrontal negative ERP component were
found in these conditions. This finding, however, was
interpreted in terms of a facilitatory effect of empathy on the
generation of expectations regarding observed actions. To
summarize, it is not clear what cognitive process is primarily
reflected in ERPs following observed actions—that is, wheth-
er they represent (subjective) accuracy from the perspective of
the observed person and thus vicarious error processing or the
(un)expectedness of the observed action, nor what role empa-
thy plays in this respect. Although it shares some features with
the oERN as described in the literature (van Schie et al., 2004),
we will refer to the ERP component(s) of interest as negative
mediofrontal ERP component in order to leave its functional
significance undetermined.

In the present study, we aimed to disentangle effects of
vicarious errors and action expectancy on the processing of
observed actions by adding the factor task difficulty, because
it should affect the latter but not the former. The two-shell
game described above (Kobza & Bellebaum, 2013) can be
considered an easy task (low level of difficulty), yielding clear
expectations regarding the upcoming response in terms of
accuracy, with correct responses being expected in the true-
belief condition and errors in the false-belief condition. We
reasoned that in a task of high difficulty, expectations would
not be as clear. As there were only two response options,
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observers should expect that the observed person guesses
more often, so that expectations concerning accuracy of the
observed response would be nearer to chance level. In the
introductory example, increasing task difficulty could corre-
spond to looking for the drawer with the spoons in an unfa-
miliar kitchen, where you can more or less only rely on guess-
ing. Comparing ERPs elicited by responses in high and low
difficulty trials allows us to disentangle effects of action ex-
pectancy and vicarious error processing. The correct and in-
correct answers remain the same for both high and low diffi-
culty trials—subjectively, from the observed player’s point of
view, and also objectively. If the mediofrontal ERP compo-
nent reflects vicarious error processing, no effect of task dif-
ficulty would thus be expected. However, if the observers’
expectancy of the observed action determines its processing,
task difficulty should have an effect. This notion is only true,
however, if task difficulty indeed affects the expectancy of the
observed response.

We hypothesized that the amplitude of the mediofrontal
ERP component in response to observed actions that we and
others described before (Bellebaum et al., 2020; Bates et al.,
2005; Kobza & Bellebaum, 2013; van Schie et al., 2004)
primarily reflects the expectancy of the observed responses
rather than vicarious errors. In addition, we aimed to clarify
the role of trait empathy in the processing of observed re-
sponses. By adding the factor task difficulty, we aimed to
create more variance concerning the expected accuracy of
the observed action, so that not only effects of expectancy
and vicarious errors could be dissociated, but also the relation-
ship between empathy and expectation effects regarding ob-
served error monitoring could be examined.

Methods

Participants

A total of 38 participants took part in the study. As Mixed
Linear Models are not yet used comprehensively and methods
for power calculations have only emerged in the last years and
require effect sizes for specific effects and interactions (Green
& MacLeod, 2016), we chose this sample size based on stud-
ies using correlations to investigate the effect of continuous
measures of trait empathy on action monitoring (Lockwood,
Apps, Roiser, & Viding, 2015; Newman-Norlund, Ganesh,
van Schie, de Bruijn, & Bekkering, 2009; Shane, Stevens,
Harenski, & Kiehl, 2009). In these studies, sample sizes were
between 20 and 31 participants. Five of the acquired partici-
pants were excluded from data analyses, either due to techni-
cal problems (four) or because the dependent variables de-
rived from the EEG data were outliers in the analysis (one,
see below for details). The remaining 33 participants (12 men)
were between 18 and 33 years old (M = 22.8, SD = 3.6). They

reported no previous or existing psychiatric or neurological
illnesses and took no regular medication that could affect the
nervous system. All participants had normal or corrected-to-
normal vision and were German native speakers. Participants
received course credit for taking part in the experiment. The
study was approved by the ethics committee of the Faculty of
Mathematics and Natural Sciences at Heinrich Heine
University Düsseldorf, Germany.

Experimental Task

The paradigm in this study was an adaptation of the two-shell
game used by Kobza and Bellebaum (2013) and Bellebaum
et al. (2020). Participants were asked to observe another per-
son as he played the game. Unbeknownst to the participants,
the player was fictitious and the displayed trials were simulat-
ed. The (fictitious) male player was introduced with a name
and a photo, in order to give the impression that the partici-
pants observed the performance of a real person. The game
started with a ball being hidden under one of two shells. After
multiple rotations of the two shells (2, 3, or 4 rotations, ran-
domly determined), the fictitious player pointed a joystick
towards the shell where he believed the ball to be hidden.
The observers saw the game from above, which also meant
that they could see the ball at any time during the trial and
therefore knew immediately whether the observed player was
right or wrong when he moved the joystick at the end of the
trial. The player’s responses were balanced: half were correct
responses (pointing to the shell covering the ball), and the
other half were errors (pointing to the empty shell).

We aimed to modulate the observer’s expectations
concerning the player’s responses by two factors. First, as in
Kobza and Bellebaum (2013), a false-belief condition was
introduced. That meant that the player was tricked in half of
the trials (factor Trial Type): the ball was swapped between
the two shells during one of the rotations. Observer partici-
pants were told that this was almost never visible to the player,
while it was clearly visible to the observers themselves. If the
player was tricked, the observers should expect a wrong rather
than a correct answer of the player, because they believed that
the player could not have seen the trick, and he would there-
fore assume that the ball was under the wrong shell. In the no-
trick condition, respectively, the observers should expect the
player to answer correctly.

As correct responses in the trick condition were errors from
the perspective of the player, we added the factor Difficulty to
the task, which aimed to disentangle vicarious errors and ex-
pectancy: the difficulty of keeping track of the ball was high in
half of the trials, in that the shells were rotated more than three
times faster (255 ms per rotation) than in the previous version
of the experiment (850 ms per rotation), which was now con-
sidered the “slow” and thus low difficulty condition.
Participants were told that due to the speed, it would be more
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difficult for the player to follow the shells with his eyes, so he
had to guess more often in his decision under which shell the
ball was. We assumed therefore that in low difficulty trials,
observer participants would have stronger expectations re-
garding the player’s response accuracy than in the high diffi-
culty condition, for which the expected accuracy would only
be slightly higher or lower than chance level (i.e., 50%) in the
no-trick and trick conditions, respectively.

The experiment was arranged in four blocks of 117 trials
between which participants could take short breaks. In con-
trast to the procedure in our previous studies applying this
paradigm (Kobza and Bellebaum, 2013; Bellebaum et al.,
2020), trick and no-trick conditions were alternated between
blocks, because otherwise the build-up of expectations
concerning response accuracy by the observed person might
have been too complex given that we introduced an additional
factor. In two of these blocks, the player was always tricked, in
the other two blocks, he was never tricked. Observers knew in
advance that the next block would only contain trick or no-
trick trials. The order of the blocks was balanced between
participants; either the first two blocks were trick-trials and
the last two no-trick trials, or vice versa. Before the first block
was started, participants completed 12 practice trials (6 trick
and 6 no-trick trials).

Half of the 234 trials of each Trial Type were high difficul-
ty trials, the other half were low difficulty trials. The low
difficulty and high difficulty trials were presented in random
order in the two blocks of each of the two levels of the Trial
Type factor (trick and no-trick). In half of the trials, the ficti-
tious player answered correctly, in the other half, he answered
incorrectly, by pointing a joystick either at the shell containing
the ball or at the empty shell (factor Accuracy). In total, there
were thus eight conditions: correct and erroneous observed
responses in low difficulty trick trials, high difficulty trick
trials, low difficulty no-trick trials and high difficulty no-
trick trials. It was pseudo-randomized on which side (left or
right) the ball was located at the start and the end of each trial
and how long the trial lasted (two, three or four rotations).

Twelve trials of each Trial Type and Difficulty did not end
with the player’s answer, but with the observer participants
being asked which shell they thought the player would have
chosen. After a static display of 400 ms of the final position of
the shells, the respective question appeared (“Where will
Daniel point the joystick?”) as well as the letters “L” and
“R” for left and right under the corresponding shells. Trials
ended after button press or after 2,700 ms if no response had
been given until then. These prompts aimed to provide an
insight into the observer’s expectations and were thus impor-
tant to determine whether the intended manipulation of the
observer participants’ expectations worked.

A total of 420 trials were included in the EEG analysis, 105
trials for each combination of Trial Type and Difficulty.
Forty-eight trials were included in the behavioral analysis:

12 of each Trial Type and Difficulty condition. The time
course of the individual trials is shown in Figure 1.

Empathy measure

Participants were asked to complete the German version of the
Cambridge Behavior Scale (Baron-Cohen & Wheelwright,
2004; de Haen, n.d.), which is a measure of trait empathy. In
a previous study (Bellebaum et al., 2020), we found that this
empathy measure interacts with the experimental factors Trial
Type and Accuracy of the paradigm that we (in an adapted
version that additionally includes Difficulty) also applied in
the present study, which is why we focused on this measure.
The questionnaire contains 60 items, 20 of which are
distractor items. Items consist of statements (e.g., “I really
enjoy caring for other people”), which the participants can
agree or disagree with using a four-point Likert scale ranging
from “strongly agree” to “strongly disagree.” Items are scaled
negatively or positively. Participants can score a maximum of
two points per item. For positively scaled items, participants
receive two points if they “strongly agree,” one point if they
“slightly agree” and zero points if they “slightly disagree” or
“strongly disagree.” For negatively scaled items, the scoring is
reversed. Participants do not receive points for any answer on
distractor items. Points are added and result in an empathy
quotient (EQ) sum score that can range from 0 to 80.

EEG Recording

Thirty passive scalp electrodes were applied according to the
international 10-20 system (F7, F3, Fz, F4, F8, FT7, FC3,
FCz, FC4, FT8, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P7,
P3, Pz, P4, P8, PO7, PO3, POz, PO4, PO8), and an electro-
encephalogram (EEG) was recorded throughout the experi-
ment using a BrainAmp Standard amplifier (Brain Products,
Munich, Germany) and the corresponding software
(BrainVision Recorder, version 1.20.0506, Brain Products,
Munich, Germany) at a sampling rate of 1,000 Hz.
Electrodes were referenced to the average of two electrodes
on the left and right mastoids. All impedances were kept be-
low 5 kΩ.

Procedure

Upon arrival in the laboratory, participants were informed
about the experimental procedure and gave written informed
consent to participate in the study. They were then asked to fill
in a demographic questionnaire and the German version of the
Cambridge Behavior Scale (Baron-Cohen & Wheelwright,
2004; de Haen, n.d.). After completion, we attached the
EEG electrodes and participants were placed in front of a
1,920 * 1,080 px desktop monitor, and the experiment began.
The experiment lasted about 45 minutes. The Stimulus
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presentation and response recording were controlled by
Presentation Software (Version 20.0, Neurobehavioral
Systems, Albany, CA).

Data analyses

Behavioral data We analyzed the responses to the prompt
trials to determine how the observers’ expectancies
concerning response accuracy of the player were modulated
by the factors Trial Type and Difficulty. As in our previous
studies (Kobza and Bellebaum, 2013; Bellebaum et al., 2020),
we aimed to induce expectations of correct responses in no-
trick trials and of error responses in trick trials, which were
possibly less strong in high difficulty trials. We thus deter-
mined the proportion of the prompt trials in which the observ-
er participants expected a correct response by the player for
low difficulty and high difficulty no-trick and trick trials.

EEG data EEG data were preprocessed using BrainVision
Analyzer software, version 2.1 (Brain Products, Munich,
Germany). Raw data were filtered with a 0.5-Hz high-pass

and a 20-Hz low-pass filter. We then aimed to remove blink
artefacts from the filtered raw signal. For this purpose, we
performed an independent component analysis on single-
subject EEG data. This analysis breaks down the raw data into
temporally independent and spatially fixed components. We
selected one component per participant that seemed to repre-
sent blink and vertical eye movement artifacts as observed in
the vEOG electrode, as indicated by a symmetrical frontal
distribution across the scalp. This component was then re-
moved via independent component analysis back-transforma-
tion. For ERP analysis, we created segments of 800-ms length
that started 200 ms before the observed choice (the time point
when the joystick pointed to one of the shells). We performed
a baseline correction using the average signal in the 200 ms
before the observed choice. All segments in which a voltage
step larger than 50 μV per ms occurred, in which highest and
lowest data points differed by more than 100 μV or in which
signals at any sample were higher than 100 μV or lower than
−100 μV were excluded from further analysis automatically.
On average, 3% of the error no-trick high difficulty segments
(SD = 7%), 3% of the correct no-trick high difficulty segments

Figure 1. Time course of events in the experiment trials. There were eight
conditions, low difficulty no-trick, low difficulty trick, high difficulty no-
trick, and high difficulty trick, which either ended in a correct or an error

response. Some trials ended not in a response by the observed player but
in a prompt question to measure the observer’s expectancies.
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(SD = 7%), 4% of the error no-trick low difficulty segments
(SD = 8%), 4% of the correct no-trick low difficulty segments
(SD = 7%), 2% of the error trick high difficulty segments (SD
= 5%), 3% of the correct trick high difficulty segments (SD =
4%), 3% of the error trick low difficulty segments (SD = 4%),
and 3% of the correct trick low difficulty segments (SD = 4%)
were excluded. None of the participants lost more than 30% of
all segments. Finally, single-subject averages were created for
all eight conditions of the experiment. Data for each subject
and condition were exported as text files and further processed
in MATLAB, version R2017b (Mathworks, Natick, MA).

Based on the findings obtained in previous studies of our
research group using this paradigm (Kobza & Bellebaum,
2013; Bellebaum et al., 2020), we expected that our experi-
mental manipulation would affect a negative-going compo-
nent in the ERPs between 250 and 420 ms after the observed
choice. For this component, an interaction between the factors
Trial Type and Accuracy (Kobza & Bellebaum, 2013;
Bellebaum et al., 2020) as well as a modulation of this inter-
action by Empathy (Bellebaum et al., 2020) have been de-
scribed. Thus, we investigated this component first. As in
our previous studies, we calculated a peak-to-peak amplitude
for the negative peak relative to a preceding positive peak.
First, we pooled the signal over the electrodes Fz, FCz, and
Cz, at which the component was particularly pronounced (see
Bellebaum et al., 2020, for a similar procedure). We then
calculated the most negative peak between 250 and 420 ms
after the observed choice and subtracted the most positive
peak in the preceding time window between 130 ms and the
negative peak.

Contrary to our hypotheses, the ERPs seemed to be mod-
ulated by the experimental manipulations also in an earlier
time window. Visual inspection of the signal at frontocentral
electrodes suggested that the experimental factors modulated
the first negative peak, that is, the N1 amplitude. Such an early
modulation was not entirely unexpected: for the oERN, for
example, as an ERP component reflecting the processing of
observed actions, some variability has been found in studies
concerning the latency with which it occurs. While it has
mostly been reported to peak later than 200 ms after the re-
sponse (van Schie et al., 2004; Miltner et al. 2004; Kobza &
Bellebaum, 2013), there also are reports of shorter latencies
(see Koban & Pourtois, 2014), with peaks as early as 150 ms
after the onset of the observed response in some studies (Bates
et al., 2005). It thus seems conceivable that a modulation of
the processing of observed actions can take place in the N1
time window. To analyze this component, we also considered
the pooled signal of three frontocentral electrodes (Fz, FCz,
and Cz), because the component was also most pronounced
frontocentrally (see topographic maps in the Results section).
To score the component, we determined the most negative
peak between 100 and 250 ms and subtracted the preceding
most positive peak between 50 ms and the negative peak of

the pooled signal. We will refer to this component as the early
frontocentral negative component, while the component we
analyzed first (see Bellebaum et al., 2020) will be referred to
as the late frontocentral negative component.

Outlier detection In each of the two EEG data sets (early
component, late component) we determined participants
whose peak-to-peak amplitude in at least one of the eight
conditions differed by more than three standard deviations
from the mean to identify outlier values in these dependent
variables. The same criterion was used for the EQ sum score
as continuous predictor variable. We found one participant
with elevated scores for both dependent variables and exclud-
ed this participant from further data analysis.

Statistical analysis The statistical analyses of the behavioral
and EEG data were based on the following strategy. First, the
behavioral data were analyzed to show if the task Difficulty
factor, together with the Trial Type factor, affected observers’
expectancy in the intended way. Specifically, an interaction
between the Trial Type and Difficulty factors was expected,
with pronounced expectations concerning the accuracy of the
observed action emerging only in low difficulty trials. In a
second step, we analyzed to what extent Difficulty and Trial
Type (due to their hypothesized effect on expectancy) affected
the processing of observed actions, as reflected in the early
and late frontocentral negative ERP components. If Trial Type
and Difficulty interact in their effect on expectancy, the two
factors also should interact in their effect on an ERP compo-
nent reflecting expectancy. The focus in the analysis was thus
on interactions involving these two factors. This analysis pro-
cedure established an indirect link between the behavioral
(expectancy) data and the neurophysiological data. In addi-
tion, potential effects of the continuous factor Empathy were
considered. We analyzed our data by means of linear mixed
effects (LME) analyses using the lme4 statistical package
(version 1.1-21) in R (version 3.5.3), because this type of
analysis allows to include both categorical and continuous
factors. All models were estimated using a restricted maxi-
mum likelihood approach, as proposed by Luke (2017). The
R package lmerTest (version 3.1-0) was applied for evaluating
significance in the models by using Satterthwaite approxima-
tion for the degrees of freedom. Effect sizes were calculated
with the function anova_stats of the package sjstats (version
0.17.9).

For the behavioral data, we defined the dependent variable
as the percentage of prompt trials in which participants indi-
cated that they expected the player to choose the correct an-
swer. We thus specified a model with percentage of expected
correct answers as dependent variable and participants as a
random-effect factor. Trial Type and Difficulty were defined
as categorical fixed-effect predictors. We also included the
random slopes of the categorical predictors by participants.
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As continuous factor we included Empathy (the EQ sum
score). For the categorical factors, the levels of the Trial
Type factor were recoded as +1 for trick and −1 for no-trick
and for the factor Difficulty as +1 for low difficulty and −1 for
high difficulty. The Empathy measures were mean-centered.

In the subsequent analysis of the EEG-data we analyzed the
later as well as the earlier frontocentral negative ERP compo-
nent. We thus specified two models, one for each of the com-
ponents as dependent variable, that were similar to the model
for the behavioral data, with Trial Type and Difficulty and the
additional factor Accuracy as categorical fixed-effect predic-
tors (modelling also their random slope by participants). Trial
Type and Difficulty were recoded as in the model for the
behavioral data (+1 = trick; −1 = no-trick; +1 = low difficulty;
−1 = high difficulty). Accuracy was recoded as +1 for correct
and −1 for error responses. The continuous factor, Empathy,
and the model estimation were the same as in the model for the
behavioral data. For all analyses the threshold for statistical
significance was set to p < .05.

Interactions. Interactions were resolved in a step-wise
manner according to Aiken, West, & Reno (1991): for every
n-way interaction, we calculated slopes of the n-1-way inter-
actions while one predictor was held constant. Significant in-
teractions in these analyses were then resolved in the same
way until all factors were resolved. For categorical factors,
in accordance with the variable coding, we used 1 or −1 as
constants. For the continuous factor Empathy, we shifted the
variable by one standard deviation downward or upward from
the mean (M – 1 SD or M + 1 SD) and calculated lower-level
interactions while holding the continuous factor constant at
low level empathy (low empathy, M – 1 SD) or high level
empathy (high empathy, M + 1 SD).

Analysis linking behavioral and ERPmeasures. To explore
whether there also was a direct relationship between expec-
tancy and observed response processing, we planned to con-
duct follow-up analyses in case of a significant effect of the
Trial Type and Difficulty factors on one of the ERP compo-
nents. For this purpose, we calculated expectancy measures
(concerning correct responses) for each of the conditions trick
high difficulty, trick low difficulty, no-trick high difficulty,
and no-trick low difficulty in every participant based on the
prompt trials. These values indicated how strongly correct
responses were expected. For error responses, the expectancy
values were recalculated as 1 – expectancy of the correct re-
sponse. The expectancy values were used as continuous factor
Expectancy (mean-centered) in an LME model, including
ERP component amplitudes as dependent variable. We in-
cluded all participants that were included in the previous anal-
yses in an additional outlier detection, based on the so-called
Cook’s Distance. As Cook’s Distance measures the influence
of single subjects on the model, this outlier detection method
might be especially suitable for exploratory analyses where
some aspects might not be perfectly controlled for (e.g.,

correlations between the predictors). Cook’s Distance analysis
revealed one outlier participant that was excluded from the
Expectancy analysis. To further test whether Empathy ex-
plained additional variance beyond the effect of expectancy,
we calculated an exploratory Chi-Square test using the anova-
function in R (from the package car, v 3.0-9) to compare the
two models. This allowed us to determine whether a model
including Expectancy and Empathy explained significantly
more variance than a model including only Expectancy and
thus, whether the frontocentral negative ERP component is
further influenced by trait Empathy. For this comparison, both
models were recalculated with a maximum likelihood
approach.

Results

Please find additional statistical data for the following LME
analyses in the Supplementary Materials, including estimates,
t-test statistics, standard errors, and confidence intervals for
the data in the reported analyses.

Behavioral analysis

The behavioral data reflecting the strength of the expectations
of the observers are depicted in Figure 2. For the percentage of
expected correct responses we found significant effects of
Trial Type, F(1,31.00) = 25.94, p < 0.001, ηp

2 = 0.23, and
Difficulty, F(1,31.00) = 11.55, p = 0.002, ηp

2 = 0.12. Trick
trials resulted in lower expectation of correct answers (b =
−12.41) than no-trick trials, as did high difficulty trials (b =
8.24) compared with low difficulty trials. Furthermore, a sig-
nificant interaction between Trial Type and Difficulty
emerged, F(1,30.99) = 8.85, p = 0.006, ηp

2 = 0.09. As can
be seen in Figure 3, expectancy of correct responses was de-
scriptively nearer to chance level in the high difficulty than
low difficulty trials. A follow-up analysis to resolve the inter-
action of the two factors revealed, however, that the factor
Difficulty was only significant for no-trick trials, F(1,55.91)
= 20.18, p < 0.001, b = 13.35, not for trick trials (p = 0.299). In
no-trick trials, correct answers were more expected in low
difficulty trials than in high difficulty trials. Analyzing high
and low difficulty trials separately, we found that Trial
Type was significant for both low difficulty trials,
F(1,55.75) = 35.63, p < 0.001, and high difficulty trials,
F(1,55.75) = 5.98, p = 0.018, but the difference was
less pronounced in high difficulty trials (b = −7.30 as
opposed to b = −17.53). In both Difficulty conditions,
correct answers were more expected in no-trick trials.
As Difficulty interacted with Trial Type and the differ-
ence between trick and no-trick trials was less pro-
nounced in high difficulty trials, we can conclude that
the difficulty manipulation worked, as expected.
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Significant differences between low and high difficulty
trials were found, however, only for no-trick, but not
for trick trials.

We also found that Empathy interacted with Trial Type,
F(1,31.00) = 4.59, p = 0.040, ηp

2 = 0.05, and with Trial
Type and Difficulty, F(1,30.99) = 6.87, p = 0.013, ηp

2 =
0.07. We further investigated the interaction effects, including
the continuous factor Empathy. We first considered the inter-
action between Empathy and Trial Type. Although the factor
Trial Type modulated the answer for participants with both
high and low empathy, F(1,31.00) = 26.14, p < 0.001, and
F(1,31.00) = 4.32, p = 0.046, respectively, the effect was
larger for high empathy participants (b = −17.66) than for
low empathy participants (b = −7.17). For both groups, trick
trials resulted in a lower expectation of correct answers than
no-trick trials, but the effect was larger in participants with
high empathy. Subsequently, we resolved the three-way inter-
action. A Trial Type by Empathy interaction was significant
only for low difficulty trials, F(1,55.75) = 10.64, p = 0.002,
not for high difficulty trials (p = 0.812). Further simple-slope

analyses for low difficulty trials revealed that the factor
Empathy was significant for low difficulty trick trials,
F(1,40.83) = 5.31, p = 0.026, as well as low difficulty no-
trick trials, F(1,45.66) = 5.34, p = 0.025. Higher empathy
led to lower expectation of correct answers in low difficulty
trick trials (b = −1.07) and to higher expectation of correct
answers in low difficulty no-trick trials (b = 0.90). The main
effect of Empathy and the remaining interaction did not reach
significance (all p ≥ 0.786).

In summary, we found that the expectancy modula-
tion by the factors Trial Type and Difficulty succeeded
(Figure 3). Importantly, expectations were further mod-
ulated by empathy, with higher effects of the experi-
mental factors on expectancy measures in high empathy
participants. However, even for high empathy partici-
pants, we only found a significant effect of Difficulty
in no-trick, but not in trick trials (Figure 2).

EEG analysis

Late frontocentral negative component The ERPs and their
topography for the relationship between Trial Type, Difficulty
and Accuracy are depicted in Figure 4. A display of the rela-
tionship between the four factors and the amplitude of the late
frontocentral negative component, whose mean latency
(across participants and conditions) was 335 ms (SD = 52
ms), is shown in Figure 5. The LME analysis did not reveal
any main effects for the late negative component amplitude
(all p ≥ 0.149). We found one significant interaction between
Difficulty and Accuracy,F(1,124.84) = 11.77, p < 0.001 (for a
visualization of this effect, see Figure 6). Follow-up analyses
revealed that Accuracy modulated the late negative compo-
nent only in high difficulty trials, F(1,59.99) = 4.75, p = 0.033,
ηp

2 = 0.06, not in low difficulty trials (p = 0.130). For high
difficulty trials, errors elicited a larger amplitude (b = 0.42)
than correct responses. We did not find any other interaction
effects (all p ≥ 0.323).

Figure 2. Behavioral data derived from prompt trials. Displayed is the percent of trials in which participants stated that they expected the player to
answer correctly, modulated by trait Empathy, Trial Type, and trial Difficulty. Confidence intervals are displayed around the regression lines.

Figure 3. Interaction effect between Trial Type and trial Difficulty in
behavioral data derived from prompt trials. The black line marks chance
level (50%). Mean and confidence intervals are displayed within the
respective violin plots.
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In summary, we did not find the expected modulation
of ERPs in the late frontocentral negative ERP compo-
nent (Figure 5), as the result pattern did not mirror the
expectancy modulation by the factors Trial Type and

Difficulty in the form of an interaction between the
factors. Instead we found a selective modulation of the
late component by Accuracy in high difficulty trials
(Figure 6).

Figure 4. A. ERPs pooled over Fz, FCz, and Cz after observed correct
and error responses for all combinations of the Trial Type and Difficulty
conditions. The two analyzed components, early and late frontocentral
negative component, are marked in the ERPs. B. Topography of the
difference between the ERPs after error and correct responses at the

maximum positive (low difficulty trick and high difficulty no trick) or
the maximum negative (low difficulty no trick and high difficulty trick)
peak of the difference between error and correct responses (between 150
and 180 ms) for the pooled signal of Fz, FCz, and Cz for both Trial Type
and Difficulty conditions.
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Early frontocentral negative component Figure 7 shows the
relation between the four factors and the amplitude of the early
frontocentral negative component. The mean latency of this
component (across participants and conditions) was 159 ms
(SD = 27 ms). The LME analysis on this component’s ampli-
tude revealed no significant main effects and no two-way
interactions (all p ≥ 0.069). Instead we found two three-way
interactions, one between Empathy, Trial Type and Accuracy,
F(1, 186.02) = 6.04, p = 0.015, ηp

2 = 0.03, and one between
Trial Type, Difficulty and Accuracy, F(1,186.02) = 5.64, p =
0.019, ηp

2 = 0.03, but no other three-way-interactions (all p ≥
0.524). Because we also found a significant four-way interac-
tion between all four factors—Empathy, Trial Type,
Difficulty, and Accuracy, F(1, 186.02) = 6.96, p = 0.009,
ηp

2 = 0.03, we focused on the resolution of this highest-
order interaction. We thus conducted two further LME-

analyses separately: one for low difficulty and one for high
difficulty trials. A significant three-way interaction between
Trial Type, Accuracy, and Empathy emerged for low difficul-
ty trials, F(1,186.01) = 12.98, p < 0.001, but not for high
difficulty trials (p = 0.898). In the resolution of the interaction
for low difficulty trials, an Accuracy by Empathy interaction
was found for both low difficulty trick, F(1,194.18) = 4.83, p
= 0.029, and low difficulty no-trick trials, F(1,194.08) = 8.20,
p = 0.005. For low difficulty trick trials, a significant effect of
empathy was found only for correct, F(1,77.83) = 7.02, p =
0.010, but not for error responses (p = 0.984); for no-trick
trials the pattern was reversed: an effect of Empathy was
found for error, F(1,52.71) = 4.56, p = 0.037, but not for
correct trials (p = 0.492). Higher empathy resulted in more
negative amplitudes for low difficulty correct trick trials (b =
−0.08) and for low difficulty error no-trick trials (b = −0.08).
Analyzing the high difficulty trials separately, no three-way
interaction emerged (p = 0.898), but an interaction between
Trial Type and Accuracy could be found, F(1, 186.01) = 7.23,
p = 0.008. A significant effect of Accuracy emerged only for
high difficulty no-trick trials, F(1,194.20) = 4.10, p = 0.044,
where correct responses led to higher amplitudes (b = −0.35),
although we found a trend for an Accuracy effect also in high
difficulty trick trials, F(1,194.16) = 3.07, p = 0.081, where
errors led to higher amplitudes (b = 0.31).

In summary, we found a modulation in an earlier time
window (around the N1) similar to the one we expected.
Consistent with the behavioral results for expectancy forma-
tion, we found that ERPs were modulated by an interaction of
Empathy, Trial Type, and Accuracy for low difficulty trials
only, where Empathy seemed to be important particularly for

Figure 5. Peak-to-peak amplitudes of the late frontocentral negative
component (250–420 ms) as a function of Trial Type, Difficulty,
Accuracy and Empathy. Confidence intervals are displayed around the
regression lines.

Figure 6. Interaction effect between Difficulty and Accuracy for the late
frontocentral negative component (250–420 ms). Mean and confidence
intervals are displayed within the respective violin plots.

Figure 7. Peak-to-peak amplitudes of the early frontocentral negative
component as a function of Trial Type, Difficulty, Accuracy, and
Empathy. Confidence intervals are displayed around the regression lines.
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the processing of those events that were considered unexpect-
ed (see the low difficulty grids in Figure 7).

Effects of expectancy and empathy on the early frontocentral
negative component

After we found that Trial Type and Difficulty affected the
early frontocentral negative ERP component, we aimed to
explore the relationship between expectancy and the ampli-
tude directly (seeMethods section). We found a main effect of
Expectancy, F(1,220.43) = 4.57, p = 0.034, ηp

2 = 0.02, b =
0.65. For higher Expectancy values, amplitudes were smaller
(Figure 8). We further conducted an analysis in which we
compared a model including only Expectancy to a model in-
cluding Expectancy and Empathy. This analysis must be con-
sidered exploratory, because empathy predicted expectancy in
our experiment, as was revealed by the behavioral data anal-
ysis. The two factors in the Expectancy x Empathy model
were thus not independent. A model including both predictors
did not explain significantly more variance than a model in-
cluding only Expectancy, Χ2(2) = 0.07, p = 0.967. In summa-
ry, the measured Expectancy values functioned as predictors
for the amplitude of the early frontocentral negative compo-
nent. Empathy did not account for significantly more variance
if Expectancy was already included as a predictor.

Discussion

In this study, we investigated the role of expectations in the
processing of observed actions and a potentially mediating
effect of empathy. To this end, we had participants observe a
person perform correct or error responses in a two-shell-game.
Expectancy was modulated by two factors that allowed to

distinguish between effects of vicarious errors and expectan-
cy. We found that our manipulation of the expectancy of the
observed response succeeded. We also found an effect of em-
pathy on the strength of the expectations. Concerning the neu-
rophysiological processing of observed responses, there was
evidence that the amplitude of a frontocentral negative ERP
component time-locked to observed responses was mainly
driven by the expectancy of the responses. Surprisingly, this
pattern was found in the N1 time window and thus earlier than
the ERP components that have been linked to observed re-
sponse processing in previous studies (Kobza and
Bellebaum, 2013; Bellebaum et al., 2020; van Schie et al.,
2004; see also Koban & Pourtois, 2014).

Behavioral measures of expectancy

We measured self-reported expectancies concerning the ob-
served response separately for each condition. This assess-
ment served to verify whether our experimental manipulations
affected participants’ expectancies in the intended way, which
was an important prerequisite for the interpretation of the ERP
data. We found a modulation by a false-belief condition (fac-
tor Trial Type), in accordance with previous studies applying
the same paradigm (Bellebaum et al., 2020; Kobza and
Bellebaum, 2013).Moreover, the newly introduced factor task
Difficulty affected participants’ expectations in that the differ-
ence between conditions with true and false belief was less
pronounced for trials with high difficulty. Analyzing true- and
false-belief conditions separately, we found a modulation by
taskDifficulty only in the true-belief, but not in the false-belief
condition. One reason seems to be that expectations in low
difficulty trials with a false-belief were less strong than expec-
tations for low difficulty true-belief trials. Expectations for
false-belief conditions seem to be harder to form (the same
effect was found in previous studies employing this paradigm,
see Bellebaum et al., 2020; Kobza&Bellebaum, 2013; as well
as in studies using false-belief tasks, see Birch & Bloom,
2007; Wellman, Cross, & Watson, 2001), and with the addi-
tional factor Difficulty, this might have led to smaller differ-
ences between the Difficulty conditions. We also found that
Empathy influenced expectancy formation in low difficulty
conditions: expectancies were formed most consistently in
high empathy participants. Bellebaum et al. (2020) did not
find a modulation of expectancy by empathy using the same
paradigm. In this previous study there was little interindivid-
ual variance in the expectancies, which clearly differed be-
tween false- and true-belief conditions. The introduction of
the task difficulty variation in the present study may have
led to more variance, so that empathy may have plaid a more
important role for expectancy generation.

It is important to keep in mind that expectancy was
assessed based on 12 prompt trials per condition only, so the
derived expectancy values do not reflect expectations on a

Figure 8. Effect of Expectancy on the early frontocentral negative
component. Confidence intervals are displayed around the regression
lines.
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single trial basis. Also, it has to be noted that the prompt trials
primarily served to check if the expectancy manipulation
succeeded. While the LME analysis suggests an interesting
modulation of expectancy by empathy, the behavioral results
should be interpreted with caution.

Latency of expectancy and empathy effects on the
processing of observed actions

An important difference between the present study and our
previous studies with the same paradigm (Kobza and
Bellebaum, 2013; Bellebaum et al., 2020) is that the modula-
tion of the ERPs by Expectancy and Empathy occurred much
earlier after the observed response in the present study. The
component also had a lower latency than the oERN, at least
for most of the studies investigating this component (Carp
et al., 2009; de Bruijn & von Rhein, 2012; Miltner et al.,
2004; van Schie et al., 2004); it occurred between 100 and
250 ms (mean 159 ms) and thus in the latency range of the
N100. Nevertheless, we have reason to believe that this early
modulation reflects an ERP component resembling other
components that have been linked to the processing of ob-
served responses. Firstly, the topography of the relative nega-
tivity in the ERPs for unexpected events showed a fronto-
central maximum (Figure 4) and is thus not only consistent
with the typical topography of the oERN, but also with that of
the ERN and the feedback-related negativity, which are all
related to performance monitoring (Falkenstein et al., 1991;
Gehring et al., 2012; Gehring & Willoughby, 2002; Miltner
et al., 2004; van Schie et al., 2004). Second, the modulation by
expectancy and/or empathy is comparable to modulations of
monitoring-related ERPs found in previous studies
(Bellebaum et al., 2020; Ferdinand et al., 2012; Kobza &
Bellebaum, 2013; Wessel et al., 2012). Particularly, these re-
sults correspond to those of Kobza and Bellebaum (2013) and
Bellebaum et al. (2020), who applied the same paradigm but
found the effect in a later time window. Third, and most im-
portant, the latency of the oERN and related components ap-
pears to differ depending on the task. For a Go/NoGo-Task an
oERN was observed as early as 150 ms after the observation
of errors in NoGo trials which corresponds to the latency
range of the present study (Bates et al., 2005; Koban et al.,
2010). This earlier latency has been linked to the lower com-
plexity compared with a Flanker task (Koban & Pourtois,
2014).

The question remains, however, why the modulation in the
present study occurred so early. The main difference between
the present and our previous studies (Bellebaum et al., 2020;
Kobza & Bellebaum, 2013) is that we used a block design for
trick and no-trick trials, so that participants knew beforehand
whether the observed person had a true or a false belief. In
blocks with trick trials, for example, they knew that the ob-
served person was more likely to point to the empty shell,

performing an error. If trick and no-trick trials alternate trial-
by-trial, as in our previous studies, expectation formation
probably takes more time. We believe that this early expecta-
tion formation enabled faster processing and thus earlier ERP
modulations. We therefore discuss the early ERP modulation
in the following sections and relate it to findings from the
literature, where mostly later components were analyzed, but
emphasize that these results should be interpreted with caution
as our hypothesis was related to a modulation in a later time
window.

Effects of expectation on observed error processing

Consistent with the previous results we obtained with this
paradigm (Kobza and Bellebaum, 2013; Bellebaum et al.,
2020), we found that the amplitude of a negative ERP com-
ponent following an observed response was modulated by
expectancy, although this modulation occurred earlier than
in the previous studies In participants who developed strong
expectations, the least expected events, that is, correct re-
sponses in low difficulty trials with a false-belief and error
responses in low difficulty trials with a true belief, elicited
the highest amplitudes.

Importantly, we found a modulation not only by the false-
belief condition, but also by the new factor task Difficulty. If
the ERP component had only reflected the false-belief
condition and not task difficulty, the modulation could have
been ascribed to vicarious error processing, as errors from the
perspective of the observed person were the same in both
Difficulty conditions. As this is not the case, we conclude
that the ERP modulation codes expectancy rather than
vicarious errors, which corresponds with the interpretation of
Kobza and Bellebaum (2013) and Bellebaum et al. (2020).

This supports theories on the role of expectancy for ampli-
tudes of ERP components generated by the ACC or pMFC,
stating that these components primarily code unexpected
events irrespective of valence (Alexander & Brown, 2011).
It also matches other recent results. Wessel et al. (2012) found
a common neural generator, namely the pMFC, of both the
ERN and the novelty-related frontocentral N2, suggesting an
overlap of the neural correlates of error and surprise
processing. Ferdinand et al. (2012) showed that the FRN
was elicited not only by unexpected negative, but also by
unexpected positive feedback. For observed actions,
Schiffer, Krause, & Schubotz (2014) reported activity in the
medial prefrontal cortex after unexpected incorrect as well as
unexpected correct responses in a functional magnetic reso-
nance imaging study (see also Wang et al., 2015). Our study
thus adds to existing evidence that activity in the medial pre-
frontal cortex and ACC in response to different events is crit-
ically modulated by the expectancy of these events.

It has to be noted that, in contrast to our hypotheses, the
ERP amplitude pattern was reversed in high difficulty trials
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compared with low difficulty trials. Amplitudes were en-
hanced for correct actions in true-belief and erroneous actions
in false-belief trials, respectively, which is not in accordance
with the behavioral expectancy measures. We suspect that
although participants formed explicit expectations, at least in
the true-belief condition, further implicit expectations might
have played a role, too. Multiple studies suggest that re-
sponses to errors or infrequent events lead to increased atten-
tion to the source of the (prediction) error (Notebaert,
Houtman, Opstal, Gevers, Fias, & Verguts, 2009;
Steinhauser & Andersen, 2019; Wessel, 2018). In our study,
trick and no-trick trials were presented in separate blocks,
while low difficulty and high difficulty trials were mixed with-
in one block. This means that for every trial, the observer
participants only had to consider whether the trial was difficult
(high difficulty) or not (low difficulty) for their expectancy of
the correct response, so that high difficulty and low difficulty
trials were directly compared to each other. As participants
had to focus on differentiating high and low difficulty trials,
their attention might have been relocated to this comparison as
opposed to absolute probabilities. The modulations observed
might thus code for the comparison between high and low
difficult trials, meaning that the likelihood of the actuallymore
expected responses might be implicitly underestimated in high
difficulty trials, resulting in the observed reverse pattern.

The exact mechanisms of expectancy formation, especially
concerning explicit and implicit expectancies that might have
played a role in our study, are not completely understood. In a
study in which participants observed erroneous everyday
actions in a virtual reality setting, Pezzetta, Nicolardi,
Tidoni, & Aglioti (2018) found a modulation of the ERPs
by the accuracy of the observed response, with higher oERN
amplitudes for errors, also when errors occurred more fre-
quently than correct actions. A reason for this could be that
the authors used simple everyday actions which might gener-
ally be expected to be performed correctly. Furthermore, other
studies suggest that the way events are processed is not entire-
ly determined by their frequency. Several studies found dif-
ferences between the processing of negative and positive feed-
back processing even if these events were equally probable
(Wang et al., 2015; Yeung et al., 2005). These findings have
been ascribed to an overoptimistic bias of participants to ex-
pect correct responses or positive outcomes more strongly,
especially for own behavior (Oliveira, McDonald, &
Goodman, 2007). Ferdinand et al. (2012) found comparable
amplitudes for unexpected positive and negative feedback in
the FRN, but observed an effect of valence in the P300, with
positive feedback eliciting larger amplitudes than negative
feedback. This difference in early and later processing resem-
bles the difference between the early and the late frontocentral
negative component in high difficulty trials in this study, with
the early component being modulated by expectancy and the
late component being modulated by valence. Also, Ferdinand

et al. describe a difference between actual expectations (more
than half of the participants believed that negative feedback
was more frequent when asked after the experiment, only less
than a quarter thought that positive feedback was more fre-
quent) and FRN amplitudes, again suggesting that other, less
conscious processes play a role in early processing when out-
comes are uncertain. Moreover, other factors apart from ex-
pectancy may also affect neural indices of performance mon-
itoring: Maier and Steinhauser (2016) found that active re-
sponders’ ERN was modulated by error significance rather
than error probability.

Effects of empathy on observed error processing

Another similarity between the present study and our previous
work on action observation is that empathy affected the pro-
cessing of observed responses (Bellebaum et al., 2020). In the
present study, this effect was restricted to the low difficulty
condition, where only for highly empathic participants ERP
amplitudes were higher for unexpected than expected events.
Figure 7 shows that the processing of unexpected events (cor-
rect responses in low difficulty trick trials and error responses
in low difficulty no-trick trials) was exclusively modulated by
empathy. As outlined in the introduction, our previous finding
might have reflected vicarious error processing, as in the false-
belief condition of our task correct responses were errors from
the observed person’s view. However, by showing that the
empathy effect is restricted to low difficulty trials, this inter-
pretation appears to become less likely, as correct responses in
high difficulty trick-trials are also errors for the observed per-
son. Our behavioral finding that only the expectancies in low
difficulty trials were modulated by empathy instead appears to
suggest that expectancy plays a modulatory role for the influ-
ence of empathy on the processing of observed actions.

Empathy, expectation, and the processing of
observed actions

Our results show an effect of empathy on both the expectancy
data and the ERPs. In an additional exploratory analysis, we
examined the relationship between expectation, empathy and
the ERP amplitudes in the eight conditions in one LME anal-
ysis. We found a positive relationship between expectancy
and ERP amplitude, which was not modulated by empathy.
We also found that including empathy as a predictor did not
explain significantly more variance than using expectancy
alone. Keeping in mind that empathy and expectancy were
correlated (see above), these results suggest that empathy did
not influence ERPs in the present study beyond the effect it
had on expectancy formation. This might be an indication that
empathy did not directly influence ERPs but via a positive
effect on the expectancy formation. Several studies addressed
the relationship between trait empathy and the processing of
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observed actions or action outcomes (Bellebaum et al., 2020;
Fukushima & Hiraki, 2006, 2009; Kobza, Thoma, Daum, &
Bellebaum, 2011; Newman-Norlund et al., 2009; Shane et al.,
2009), but expectancy was rarely taken into consideration,
which might be one reason for the inconsistency in the find-
ings. In the context of outcome processing, Lockwood et al.
(2015) described that a subregion of the ACC specifically
predicted other’s rewards in highly empathic participants,
whereas activity in that region was comparable for other’s
and own rewards in low empathizers. These findings may
mean that empathy facilitates the generation of predictions
based on other’s assumed mental states by helping to see an
event from the perspective of the observed person. At the
same time, positive linear relationships between empathy
and expectancy are not always found. In our previous related
study (Bellebaum et al., 2020), the observers could more eas-
ily predict what action the observed person was about to per-
form as task difficulty was not varied. Accordingly, partici-
pants developed strong expectations regarding the observed
person’s response with little interindividual variability and
thus little room for a modulation by empathy. Brown and
Brüne (2012) suggest that predictions in social contexts may
depend on similar processes as predictions in nonsocial con-
texts, but that additional (social) factors play a role only in
social contexts. Extending this assumption based on the pres-
ent findings, it might be that the more the context is dominated
by social factors, the more predictions might be modulated by
trait empathy. This idea finds some support by findings of
Fukushima and Hiraki (2009), who reported that empathy
affected the observer FRN only if participants observed
humans, not if they observed PC programs.

Limitations

Due to a relatively large number of exclusions, we analyzed a
smaller sample than planned originally. Investigating individ-
ual differences in a small sample can lead to false-positive
results. LME analysis allows for the inclusion of random ef-
fects, so that further interindividual differences besides empa-
thy are at least partly subtracted from the results (i.e., noise is
removed; Baayen, Davidson, & Bates, 2008). Nevertheless, it
cannot be excluded that the results in the present study repre-
sent a false positive result and thus they should be interpreted
with caution. Future studies should aim for an increased sam-
ple size when investigating effects of empathy on error
processing.

Conclusions

Applying a complex action observation task with true- and
false-belief conditions, we found that expectancy, not vicari-
ous errors, was reflected in ERPs time-locked to the observed

response, although in an earlier time window as previously
suspected. Both the expectancy of the observed action and
the ERPs following the observed action were modulated by
empathy.We suggest that trait empathy facilitates the process-
ing of stimuli and events from another person’s perspective by
facilitating expectancy formation. Furthermore, empathy
seems to be necessary for expectancy formation only for spe-
cific contexts in which social factors dominate. The results
found in this study, specifically regarding the indirect influ-
ence of empathy on performance monitoring via expectation
generation, could help to understand the nature of the prob-
lems in social interactions typically found in patients with
reduced empathic abilities and may have implications for ther-
apeutic approaches. For example, adding information that
makes it easier for these persons to predict and understand
others’ actions may improve their social skills. Further re-
search needs to investigate the factors that determine the
timing of expectancy and empathy modulations in the pro-
cessing of observed actions.
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