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Abstract A broadly used computational framework posits
that two learning systems operate in parallel during the learn-
ing of choice preferences—namely, themodel-free andmodel-
based reinforcement-learning systems. In this study, we ex-
amined another possibility, through which model-free learn-
ing is the basic system and model-based information is its
modulator. Accordingly, we proposed several modified ver-
sions of a temporal-difference learning model to explain the
choice-learning process. Using the two-stage decision task
developed by Daw, Gershman, Seymour, Dayan, and Dolan
(2011), we compared their original computational model,
which assumes a parallel learning process, and our proposed
models, which assume a sequential learning process. Choice
data from 23 participants showed a better fit with the proposed
models. More specifically, the proposed eligibility adjustment
model, which assumes that the environmental model can
weight the degree of the eligibility trace, can explain choices
better under both model-free and model-based controls and
has a simpler computational algorithm than the original mod-
el. In addition, the forgetting learning model and its variation,
which assume changes in the values of unchosen actions, sub-
stantially improved the fits to the data. Overall, we show that a

hybrid computational model best fits the data. The parameters
used in this model succeed in capturing individual tendencies
with respect to both model use in learning and exploration
behavior. This computational model provides novel insights
into learning with interacting model-free and model-based
components.
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One common theoretical framework is that value-based deci-
sion-making is realized using two distinct cognitive or learn-
ing systems: One is habitual and inflexible and requires little
computation, whereas the other is deliberative and accurate
and requires heavy computation (Dickinson, 1985;
Kahneman, 2010; Redish, Jensen, & Johnson, 2008). In the
field of instrumental learning, these two systems correspond
to the model-free and model-based learning systems, respec-
tively (Daw, Niv, & Dayan, 2005; Dolan & Dayan, 2013;
Gillan, Otto, Phelps, & Daw, 2015). Prediction that is based
on model-free learning is analogous to Thorndike’s law of
effect, in which a behavior that is followed by a pleasant
outcome is likely to be repeated, whereas a behavior that is
followed by an unpleasant outcome is likely to be inhibited
(Thorndike, 1911). In contrast, the model-based learning sys-
tem uses the agent’s internal model, or cognitive map
(Tolman, 1948), of a structure in the environment to dynam-
ically change a behavior by propagating information to all
states and actions, including those that have not previously
been experienced. However, it has yet to be determined how
humans and animals shape a preference that is based on these
learning systems and how the interaction of these systems is
implemented.
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The two-stage decision task developed by Daw, Gershman,
Seymour, Dayan, and Dolan (2011) is well-suited to address
these questions. In this task, the model-free and model-based
systems make different predictions about the choice, depend-
ing on the reward outcome and the transition at the previous
trial. The relative contributions of these mechanisms are
projected onto a weighting parameter of their computational
model. This task has provided interesting findings that show
that the bias in one system relates to disorders that involve
compulsion (Voon et al., 2015) and alcohol dependence
(Sebold et al., 2014), working memory capacity (Otto,
Gershman, Markman, & Daw, 2013; Otto, Raio, Chiang,
Phelps, & Daw, 2013), and individual traits such as extraver-
sion (Skatova, Chan, & Daw, 2013). In addition, neural sub-
strates that are critical to these learning systems have been
searched for under this framework (Gläscher, Daw, Dayan,
& O’Doherty, 2010; Smittenaar, FitzGerald, Romei, Wright,
& Dolan, 2013; Wunderlich, Smittenaar, & Dolan, 2012).

The original computational model of the task above as-
sumes that the model-free and model-based values are com-
puted in parallel. The model-free values are calculated by a
state–action–reward–state–action (SARSA) (λ) temporal-
difference (TD) learning rule (Rummery & Niranjan, 1994)
using reward prediction errors, whereas the model-based
values are calculated using max values of each future state
weighted by a transition probability. These two independent
values are ultimately combined with a certain weight to pro-
duce one net value for a choice. Thus far, however, it remains
to be seen whether this type of value-updating structure,
which uses two independent learning mechanisms and its
combination mechanism, is the best candidate to reflect the
decision-making process using the environmental model.

The other possible learning mechanism is based on the
model-free learning system. For example, the DYNA architec-
ture proposed by Sutton (1990) supposes that the model-free
learning system updates values on the basis of both real expe-
riences and model-based simulated experiences. Although
some experiments support this idea (Gershman, Markman, &
Otto, 2014), this architecture includes a black-box simulation
process and requires offline training of the model-based sys-
tem. To implement more simple and immediate online control
from the environmental model, we focused on the eligibility
trace rule often used in TD learning (Sutton & Barto, 1998),
which is part of the model-free learning mechanism and can be
realized as persistent neural activities modulated by previous
actions (Curtis & Lee, 2010). The eligibility trace is a tempo-
rary record of the occurrence of state–action pairs and ex-
presses howmuch these past events contributed to the outcome,
determining the degree of value updating. We extended this
algorithm to reflect the model-based prediction by changing
the eligibility with an internal model of the task’s transition
structure. Thus, the proposed model assumes a sequential
value-updating process by the model-free learning system.

We also examined an additional hypothesis in a TD learn-
ing process. TD learning generally assumes that only the cho-
sen option value is updated, while the other values remain the
same (Sutton & Barto, 1998). However, a variant TD learning
model that hypothesizes value changes for unchosen actions
has recently succeeded in capturing the choices of both mon-
keys (Barraclough, Conroy, & Lee, 2004) and rats (Ito &
Doya, 2009). In addition, this model has shown some impor-
tant characteristics of choice behavior, such as a dependence
on choice history (Katahira, 2015). However, this mechanism
has not yet been examined in Markov decision processes,
including state transitions such as the present task. Here we
applied this hypothesis to a computational model to determine
whether it improves the model’s fit to data.

Thus, the purpose of this study was to examine the hypoth-
eses above by using the two-stage decision task (Daw et al.,
2011) to find an alternative model with a simpler value-
updating rule that both requires parsimonious computation, as
compared to the existing model, and satisfactorily predicts the
balance of the model-free and model-based effects on choice
behavior. The exploration of this topic is important and urgently
required because the original computational model is already
widely used as a basis for identifying the brain regions involved
in model-based decision-making or qualifying the characteris-
tics of some psychiatric diseases, as we mentioned above.

Method

Participants

Twenty-three undergraduate students at Nagoya University
(12 males, 11 females; age M = 19.1 years, SD = 0.8) partic-
ipated in the experiment. All participants gave informed con-
sent, and the study was approved by the ethics committee at
Nagoya University. The participants were paid ¥1,000, with
additional monetary rewards between ¥500 and ¥584 that
were calculated by multiplying .4 by the money earned in
the two-stage decision task. The additional rewards of the
two participants who earned less than ¥500 were rounded up
to ¥500.

Two-stage decision task

The two-stage decision task was based on a procedure devel-
oped by Daw et al. (2011). The present task consisted of three
blocks that contained 101 trials, which were separated by 30-s
breaks. Each trial had two stages (Fig. 1A). The participants
first chose one of two fractal images in the first stage (state A)
by clicking a corresponding mouse button within 2 s. The se-
lected fractal was highlighted with a yellow frame. Each fractal
at state A led to states B and C at different rates. One option led
to state B at a rate of 70% (common transition) and state C at a
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rate of 30% (rare transition), whereas the other led to states B
and C at the reversed rates. In the second stage, each state had a
particular color background and fractals to easily distinguish the
two states, and the small fractal image that had been chosen in
the first stage was shown at the top of the screen as a reminder.
The participants again chose one of two fractals in the second
stage within 2 s, and the selected fractal was again highlighted.
Depending on this choice, feedback was given for 1 s that indi-
cated whether the participants were rewarded or unrewarded.
When the participantswere rewarded, a picture of ¥10was shown,
and when they were not rewarded, a red Bx^ mark was shown.
The participants were told in advance that each first-stage fractal
tended to lead to a particular state in the second stage, but not
which one. They would receive the total earned money that was
discounted by a certain rate after the experiment. In both stages, if
no responsewasmadewithin 2 s, amessage that said BToo late!!^
was presented, and the participants proceeded to the next trial.

The reward probabilities of each second-stage fractal had
previously been determined and independently and slowly
changed over trials with drifting Gaussian random walks (SD
= .025) between .25 and .75 (Fig. 1B). The reward probabilities
were the same for all participants, to exclude the possibility that
individual differences in performance and the computational
model parameters’ fits to the data arose out of differences in
the task-reward condition. Before the experiment, the partici-
pants were told that the reward probability of the second-stage
fractals would change slowly and independently over time, and
they had a ten-trial training session before the task.

The simulated model-free and model-based choice predic-
tions are shown in Fig. 2A. Themodel-free learningwas based
on the outcome of the second stage. Therefore, if a choice was
rewarded, the next choice at the first stage might have stayed

the same as the previous trial, but if it was unrewarded, the
next choice might have changed. In contrast, the model-based
learning used the information about the transition rate. If a
choice was rewarded after a rare transition, the next choice
at the first stage might change in order to go to the same
second-stage state; if the choice was unrewarded after a rare
transition, the next first-stage choice might remain unchanged
to go to another second-stage state.

Operation span task and questionnaires

After the two-stage decision task, the operation span task was
conducted to estimate working memory capacity. In addition,
the participants answered questionnaires on psychological dis-
tress, impulsivity, and attention. These data are beyond the
purpose of this study, and thus are not reported in this article.

Awareness and intentional use of the model
concerning the transition structure

At the end of all procedures, the participants indicated
whether they had noticed the particular transition structure,
and if they did, whether they made choices based on infor-
mation about the previously experienced outcome and
transition. We asked the participants whether they made
choices using information about the previously experi-
enced outcome and transition by giving a concrete exam-
ple. Specifically, we asked BDid you intend to change the
first-stage choice from your choice in the previous trial
after you were rewarded with the rare transition, or did
you intend to reselect the same first-stage option after
you missed the reward with the rare transition?^

Stage 1

Stage 2

Common
(70%)

Common
(70%)Rare

(30%)
Rare
(30%)

a b

Fig. 1 Two-stage decision task. (A) Each trial involved two sequential
stages. The participants chose one of two fractal images. Each of these
image had a common transition (70%) and a rare transition (30%), each of
which led to a specific state at the second stage. Depending on the second-
stage choice between two fractal images, the participants received reward

feedback that indicated whether or not they had received ¥10. (B) The
reward probabilities for each second-stage image changed slowly and
independently according to Gaussian random walks, but they were the
same for all participants.
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Models

Next we searched for a suitable computational model to ex-
plain the data we obtained. In the following section, we first
introduce the original model proposed by Daw et al. (2011) to
explain the data for this task. In this article, we call it the
parallel-learning model. Then we introduce a model that as-
sumes a different connection mechanism between the model-
free and model-based components from the original model:
the eligibili ty adjustment model (the EA model).
Subsequently, two models are introduced that assume changes
in the unchosen action values—namely, the forgetting Q-
learningmodel (the Fmodel) and a variation that hypothesizes
regression to a certain default value (the FD model). Finally,
we propose four hybrid models: the parallel–Fmodel, the EA–
F model, the parallel–FD model, and the EA–FD model.

The parallel-learning model (from Daw et al., 2011) The
parallel-learning model (Daw et al., 2011; Daw et al., 2005)
hypothesizes that parallel processes calculate the model-free
and model-based values; these processes are combined by a
weighting parameter w to a net value for a choice.

The model-free learning system uses a SARSA (λ) TD-
learning rule (Rummery & Niranjan, 1994) and updates state–
action values,QM F si; t; ai; t

� �
at each stage i of each trial t. In the

present task, there are three types of states (sA for s1;t and sB and

sC for s2;t ). Each state has two available actions, and ai; t∈
1; 2f g denotes the chosen action. The value of a chosen state–
action value is updated as follows:

QM F si;t; ai;t
� �

←QM F si;t; ai;t
� �

þ αi ri;t þ QM F siþ1;t; aiþ1;t
� �

−QM F si;t; ai;t
� �� �

; ð1Þ
where αi is a learning rate parameter that is unique for each
stage, and ri;t denotes the rewards at trial t (with ri;t ¼ 1 when
the reward is given, and ri;t = 0 when the reward is not given).

Here, r1;t and QTD s3;t; a3;t
� �

are always 0, because there is no
reward at the first stage and no next stage after the second
stage. The values of QM F at the first and second stages are
updated as follows:

QM F s1;t; a1;t
� �

←QM F s1;t; a1;t
� �

þ α1 QM F s2;t; a2;t
� �

−QM F s1;t; a1;t
� �� �

; ð2Þ
QM F s2;t; a2;t

� �
←QM F s2;t; a2;t

� �

þ α2 r2;t−QM F s2;t; a2;t
� �� �

: ð3Þ
At the end of each trial, all first-stage values are again

updated according to the second-stage reward prediction error
(RPE), the difference between the expected and actual re-
wards, as follows:

QM F s1;t; a1;t
� �

← QM F s1;t; a1;t
� �þ α1λ r2;t− QM F s2;t; a2;t

� �� �
; ð4Þ
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b

a

Fig. 2 Effects of the transition and outcome of the previous trial. (A)
Graphs of predicted stay probabilities at the first stage for the purely
model-free system and the purely model-based system. The model-free
system predicts that the participant will reselect the same option after the
choice is rewarded and will change after the choice is unrewarded (left
graph), but the model-based system predicts an interaction between

transition and outcome (right graph). (B) The observed stay probabilities
are shown. On average, across participants, model-free control (the main
effect of the previous outcome) was observed in Block 1, and model-
based control (the interaction between the previous transition and out-
come) was seen in Blocks 2 and 3.
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where λ denotes the trace decay parameter, which modulates
the degree of the effect of the second-stage RPE on the first-
stage value (Sutton & Barto, 1998). This type of updating is
called the eligibility trace rule; λ ¼ 1 indicates that its effect is
maximum, and λ ¼ 0 indicates no effect.

The first-stage model-based values, QMB, for each action
are updated depending on the transition probability function T,
which is a function of the transition probabilities from a first-
stage action to the following second-stage states, whereas the
second-stage QMB is equivalent to QM F , because there is no
transition to the next stage. Thus, the values of QMB for the
first-stage actions are as follows:

QMB sA; aj
� � ¼ T sB

���sA; aj

� �
maxa∈ a1; a2f gQMB sB; að Þ

þ 1 −T sB
���sA; aj

� �� �
maxa∈ a1; a2f gQMB sC; að Þ

;ð5Þ

where T sBjsA; aj
� �

is a transition probability function corre-
sponding to the transition probability to the state sB after tak-
ing action aj at state sA, which is simply defined as the binary
value of .7 or .3, following Daw et al. (2011).
T sCjsA; aj
� �

equals 1 � T sBjsA; a j
� �� �

. When there are two
actions a1 and a2 in the state sA, T sBjsA; a1ð Þ and T
sCjsA; a2ð Þ are set at .7 if the occurrence of sB following a1
plus sC following a2 is greater than that of sC following a1
plus sB following a2 at that time; otherwise, they are .3.
Finally, the first-stage QM F and QMB are integrated to make
a net value with a weighting parameter w.

wQnet sA; aj
� � ¼ wQMB sA; aj

� �þ 1−wð ÞQM F sA; aj
� �

: ð6Þ

At the second stage, Qnet is the same as QM F and QMB.
These net values determine the choice probabilities P
ai;t ¼ ajsi;t
� �

of choosing action i from two candidates, as
follows:

P ai;t ¼ a
���si;t

� �

¼ exp βi Qnet si;t; a
� �þ p⋅rep að Þ� �� �

X
a0
exp βi Qnet si;t; a0� �þ p⋅rep a0ð Þ� �� � ; ð7Þ

where βi is an inverse temperature at each stage and deter-
mines the bias between the value dependency and the random-
ness of choice. The choice trace weight p is a parameter that
controls the tendency toward preservation (p > 0) or switching
(p < 0) in the first-stage actions; rep að Þ is 1 if a is a first-stage
action and is the same as the action that was chosen on the
previous trial, and it is 0 otherwise.

In summary, in each trial, the parallel-learning model first
updatesQM F andQMB separately. ForQM F, the chosen state–
action values are updated using Eq. 2 at the first stage and
Eq. 3 at the second stage, and the first chosen state–action

value is again updated by eligibility trace using Eq. 4. For
QMB in the first stage, values are calculated using Eq. 5,
whereas at the second-stage QMB has the same value as the
second-stage QM F . At the end, QM F and QMB are combined
with Eq. 6. As we explain at the beginning of the next section,
we actually used Eq. 8 instead of Eq. 4 for the comparison
with other models; this change had no effect on the fit of the
parallel-learning model.

Eligibility adjustment model First, we changed the conven-
tional equation of the eligibility trace rule. The eligibility trace
typically works by conveying the RPE to the previously ex-
perienced eligible state–action pairs, as in Eq. 4. We assumed
that the reward itself is used to update the previous state–
action pairs as follows:

QM F s1;t; a1;t
� �

← QM F s1;t; a1;t
� �

þ λ r2;t− QM F s1;t; a1;t
� �� �

: ð8Þ

This change in the equation is merely a reparameterization
of the parallel-learning model, but it is easy to adapt to the
other models that include the updating of unchosen options,
such as the EA model introduced in this section (see
Supplementary Text 1). Therefore, it becomes easy to make
comparisons between the parallel-learning model and the oth-
er models by using Eq. 8 instead of Eq. 4 for all models. In the
SARSA(λ) TD learning and parallel-leaning models, there
was no difference in fit, regardless of whether Eq. 4 or Eq. 8
was used in the eligibility trace part, because of the
reparameterization. Furthermore, although these equations
produce different fit results in the other models, the models
consistently showed better fits when we used the proposed
Eq. 8 than when we used the conventional Eq. 4 (see
Supplementary Text 1 and Table S1 for details).

In addition, we hypothesized that the environmental model
(transition probabilities) is used in the update rule of the eli-
gibility trace, and we proposed a new model called the EA
model. The critical characteristic of this model is that one
value is assigned to one state–action pair. This is different
from the parallel-learning model, which assumes two values
for each state–action pair. Thus, the values of the EA model
are simply noted as Q, and QM F in the other models shall be
replaced with Q when they are combined with the EA model.

In the EA model, the model-based component is combined
in the eligibility trace equation. The fully model-free eligibil-
ity trace is the same as Eq. 8, where the reward is used to
update the previously chosen state–action pairs in that trial.
However, we theorized that fully model-based eligibility trac-
ing is performed proportional to the probabilities from the
first-stage action to the second-stage state. Under this model-
based system, the unchosen action value in the first stage is
also updated on the basis of the subjective transition
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probability, because it also had a possibility of reaching the
currently visited second-stage state in that probability if it
were chosen. Thus, in the EA model, eligibility trace updating
for the chosen action a1;t includes mixed effects of the model-
free and model-based systems on a weighting parameter, and
the unchosen action a1;t is also updated under the model-based
system as follows:

Q s1;t; a1;t
� �

← Q s1;t; a1;t
� �

þ λ w⋅T s2;t
���s1;t; a1;t

� �
r2;t−Q s1;t; a1;t

� �� �þ 1−wð Þ r2;t−Q s1;t; a1;t
� �� �h i

;

ð9Þ
Q s1;t; a1;t
� �

← Q s1;t; a1;t
� �

þ λw⋅T s2;t
���s1;t; a1;t

� �
r2;t−Q s1;t a1;t

� �� �
; ð10Þ

where T s2;tjs1;t; a1;t
� �

is simply defined as the binary
value of .7 or .3 introduced in the explanation for
Eq. 5. Here, w (0≤w≤1) controls the balance of the
model-free and model-based effects in the eligibility
trace. If this parameter equals 0, the eligibility trace is
totally performed in the model-free manner, whereas if
this parameter equals 1, the eligibility trace is totally
performed in the model-based manner. The unchosen
action value a1;t is also updated under the model-based
system. In the long run, this type of model-based eligi-
bility trace may reflect the neural networks, which are
activated depending on the frequencies of the experi-
enced transitions and propagate the reward information
to the eligible actions in proportion to their activation.

In the original model (Daw et al., 2011), the transition
probability function T is used when calculating the model-
based value (QMB). In contrast, in this EA model QMB is not
calculated, but the information concerning the transition prob-
ability is used to adjust the model-based degree of the eligi-
bility trace. This EA model thus requires a lower cost than the
original model, which calculates and then combines two types
of values.

In summary, on each trial under the EA model, the chosen
state–action values are first updated using Eq. 2 in the first
stage and Eq. 3 in the second stage. At the end of the trial, both
of the first-stage values are updated by adjusting the eligibility
traces: The chosen state–action value is determined by Eq. 9,
and the unchosen state–action value is determined by Eq. 10.

The forgetting learning model and its variation (the F and
FDmodels) Typical TD learning assumes that the value of the
chosen option is updated by the outcome, although the values
of the unchosen options remain unchanged. However, this
assumption is unnatural when considering that memory de-
cays over time. To recover from this limitation, some re-
searchers have introduced new mechanisms to take into

account decay in the values of unchosen options and have
achieved better fits using real data (Barraclough et al., 2004;
Ito & Doya, 2009). Accordingly, the unchosen action values,
including the action values of the unvisited state, are updated
as follows:

QM F si;t; ai;t
� �

←QM F si;t; ai;t
� �

−αFQM F si;t; ai;t
� �

; ð11Þ

whereαF is called a forgetting parameter. Themodel that uses
this rule is called the forgetting learning model (F model). In
the model fitting, we assumed the special case that αF is the
same as the learning rate in the first and second stages.
Although we also tried other models that assumed that αF is
different from the learning rate, the best-fitting model in this
study supported the present assumption.

Equation 11 predicts that the value of unchosen options is
close to 0 if they are not chosen for a long time. However, it is
again unnatural to assume this result, particularly when con-
sidering the behavioral tendency known as exploration. This
behavior is partly caused by an expectation that rarely-chosen
uncertain options may have advantages over often-chosen cer-
tain options. Therefore, the value of the unchosen options
might not be monotonically devalued, but instead might be
regressed to a certain default expected value. Particularly in
this task, because the participants were first instructed that the
rewarded probabilities of the second-stage options would con-
tinue to change, it was natural to think that uncertain options
would have some expected value. To include this idea in the
model, we added a default-value parameter, μ (0≤μ≤1), and
formalized that the values of unchosen options were regressed
to the default value μ.

QM F si;t; ai;t
� �

←QM F si;t; ai;t
� �

þ αF μ −QM F si;t; ai;t
� �� �

ð12Þ

Under this rule, all initial Q values are equal to μ: As a
predicted tendency, a μ value smaller than the recently chosen
option value promotes the avoidance of unchosen options,
whereas a μ greater than the recently chosen option value
promotes active exploration. Thus, the μ parameter becomes
an index that determines the exploration tendency. We call the
model that includes this updating rule the forgetting-to-default
learning model (FD model).

Thus, in each trial, the chosen state–action values are first
updated using Eq. 2 in the first stage and Eq. 3 in the second
stage, and the unchosen and unvisited state–action values are
updated using Eq. 11 in the F model and Eq. 12 in the FD
model. At the end of trial, the first chosen state–action value is
again updated by eligibility trace using Eq. 8.
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Hybrid models (parallel or EA models with a forgetting
mechanism) To combine the assumptions concerning the in-
tegration mechanism of the model-free and model-based com-
ponents and the updating rule of the model-free component,
we proposed four hybrid models. Two models are hybrids of
the F and the parallel and EA models (the parallel–F and EA–
F models); the other two models are hybrids of the FD and the
parallel and EAmodels (the parallel–FD and EA–FDmodels).

The concrete updating procedures of each model are as
follows. In the parallel–F model, QM F for the chosen state–
action are updated using Eq. 2 at the first stage and Eq. 3 at the
second stage, and the remaining, unchosen state–action values
are updated using Eq. 11. QM F for the chosen state–action at
the first stage are also updated using the eligibility trace rule of
Eq. 8. In parallel, QMB at the first stage are calculated using
Eq. 5, whereas the second-stage QMB are the same as the
second-stage QM F . Ultimately, QM F and QMB are combined
using Eq. 6. In the EA–F model, the Q values for the chosen
state–actions are first updated using Eq. 2 at the first stage and
Eq. 3 at the second stage, and the remaining Q, for the
unchosen state–actions, are updated using Eq. 11. At the end
of the trial, the first-stageQ are again updated by adjusting the
eligibility traces: The chosen action value is determined by
Eq. 9, and the unchosen action value is determined by
Eq. 10. The value-updating processes of the parallel–FD and
EA–FD models are the same as those of the parallel–F and
EA–Fmodels, respectively, except that Eq. 11 is replaced with
Eq. 12.

Measures of model fitting and selection criteria

We used the R function Bsolnp^ in the Rsolnp package
(Ghalanos & Theuss, 2015) to estimate the fitting parameters.
For a comparison of these models, we computed the Akaike
information criterion (AIC; Akaike, 1974) and the Bayesian
information criterion (BIC; Schwarz, 1978). These values
were given by

AIC ¼ −2LLþ 2k; ð13Þ
BIC ¼ −2LLþ k⋅log nð Þ; ð14Þ

where LL is the log likelihood, k is the number of free param-
eters, and n is the total number of choices. The model with a
smaller value is considered the preferred model.

Logistic regression analysis

To examine the individual action tendencies, logistic regres-
sion analyses were carried out with the R function Bglm^
separately on the data for each participant. The model tested
the effects of previous outcome (coded as rewarded [.5] and
unrewarded [–.5]) and previous transition (coded as common

[.5] and rare [–.5]) on the stay/switch actions at the first stage
(coded as stay [1] and switch [0]).

Results

All participants performed 303 trials. In the following
analyses, the data from the uncompleted trials, in which
a choice was not made within 2 s, were excluded. We
also excluded the data from trials in which the response
time was less than 100 ms, because these were consid-
ered anticipated responses that did not reflect the stim-
ulus types. An average of 2.96 (SD = 3.06) trials were
excluded per participant.

Stay probability at the first stage depending
on the previous trial’s transition and outcome

The effect of the previous outcome, or the preference for an
option followed by a reward, accords with model-free predic-
tion, whereas interaction of the previous outcome and the
previous transition accords with the model-based prediction
(Fig. 2A). To examine this point, we conducted an analysis of
variance (ANOVA) on the stay probabilities at the first stage,
with Block (1, 2, and 3), Previous Outcome (rewarded and
unrewarded), and Previous Transition (common and rare) as
within-subjects factors (Fig. 2B).

We observed a significant main effect of previous outcome
[F(2, 44) = 12.37, p = .002, η2p = .36], showing that the mean

stay probability was higher after the rewarded trials than after
the unrewarded trials [rewarded, .74 (SD = .24); unrewarded,
.67 (SD = .19)]. Additionally, significant interactions were
found between block and previous outcome, previous out-
come and previous transition, and all three of the factors
[F(2, 44) = 3.39, p = .043, η2p = .13; F(1, 22) = 16.80, p <

.001, η2p = .43; F(2, 44) = 4.95, p = .012, η2p = .18, respective-

ly]. There were no other significant effects (all ps > .18).
Because of the three-way interaction, we conducted post-hoc
analyses to examine the effects of previous outcome and pre-
vious transition separately in each block (Table 1). This anal-
ysis revealed that in Block 1 participants showed only the
significant main effect of previous outcome (p < .001).
Conversely, in Blocks 2 and 3, participants showed significant
interactions between previous outcome and previous transi-
tion (both ps < .001), although there were no or only moderate
effects of previous outcome (respectively, p = .22, p = .08).
These results showed that the choices were produced by both
model-free and model-based systems. The former effect was
found mainly in the first block, whereas the latter was mainly
in the latter blocks.
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Examination of the forgetting mechanism

In the present task, if the forgetting mechanism worked as
intended in the F and FD models, we predicted that the
second-stage choice would become noisier in trials that did
not include the same second-stage state as the previous trial
(different condition) than in trials that included the same
second-stage state as the previous trial (same condition), be-
cause the values of both unvisited states would always ap-
proach 0 in the F model and μ in the FD model, and the
difference between the values would always diminish. To ex-
amine this point, we calculated (separately for each condition)
the ratio of the second-stage stay probability after being
rewarded to that after being unrewarded for the trial on which
the same second-stage state was last visited. The result of a
paired t test revealed that this ratio was bigger in the same
condition (M = 1.7, SD = 0.6) than in the different condition
(M = 1.4, SD = 0.3) [t(22) = 3.15, p < .001, d = 0.66]. This
result supported the existence of a forgetting mechanism. A
considerable confounding factor of this effect was that the
different condition included a larger ratio of rare-transition
trials than did the same condition [on average, .40 for the
different condition and .26 for the same condition; t(22) =
5.67, p < .001]. The rare transitions might cause noisy actions
relative to the common transitions, and might lead to the re-
sults above. To exclude this possibility, we conducted the
same analysis but restricted it to the data of the common-
transition trials. This analysis resulted in the same effect,
showing that the choices in the same condition were more
sensitive to the previous outcome [t(22) = 2.80, p = .010, d
= 0.58].

In addition, to gain further confidence in the prediction
above regarding the forgetting mechanism, we conducted
the same analyses on synthetic datasets. We first generated
200 datasets for each model, including the SARSA (λ) TD
learning, F, FD, parallel-learning, and EA models. Each
dataset included 23 simulated data points generated using

the best-fitting parameter combinations for each participant
in the experiment. In each model, 100 datasets were generated
under the same reward probabilities used in the experiment,
and the other 100 had newly generated reward probabilities
that slowly changed over the course of the 303 trials according
to Gaussian random walks (SD = .025) with reflecting bounds
at .25 and .75. For these datasets, the same t tests were con-
ducted, and the number of results significant at the 5% level
out of the 100 tests was counted in each condition. The results
are shown in Table 2. As we expected, only the models that
included the forgetting mechanism showed that the choices in
the same condition were more sensitive to the previous out-
come than those in the different condition, whereas the other
models showed a trivial number of significant results that
would be expected from the significance level. It seems that
the FD model showed a stronger forgetting mechanism than
the F model. This difference may be caused by the closer
distances between a default value μ estimated in the FDmodel
and the options’ estimated values, in comparison with the
distance between 0 and the options’ estimated values.

Awareness of the transition model and its intentional use

We were also interested in whether the participants were truly
aware of the transition structure of the task and whether they
intentionally used it in a manner that corresponded to the
interaction between the transition and outcome. Table 3 shows
the participants’ answers to these questions after the experi-
ment. Almost all participants, except two, noticed the transi-
tion bias of the options at the first stage (Q1 of Table 3), but
only one-third used the bias after a rare transition when mak-
ing their choice at the first stage (Q3 of Table 3).

Comparison of the models

The negative log likelihood (–LL), AIC, and BIC were calcu-
lated for each model introduced in Models section and, for
comparison, a model using standard SARSA (λ) TD learning
(see Table 4). All models in the Models section were devel-
oped by adding other mechanisms to SARSA (λ) TD learning,
and these mechanisms are roughly divided into two. One is a
mechanism tomakemodel-free learningmore efficient, which
is addressed by the F and FD models. The second is a mech-
anism to incorporate model-based influence into the value
updating, which is addressed with by the parallel-learning
and EA models. Table 4 also shows the results of the hybrid
models.

Of the two mechanisms above, the second is especially
important in the present research, because our primary aim
was to develop a model to capture the balance of the model-
free and model-based systems using the two-stage decision
task. Therefore, we first focused on the comparison between
the parallel-learning and EA models. At the population level,

Table 1 Main effects and interactions in three blocks

F p Value

Block 1 Outcome 15.87 .0006***

Transition 0.25 .620

Outcome × Transition 2.87 .105

Block 2 Outcome 1.62 .217

Transition 1.06 .314

Outcome × Transition 16.69 .0005***

Block 3 Outcome 3.27 .0843†

Transition 2.72 .114

Outcome × Transition 15.25 .0008***

Significant effects are in bold. † p < .10, *** p < .001
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both the AIC and BIC favored the EAmodel over the parallel-
learning model (Table 4). We also conducted a paired t test to
examine whether the BIC differences between twomodels per
participant were significantly different from zero. This again
revealed that the EA model was significantly better than the
parallel-learning model [t(22) = 3.48, p = .002, d = 0.73]. At
the individual level, 18 of the 23 participants supported the EA
model, as is shown in Fig. 3, which presents the AIC/BIC
difference between the two models for each participant.

In addition, to show that the EA model, similarly to the
parallel-learning model, can produce both model-based-like
and model-free-like behavior, we simulated the predicted stay
probabilities at the first stage using the same reward probabil-
ity conditions used in Fig. 1B. Each bar graph in Figs. 4B and
C shows the results of 20 simulations using the best-fitting
parameters, where the parameter w was set to equal the esti-
mated one, 0 (model-free), 1 (model-based), or .5 (a mix of
model-free and model-based systems). This simulation con-
firmed that the EA model can produce model-based-like and
model-free-like behavior, depending on the value of the pa-
rameter w. In addition, both models can produce choice ten-
dencies similar to those in the real data of the present experi-
ment (Fig. 4A) when the estimated w is used. For a compar-
ison, we also show the results of simulation using the Fmodel,
in which we added a parameter for the forgetting rate

(Fig. 4D). As we hypothesized, this model could not predict
model-based behavior, because it lacks the computational
structure to incorporate the transition model. We will detail
the structural differences between the parallel-learning model
and the EA model in the Detailed Comparison Between the
Parallel-Learning and EA Models.

Next we focused on the first mechanism. This analysis
confirmed that both the F and FD models improved the fits
as compared to the model using standard SARSA (λ) TD
learning for any criteria (Table 4). Subsequently, we compared
the F and FDmodels to examine the effect of the default value
μ, because the F model is a special case of the FD model for
which μ = 0. At the population level, the FD model was
favored over the F model by the AIC and BIC criteria. The
likelihood ratio test also significantly favored the FD model
[χ2 (22) = 178.49, p < .001]. At the individual level, a mod-
erate number of participants favored the FD model (11 of 23
participants according to AIC, 8 of 23 according to BIC, and 8
of 23 according to the likelihood ratio test, at p < .001).

We then focused on the four hybrid models, which com-
bine both mechanisms discussed above; these models include
the parallel–F model, the EA–F model, the parallel–FD mod-
el, and the EA–FD model. All hybrid models except the par-
allel–F model were better than all of the models with only one
of the two mechanisms, and the EA–FD model was the best

Table 2 Numbers of significant results (5% level) out of 100 simulations in the analyses of the forgetting mechanism

Same Reward Probabilities New Reward Probabilities

Model All Common All Common

SARSA(λ) TD 3 [d = –0.02] 3 [d = –0.05] 4 [d = –0.03] 4 [d = –0.03]

F 52 [d = 0.56] 35 [d = 0.46] 30 [d = 0.49] 18 [d = 0.38]

FD 96 [d = 0.67] 76 [d = 0.58] 87 [d = 0.61] 66 [d = 0.53]

Parallel-learning 7 [d = 0.06] 1 [d < 0.01] 5 [d = 0.02] 4 [d = –0.02]

EA 1 [d = –0.03] 2 [d = –0.03] 5 [d = –0.02] 5 [d = –0.03]

Each cell shows the number of significant results from paired t tests of 100 synthetic datasets regarding the second-stage stay probabilities between the
same and different conditions. These datasets were generated using either the same reward probabilities as in the present experiment or new reward
probabilities for each model with the best-fitting parameter combinations in the experiment. Furthermore, the t tests were conducted using all trials or
using only common-transition trials. The average effect sizes are shown in brackets. Importantly, all significant results for the F and FD models were
obtained with positive t values, indicating that the choices in the same condition were more sensitive to the previous outcome than those in the different
condition

Table 3 Summary of responses to the posttask questionnaires

About the task's transition structure Number of participants

Q1. Did you notice the bias? Yes: 21 No: 2

Q2. What was the ratio? "More extreme than 7:3": 6 "7:3": 11 "More moderate than 7:3": 4

Q3. Did you use a transition structure to make the choice,
particularly after a rare transition?

Yes: 7 Never: 16

Almost all participants were aware of the transition bias. However, only seven participants reported that they intentionally used the rare-transition
probabilities to control their choices.
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model with respect to both the AIC and BIC criteria, followed
by the parallel–FD model (Table 4). These two best-fitting
models were directly compared using a paired t test, which
examined whether the BIC differences between the two
models were significantly different from zero. We determined
that the EA–FD model was significantly better than the paral-
lel–FDmodel [t(22) = 2.56, p = .018, d = 0.53]. In addition, 18
of 23 participants showed a better fit for the EA–FD model
than for the parallel–FD model according to AIC/BIC.

Finally, to confirm the improvement of this best-fitting
EA–FD model relative to the parallel-learning model, a simi-
lar t test was conducted. This showed that the EA–FD model
was significantly better than the parallel-learning model [t(22)
= 3.77, p = .001, d = 0.79]. The comparisons at the individual

level are also shown in Fig. 5. Almost all participants favored
the proposed EA–FD model. Furthermore, the EA–FD model
was most favored in all three blocks according to AIC
(Table S3), although the choice tendency changed across
blocks, as is shown in Table 1.

Parameters of the EA–FD model

The lower part of Table 5 shows the estimated parameter
values of the EA–FD model. Information about the parallel-
learning model is also shown, for reference, in the upper part
of Table 5 . The parameter w captures the model-based effects
in choice behavior. In the EA–FDmodel, this parameter value
was almost zero for six of the 23 participants (<.002), but the
remaining participants showed dispersion from .04 to almost
1. Fig. 6A shows the correspondence between this parameter
and the participants’ intentional model use. The gray bars
indicate the participants’ reported model use (see also Q3 of
Table 3). Although one participant (no. 2) who did not report
model use showed a highw value, his trace decay parameter λ
was extremely low (λ < 10�46 ) as compared to all the other
participants (λ > 0:03 ), which causes his w to become un-
constrained. This finding indicates that for this participant, the
eligibility trace itself had no effect, and the value of w was
meaningless. For the purposes of comparison, we also show
the same graph of w for the other models (Fig. 6, B C, and D).
The correspondence of the parameter and the participants’
intentional model use appears high and occurs in the order
EA–FD model > EA model > parallel–FD model > parallel-
learning model. Although there are no large differences
among the first three models, this order supports the

Table 4 Information concerning the nine models compared on the basis of their fit to the choices of 23 participants

Model name Description Additional free
parameters

# of free
parameters

-LL AIC BIC

Model-free learning only

SARSA (λ) TD - 6 319.0 (69) 649.9 (138) 676.3 (138)

F Update unchosen action values using forgetting
parameter

- 6 312.8 (75) 637.7 (149) 664.1 (149)

FD The F model with regression to the default value
for unchosen actions

μ 7 309.0 (74) 631.9 (147) 662.7 (147)

Model-free and model-based components

Parallel learning Independently calculate the model-free and model-
based values

w 7 314.0 (69) 641.9 (139) 672.7 (139)

EA Use the environmental model in the eligibility trace
updating

w 7 312.1 (69) 638.1 (139) 668.9 (139)

Hybrid models

Parallel-F The hybrid of the Parallel-learning and F models w 7 309.3 (74) 632.5 (149) 663.3 (149)

EA-F The hybrid of the EA and F models w 7 306.8 (75) 627.7 (149) 658.4 (149)

Parallel-FD The hybrid of the Parallel-learning and FD models w, μ 8 303.5 (73) 623.0 (146) 658.2 (146)

EA-FD The hybrid of the EA and FD models w, μ 8 302.3 (74) 620.6 (147) 655.8 (147)

This list provides the mean values and standard errors across participants regarding the negative log likelihood (–LL), the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC) for each model.
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Fig. 3 Differences in the Akaike information criterion (AIC) scores or
Bayesian information criterion (BIC) scores between the eligibility ad-
justment (EA) model and the parallel-learning model for each participant.
The results of the two criteria are the same because the same number of
free parameters are used in both models. Color bars favor the EA model,
and white bars favor the parallel-learning model.

Cogn Affect Behav Neurosci (2017) 17:764–783 773



usefulness of the parameter w in the EAmodels. Although the
other parameter, λ, in the eligibility trace models determines
the overall degree of the eligibility trace, we confirmed that w
is a better predictor of model use than λ, by confirming the
correlations between individual values of the parameters and

reported model use or the results of individual-based logistic
regressions (Table S2).

In addition, as expected, another new parameter μ, which
denotes the default value, was negatively correlated with stay
probability (r = –.56, p = .005; see Fig. 7). In other words, the
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Fig. 4 Observed and simulated results depending on the parameter
value. (A) Observed stay probabilities at the first stage. (B–D)
Results of simulations using the best-fitting parameters of the
parallel-learning model (B), EA model (C), and forgetting F model
(D). In each graph, one parameter is attenuated. The simulated re-
sults of the parallel-learning and EA models using the estimated

parameters are similar to the observed pattern. In addition, both
models can produce model-free-like and model-based-like behavioral
patterns when w = 0 and w = 1, respectively. In the F model, the
forgetting rate αF was assumed to be the same as the learning rate
αL in the parameter estimation. The F model cannot represent
model-based-like behavior for any value of αF .
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higher default value prompted an exploration tendency as a
result of enhanced expectations of uncertain options.

Detailed comparison between the parallel-learning
and EA models

In this section, we ascertain which part of the updating
processes accounted for the fitting difference between
the parallel-learning model and the EA model, and then
we investigate which aspects led to the improvement of
the fitting in the proposed EA model by comparing the
structural differences between the two models in detail.

First, to observe the fitting difference between the parallel-
learning and EA models in the first and second stages, we
calculated the means of the estimated choice probabilities for
the action chosen in each trial for each stage of each model
(Fig. 8A). Here, geometric means, which exponentiate the
average log probabilities, were calculated, because they di-
rectly reflect the difference in log likelihoods. An ANOVA
was conducted on the means using Model (parallel-learning
and EA) and Stage (first and second) as within-subjects fac-
tors. There was a significant effect of model, showing that the
EA model was better than the parallel-learning model [F(1,

22) = 11.29, p = .003, η2p = .34]. In addition, we found a

significant interaction between model and stage [F(1, 22) =
10.62, p = .004, η2p = .33]. This revealed that the better choice

predictability of the EA model was significant only in the first
stage (p = .003) and was marginally significant in the second
stage (p = .051). This larger difference in the first than in the
second stage was predictable, because the two models use
different equations to update the first-stage values but exactly
the same equation in the second stage. The reason why the
second-stage choice probability was also marginally better in
the EAmodel is that the EA model estimates the second-stage
choice probabilities relatively independently from the estima-
tion of the first-stage choice probability, as compared with the
parallel-learning model. Although both models use a chosen
second-stage value in the first-stage value update by SARSA
(see Eq. 2), the parallel-learning model gives an additional
role to the second-stage values in the estimation of the first-
stage model-based values (see Eq. 5). Thus, the parameters
used for the second-stage choice probabilities must be adjust-
edmore strongly to fit the first-stage choice probabilities in the
parallel-learning model than in the EA model. As a result, the
second-stage choice probabilities deteriorated in the parallel-
learning model compared with the EA model.

Here, we examine which aspects of the EA model
caused the better fits in the first stage. For this purpose,
it is useful to reduce the multiple updating equations re-
garding the first-stage value update to one equation. For
the sake of simplicity, a1 refers to the chosen action, and
a2 refers to the unchosen action in the first stage (s1). In
the second stage (s2), a1 refers to the chosen action, a2
refers to the unchosen action, and a3 and a4 refer to the
actions in the unvisited state. In both models, the chosen
actions are first updated by Eq. 2 in the first stage and by
Eq. 3 in the second stage. Hereafter, the bold letters Q
s1; a1ð Þ and Q s2; a1ð Þ refer to the model-free values al-
ready updated by these equations. After this update, in the
parallel-learning model, Eqs. 8, 5, and 6 are used to up-
date the chosen action value, and Eqs. 5 and 6 are used to
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Fig. 5 Differences in Akaike information criterion (AIC) scores (left
panel) and Bayesian information criterion (BIC) scores (right panel) be-
tween the hybrid EA–forgetting model with default-value parameter

(EA–FD model) and the parallel-learning model for each participant.
Color bars favor the EA–FD model, and white bars favor the parallel-
learning model.

Table 5 Estimated parameter values and negative log likelihood (–LL)
for the parallel-learning model and the EA–forgetting model with default-
value parameter (EA–FD model) model

Percentile a1 a2 β1 β2 λ p w μ –LL

Parallel-Learning Model

25 .00 .12 2.26 2.26 .14 .04 .04 275.0

50 .22 .50 4.93 2.84 .35 .13 .52 320.8

75 .47 .74 8.26 4.88 .70 .25 .70 358.5

EA–FD Model

25 .01 .19 2.40 4.87 .19 .03 .02 .00 262.3

50 .14 .26 5.84 7.47 .41 .11 .60 .11 316.5

75 .29 .38 9.98 10.31 .89 .17 .88 .31 349.4
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update the unchosen action value. These equations are
reduced as follows:
QNET s1; a1ð Þ

←w T ⋅max Q s2; a1ð Þ; Q s2; a2ð Þð Þ þ 1−Tð Þ⋅max Q s2; a3ð Þ; Q s2; a4ð Þð Þ½ �

þ 1−wð Þ Q s1; a1ð Þ þ λ r−Q s1; a1ð Þð Þ½ �;

ð15Þ

QNET s1; a2ð Þ

←w 1−Tð Þ⋅max Q s2; a1ð Þ; Q s2; a2ð Þð Þ þ T ⋅max Q s2; a3ð Þ; Q s2; a4ð Þð Þ½ �

þ 1−wð ÞQ s1; a2ð Þ;

ð16Þ

where Q is equal to the model-free value estimated in the pre-
vious trial, and QNET is the ultimate updated value after the
experience of a trial. T and r represent the immediately experi-
enced transition probability and the outcome, respectively. In
the EA model, the net values are updated using Eq. 9 for the
chosen action and Eq. 10 for the unchosen action as follows:

QNET s1; a1ð Þ←w Q s1; a1ð Þ þ λT r−Q s1; a1ð Þð Þ½ �
þ 1−wð Þ Q s1; a1ð Þ þ λ r−Q s1; a1ð Þð Þ½ �;

ð17Þ
QNET s1; a2ð Þ←w Q s1; a2ð Þ þ λ 1−Tð Þ r−Q s1; a2ð Þð Þ½ �
þ 1−wð ÞQ s1; a2ð Þ:

ð18Þ
By comparing the equations between the two models, it

becomes clear that the difference between the two models
appeared in the model-based part (the term multiplied by w)
and not in the model-free part [the termmultiplied by (1 – w)].

Regarding the model-based parts, two candidate factors
might have caused the fit to be better in the EA than in the
parallel-learning model. First, these two models have differ-
ences in the weight of the immediate experience. The EAmod-
el has a structure that directly reflects the interaction of the
transition probability (T ) and reward outcome (r) to the value
update for the next choice. In contrast, in the parallel-learning
model this effect is diminished. Although the immediate re-
ward outcome is reflected in Q s2; a1ð Þ, the max function
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Fig. 6 Relations between the participants’ intentional model use and a
parameter that relates to the model-based contributions in the four
models: (A) w in the EA–FD model, (B) w in the parallel–FD model,
(C) w in the EA model, and (D) w in the parallel-learning model are
shown. The participants are ordered by parameter value, and the numbers

of participants in panels B, C, andD correspond to the number in panel A.
The gray bars indicate that the participants reported that they used the
transition model (BModel user^), and the white bars indicate that partic-
ipants reported that they did not use the transition model (BNon-model
user^).

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

St
ay

 p
ro

ba
bi

lit
y

μ

r = -.56
(p = .005) 

Fig. 7 Relation between the average stay probabilities of all trials at the first
stage and the default-value parameter μ of the EA–FD model. As predicted,
these variables show a negative correlation, suggesting that the participants
who had a high default value tended to adopt exploratory behavior.

776 Cogn Affect Behav Neurosci (2017) 17:764–783



sometimes prevents it from affecting the QNET ; although the
prevention does not always lead to a nonoptimal choice. The
influence of the immediate outcome on the model-based part
depends on the comparison with the estimated value of the
unchosen option in the same state. To confirm that the EA
model indeed made choice predictions that reflected the

interaction between the immediately experienced transition
and outcome more sensitively than the parallel-learning model,
we calculated, for each model, the average estimated first-stage
choice probability of the model-based action defined for each
trial, based only on the transition and outcome of the previous
trial. Here, we call these the highly responsive model-based
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actions, which concretely refer to an action that is identical to
the previously chosen action after a Bcommon-transition and
reward^ trial or a Brare-transition and no-reward^ trial and an
action that is identical to the previously unchosen action after
Bcommon-transition and no-reward^ or Brare-transition and
reward.^ A paired t test was conducted on the estimated choice
probabilities of highly responsive model-based actions by the
two models (the parallel-learning model:M = .549, SE = .008;
the EAmodel:M = .563, SE = .010). This comparison revealed
that the EA model predicted this type of model-based action
with higher probabilities than the parallel-learning model [t(22)
= 3.77, p = .001, d = 0.79; see the left panel of Fig. 8B]. To
confirm that this effect was not simply caused by the difference
in estimated w in the two models (19 of 23 participants showed
a higher w in the EAmodel than in the parallel-learning model;
see also Table 5), two more t tests were conducted on the
estimated choice probabilities of highly responsive model-
based actions from the two models using the same w values
and optimized values for all other parameters. Concretely, one
test compared the estimated choice probabilities of the two
models using the best-fitting w values for the parallel-learning
model (the parallel-learning model: M = .549, SE = .008; the
EA model: M = .561, SE = .010); the other test compared the
estimated probabilities of the two models using the best-fitting
w values for the EA model (the parallel-learning model: M =
.552, SE = .009; the EA model: M = .563, SE = .010). Both
results again revealed significantly higher probabilities of high-
ly responsive model-based actions in the EA model [t(22) =
3.61, p = .002, d = 0.75; t(22) = 3.01, p = .006, d = 0.63] and
supported the claim that the EAmodel has a structure that tends
to produce highly responsive model-based actions, as com-
pared with the parallel-learning model.

It is still unclear which of these two mechanisms—the
model-based part of the parallel-learning model or of the EA
model—is better suited to real choice behavior. The left panel of
Fig. 8B includes the average actual choice probability of highly
responsive model-based actions (M = .570, SE = .013). To see
the correspondence between the estimated probabilities by the
two models and the actual probability, we examined the corre-
lations between the actual choice probability and those estimat-
ed by the parallel-learning model and the EA model. In both
results, a strong positive correlation was confirmed between the
actual and estimated choice probabilities, and a stronger corre-
spondence was observed in the EA model (the parallel-learning
model: r = .87, p < .001; the EAmodel: r = .94, p < .001; see the
middle and right panels of Fig. 8B). In addition, as is shown in
Fig. 8C, individual AIC/BIC improvements in the fit of overall
choice behavior in the EA model from the parallel-learning
model were positively correlated with their estimated w, show-
ing that those who had relatively higher weight in the model-
based part showed greater improvement in the EA model (r =
.60, p = .002). Taken together, wemay conclude that the model-
based part of the EA model is better suited to actual choice

behavior than is that part of the parallel-learning model, and
that this differencemade the EAmodel a better fit for the overall
choice behavior according to the AIC/BIC criterion.

Another factor can diminish the model fit of the parallel-
learning model. This model uses all second-stage estimated
values in the model-based part to update the first-stage values.
They are treated equally except for the weighting of the tran-
sition probability. However, considering the existence of the
forgetting mechanism, shown in the Examination of the
Forgetting Mechanism section, the second-stage values com-
puted without this mechanism caused mismatches between
the estimated second-stage values and the actual values.
These mismatches, in turn, can induce noise in the model-
based part and cause worse prediction of the next choice at
the first stage. In this context, it is noteworthy that the fitting
differences between the two models are diminished when they
are combined with the FD model, which can improve the
estimation of model-free values; however, the EA–FD model
is still favored over the parallel–FD model (see Table 4).

In summary, the EA model has a computational structure
that directly reflects the interaction of the transition and out-
come in the model-based part of the QNET estimation, and this
causes sensitive adjustments of the choice probabilities
reflecting them. Because such adjustments may well capture
the strategy adopted by the actual participants who use transi-
tion information, this leads to better fits than under the parallel-
learning model. In addition, in the parallel-learning model, mis-
matches between the estimated second-stage values and the real
subjective values can cause somewhat harmful effect on the
estimation regarding the first-stage choices.

Action tendency and model fits at the individual level

The results of logistic regression analyses for each participant
are shown in Table 6. These results confirmed that those who
reported model use showed behavior corresponding to the
model-based choice. That is, all of them showed significant
interactions of previous outcome and previous transition.
Table 6 also shows the best-fitting models for each participant
according to AIC and BIC. This result revealed that models
including the eligibility adjustment rule provided the best fit
among the participants who reported model use, and the EA–
FD model was supported by them relatively often. On the
other hand, the F model most often provided the best fit
among those who did not report use of the transition model.
This might be because the parameter corresponding to the
model-based component was redundant for these participants.

Discussion

In this study, we examined hypotheses regarding a mecha-
nism that combines model-free and model-based
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components, and we also tested whether the introduction of
the forgetting mechanism improved the fit to the data. The
EA model assumes a sequential value-updating process in
which the model-free learning system is a core mechanism;
in this mechanism, the environmental model is used to adjust
the degree of updating. The EAmodel is a natural extension of
traditionally used SARSA (λ) TD learning, and it showed
better predictability of choice behavior than the original mod-
el, which assumes that the parallel calculations of two types of
independent values are based on two distinct learning systems
(Daw et al., 2011; Daw et al., 2005). In addition, the applica-
tion of the F model and its variation, the FD model, improved
the data fit by updating the unchosen action values. Thus, we
provided a hybrid EA–FD model that assumed model-based
adjustments in eligibility trace updating and introduced the
forgetting mechanism, which resulted in the best data fit.

Some theoretical and experimental models are in agree-
ment with the ideas of the EA model. First, regarding the idea
of the EAmodel that both model-free and model-based values
can be integrated in single update, the same idea is seen in the
experience-weighted attraction (EWA) learning model pro-
posed by Camerer and Ho (1999). This model has widely
succeeded in capturing the features of human choice dynamics
in multiperson noncooperative games. The EWA and EA
models have different computational structures because they
treat completely different models. However, the core mecha-
nism in the model-based component is the same between the
two models, in that the unchosen action values are updated
according to the expected rewards if the actions are chosen in
the current trial. Second, regarding the assumption of the EA
model that transition probabilities attenuate the degree of
updating, in the field of classical conditioning the agent’s at-
tention to the conditioned stimulus (CS) is considered to ad-
just the learning rate (MacKintosh, 1975; Pearce & Hall,
1980; Rescorla & Wagner, 1972). Particularly in
Mackintosh’s model, the degree of value updating is propor-
tional to the degree of the CS’s relative ability to predict an
outcome. This model is close to the EA model’s assumption
that a well-established transition leads tomore updating. In the
field of neuroscience, a similar framework has been proposed
in which the learning rate depends on either the reliability of
the environment (Daw, Courville, & Touretzky, 2006) or the
accuracy of reward prediction (Bertin, Schweighofer, &Doya,
2007). Thus, the EA model is a natural expansion of these
theories to SARSA (λ) TD learning.

Biologically, the eligibility trace can be implemented in the
brain as sustained firing in reverberating circuits at the synaptic
level (Florian, 2007; Houk, Adams, & Barto, 1995). Some
studies have reported the validity of the eligibility accumulation
beyond the last episode or trial (Bogacz,McClure, Li, Cohen, &
Montague, 2007), which is different from the original assump-
tion of the eligibility trace but has led to the idea for this article.
In addition, the neural circuit of model-based decision making

proposed by Friedrich and Lengyel (2016) might be related to
both the EA model and the parallel-learning model, because it
provided the neural basis for value updating using transition
probabilities. It is also noteworthy that Daw et al. (2011) report-
ed that the striatum RPE signal reflected both model-free and
model-based valuations. This observation is consistent with our
framework of the EA model, in which the RPEs include both
model-free and model-based components. Although it still re-
mains unclear what type of mechanism exists in the neural
RPEs to reflect both systems, the EA model provides a likely
and testable structure to capture their activation. We hope that
the proposed computational models will be examined at the
implementation level in future studies.

To clarify the characteristics of the EA model, it might be
useful to note its differences from the other models. First, the
EA model realizes model-based value updates by adding two
features to SARSA (λ) TD learning. One is a weight parameter
that controls the effects of the model-free and model-based
systems in eligibility traces, and the other is a similar eligibility
trace rule for the unchosen action. We found that both of them
contributed to a better fit to the data (Supplementary Text 3).
Second, although both the EA model and the parallel-learning
model can treat model-based decision making, there are critical
differences between them at the algorithm level. The EAmodel
uses only one learning mechanism, whereas the parallel-
learningmodel uses two learningmechanisms and an additional
mechanism for the integration of values. With respect to the
model-based component, the EA model relies on the eligibility
trace and uses the reward outcome to update the values in a
model-basedmanner, whereas the parallel-learningmodel relies
on the Bellman optimality equation, and the maximum values
from the second stage are used to update the values in a model-
based manner. The parallel-learning model may be useful if the
full task structure is obvious and available, although it is also
more costly, because it uses the full information about transition
and related state–action values for value updating (Fig. 9, left).
In contrast, the EA model uses only partial information—the
reward outcome and transition model related to the most recent-
ly experienced state. The EA model receives the influence of
selection bias but incurs less of a cost (Fig. 9, right). Thus, the
twomodels show the trade-off between the degree of model use
and ease of calculation.

In the Results section, we have noted the possible factors
that may explain why the EA model showed a better fit than
the parallel-learning model. It is notable that the stronger in-
fluence of the interaction of the immediately experienced tran-
sition and the outcome in the EA model suited the choice
behavior in the present task. In addition, we noted that in the
model-based part of the parallel-learning model, the mis-
matches between the estimated second-stage values and the
real subjective values became a factor that worsened the fit of
the model. Although the present data supported the EA model
due to this mix of factors, it is possible that human and animal
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strategies of model use would change under different levels of
complexity or certainty of the available internal models.
Further research will be needed to clarify this point.

One of the limitations of the present models is that they treat
the relative contributions of the model-free and model-based
systems as constant for the duration of the task. This approach
is suitable to the present purpose because it provides the total
choice tendency of each person. However, as Table 1 revealed,
the relative weights of the systems seem to change over time.
Therefore, developing a model that can capture these dynamic
changes will be valuable for describing a metasystem that deter-
mines which system tends to be used in certain situations.

We also showed that an assumption regarding the decay of
unchosen option values explained the data better than not hy-
pothesizing it, which is another important mechanism. It is
reasonable to believe that the action–reward association decays
over time if it is not experienced. To the best of our knowledge,
this report has been the first to show the usefulness of the
forgetting mechanism to predict human choice behavior.
However, it might still be unreasonable to assume that all
values always decay to zero. Considering that many studies
have demonstrated that uncertainty prompts exploration behav-
ior (Badre, Doll, Long, & Frank, 2012), it is supposed that
relatively unchosen options might induce some vague expecta-
tion related to their increased uncertainty. Thus, we additionally
introduced the concept of a default value to the F model. The
FD model can express the phenomena that unchosen actions
obtain either an increment of value or a decrement of value by
regressing to the default-value parameter μ. In this study, the
FD model showed a slightly improved fit relative to the F
model. Interestingly, the degree of improvement was relatively
high in the parallel-learning model, which, compared with the
other models, gives greater weight to the accuracy of the
second-stage model-free value estimations in the model fit.

As far as we know, there are two classifications of methods
that promote exploration in reinforcement learning: increasing
randomness of choices (e.g., e-greedy, Boltzmann exploration
by Sutton & Barto, 1998) or increasing value of the unchosen
options (e.g., the exploration bonus of Dyna-Q by Sutton,
1990, prioritized sweeping by Moore & Atkeson, 1993). In
the former method, exploration occurs in undirected manner,
whereas the latter method assumes that the exploration behav-
ior is prompted because options that have not been selected
recently obtain some value because of their uncertainty.
Neurological evidence has been provided for both types of
exploration (Badre et al., 2012; Humphries, Khamassi, &
Gurney, 2012; Krebs, Schott, Schütze, & Düzel, 2009).
Parameter μ in our models is in line with the latter method,
because the high value for parameter μ tends to raise unchosen
option values followed by a temporal choice shift to them, and
this parameter has an advantage that can adapt relatively easily
to traditional TD learning.

Here we proposed a hybrid EA–FD model and showed its
relative goodness of fit among all the other models compared
in this study. The parameters that are used in this hybrid
model work as useful indicators that capture important char-
acteristics of choice behavior. First, parameter w from the EA
model worked better as a predictor of model-based actions
than the parameter w from the parallel-learning model. The
results of the yes–no question regarding the intentional use of
the transition model confirmed that w in the eligibility trace
adjustment models was a better predictor of intentional mod-
el use. It is also important to note that if λ is very low, the
value of w is meaningless; otherwise, it would become a
credible index of model use. Second, parameter μ from the
FD model enables the capture of individual differences in
exploration behavior, as shown by a negative correlation
with the stay probability.

Model-based calcula�on
in the parallel-learning model

State A

Q (sA, a1)

Q (sA, a2)

State B

Q (sB, a1)

Q (sB, a2)

State C

Q (sC, a1)

Q (sC, a2)

Model-based calcula�on
in the EA model

State A

Q (sA, a1)

Q (sA, a2)

State B

Q (sB, a1)

Q (sB, a2)

State C

Q (sC, a1)

Q (sC, a2)

Max Q

Max Q

Outcome Outcome

Fig. 9 Schematics of model-based calculations in the parallel-learning
model (left panel) and the EA model (right panel). The dotted lines indi-
cate examples of an experienced transition. The first-stage model-based
calculations are performed for the color Q values. The parallel-learning

model uses all transitions as well as the twomaximum values in each state
of the second stage, marked in cooler color. The EA model uses the
transition relating to the visited second-stage state and the reward out-
come, also marked in cooler color.
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In conclusion, the hybrid model and its subcomponent
models that were proposed here provide a renewed framework
to understand the learning process with model use. The pro-
posed hybrid model is a simple and reasonable extension of
the traditional SARSA (λ) TD framework and has a reduced
computational cost, relative to a competing model that as-
sumes a dual value-updating process. Simultaneously, this
model produced both better empirical predictions and useful
indexes of individual differences in model use and exploration
behavior. The proposed model will promote better under-
standing of the learning process at the behavioral and neural
levels, serving research that connects learning strategy with
other cognitive functions or mental disorders.

Author note This work was supported by a Grant-in-Aid for Japan’s
Society for the Promotion of Science Fellows.
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