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Are event-related potentials to dynamic facial expressions
of emotion related to individual differences in the accuracy
of processing facial expressions and identity?
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Abstract Despite a wealth of knowledge about the neural
mechanisms behind emotional facial expression processing,
little is known about how they relate to individual differences
in social cognition abilities. We studied individual differences
in the event-related potentials (ERPs) elicited by dynamic fa-
cial expressions. First, we assessed the latent structure of the
ERPs, reflecting structural face processing in the N170, and
the allocation of processing resources and reflexive attention
to emotionally salient stimuli, in the early posterior negativity
(EPN) and the late positive complex (LPC). Then we estimat-
ed brain—behavior relationships between the ERP factors and
behavioral indicators of facial identity and emotion-
processing abilities. Structural models revealed that the par-
ticipants who formed faster structural representations of neu-
tral faces (i.e., shorter N170 latencies) performed better at face
perception ( = —.51) and memory (r = —42). The N170 am-
plitude was not related to individual differences in face
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cognition or emotion processing. The latent EPN factor cor-
related with emotion perception ( = .47) and memory (» =
.32), and also with face perception abilities (» = .41).
Interestingly, the latent factor representing the difference in
EPN amplitudes between the two neutral control conditions
(chewing and blinking movements) also correlated with emo-
tion perception (r = .51), highlighting the importance of track-
ing facial changes in the perception of emotional facial expres-
sions. The LPC factor for negative expressions correlated with
the memory for emotional facial expressions. The links re-
vealed between the latency and strength of activations of brain
systems and individual differences in processing socio-
emotional information provide new insights into the brain
mechanisms involved in social communication.

Keywords Attention - Emotion - ERP - Brain—behavior
relations - Individual differences

The ability to process the socially relevant information pro-
vided by faces, including emotional state, age, sex, and iden-
tity, is argued to be a fundamental component of social cog-
nition (Herzmann, Danthiir, Wilhelm, Sommer, & Schacht,
2007) and may contribute to individual differences in emo-
tional intelligence (e.g., Mayer, Roberts, & Barsade, 2008).
Individuals may differ markedly in their emotional responses
to stimuli in their environment. A spider, for example, may
elicit great interest in entomologists, but panic in
arachnophobes. Such differences are modulated by interac-
tions between socio-cultural and biological variables. In the
present study, we addressed the still poorly understood ques-
tion of how the responsiveness of the brain to emotional facial
stimuli—as measured by an electroencephalogram (EEG)—
contributes to individual differences in the processing of social
and emotional information.
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Emotion specificity of brain responses to facial
expressions of emotion

Some emotion theories postulate the existence of a discrete
number of basic emotions, characterized by distinct biological
and behavioral markers, including the display of unique and
universally recognizable combinations of facial muscles (e.g.,
Ekman, 1999), and recognized by dedicated brain systems
(e.g., Adolphs, 2002). In contrast to this view, others propose
broader, dimensional concepts to define emotion, such as core
affect, valence, and arousal (e.g., Barrett, 2011; Russell, 2003),
with overlapping brain networks across basic emotions, dedi-
cated to the processing of valence—for example, the
orbitofrontal cortex—and arousal—for example, the amygdala
(e.g., Wilson-Mendenhall, Barrett, & Barsalou, 2013).

Event-related potentials (ERPs) elicited by facial stimuli
are considered neurocognitive markers of different stages in
face processing (see Schweinberger, 2011, for an overview).
The N170 component is often seen as a manifestation of the
structural and holistic encoding of faces (e.g., Eimer, 2011).
Differences in ERP amplitudes between emotional and neutral
stimuli consistently appear as negative deflections over poste-
rior electrodes around 200-350 ms—the early posterior neg-
ativity (EPN)—and in later time windows as increased posi-
tivities at centro-parietal sites—the late positive complex
(LPC; see Schupp, Flaisch, Stockburger, & Junghofer,
2006). The EPN reflects an increase in the amount of sensory
processing resources in the extrastriate cortex, modulated by
brain systems in which visual representations are evaluated in
terms of their meaning, such as the amygdala and the prefron-
tal cortex (e.g., Pourtois, Schettino, & Vuilleumier, 2012). The
LPC has been related to the concept of motivated attention and
is considered to reflect the sustained processing of emotional
stimuli due to their intrinsic motivational relevance (e.g.,
Schupp et al., 2006).

Studies comparing ERPs across different facial expres-
sions of emotion can inform as to the nature and magni-
tude of emotion specificity. The processing of facial ex-
pression in the ERPs may show up, for example, as non-
specific differences in amplitude for emotional relative to
neutral expressions, which has been observed for both the
N170 (Luo, Feng, He, Wang, & Luo, 2010; Recio,
Schacht, & Sommer, 2014) and the EPN (e.g., Recio,
Schacht, & Sommer, 2014). Specificity may also appear
between negative and positive emotions (e.g., the LPC in
Recio, Schacht, & Sommer, 2014), or even for a specific
emotion category relative to expressions of other emo-
tions and neutral faces—for instance, the enhanced N170
to fear (Batty & Taylor, 2003; Williams, Palmer, Liddell,
Song, & Gordon, 2006). The emotion specificity of the
N170 and the further above-mentioned components might
be related to task demands and the allocation of attention
resources (e.g., Calvo & Beltran, 2014).

Emotion specificity of behavioral responses

Recently, a few have studies investigated the emotion specific-
ity of the ability to recognize emotional expressions by apply-
ing psychometric modeling to behavioral data. Modeling ob-
servable indicators as latent factors has allowed identifying the
underlying latent structure and detecting systematic individual
differences. For example, using intensity ratings of morphed
face stimuli with mixed emotional expressions, Suzuki,
Hoshino, and Shigemasu (2006, 2010) have presented a
higher-order solution for general emotion recognition traits,
with separable sensitivities for happiness (path coefficient =
.183) and negative expressions (.635). This finding suggests
that individuals showing high sensitivity to a specific negative
expression also show a similar sensitivity to other negative
expressions, but not necessarily to happiness, and vice versa.
However, other studies using audio—visual stimuli have report-
ed no emotion, valence, or modality specificity, indicating a
unidimensional structure for emotion recognition ability
(Schlegel, Grandjean, & Scherer, 2012).

These studies employed one or two tasks to measure emo-
tion recognition abilities. Using multiple indicators allows
abstracting from particular task specificities and measurement
error. A recent study applied structural equation modeling to
the accuracy data obtained from more than ten different tasks,
measuring the abilities of face perception, face memory, and
the perception and memory of emotional facial expressions
(Hildebrandt, Sommer, Schacht, & Wilhelm, 2015). The study
showed little or no emotion specificity for expression percep-
tion and memory, indicating that individuals with good per-
formance identifying a given emotion are likely to also per-
form well for other emotions.

Brain—behavior relationships in the perception
of social and affective information

In line with the traditional differentiation between face per-
ception and face memory, on the one hand, and the recogni-
tion of face identity and emotional expressions, on the other
(Bruce & Young, 1986), psychometric studies have identified
four abilities that account for individual differences in face
processing: face perception, face memory, facial emotion
perception, and facial emotion memory (e.g., Hildebrandt
et al., 2015; Wilhelm et al., 2010).

Functional brain-imaging studies suggest that individual dif-
ferences in emotional reactions and in the perception and recall
of affective stimuli are in part related to differences in brain
responses (e.g., Hamann & Canli, 2004). Activations of the
amygdala and prefrontal cortex are related to individual differ-
ences in the processing and recognition of facial expressions of
emotion (e.g., Leppéanen & Nelson, 2009; Stevens & Hamann,
2012). For example, Cornwell and colleagues (2011) observed
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a link between individual differences in anxiety—both as per-
sonality trait and emotional state—and the reactivity of amyg-
dala and prefrontal cortex to fearful faces. Activation in these
areas and the anterior frontal cortex were found to underlie
individual differences in valence attributions to expressions of
positive or negative surprise (Whalen et al., 2013).

Psychophysiological studies have identified links between
electromyogram, heart rate, electrodermal, or EEG measures
and individual differences in personality and emotional re-
sponses (e.g., Stemmler & Wacker, 2010). For instance, invol-
untary activation of the corrugator muscle measured while one
is seeing dynamic facial expressions correlated with facial
emotion perception ability (Kiinecke, Hildebrandt, Recio,
Sommer, & Wilhelm, 2014) and with the experience of nega-
tive valence (Sato, Fujimura, Kochiyama, & Suzuki, 2013).

Using multiple tasks and multiple indicators, Herzmann,
Kunina, Sommer, and Wilhelm (2009) reported a negative cor-
relation between the speed of structural encoding of faces,
reflected in the N170 latency, and face perception accuracy.
The authors also reported a positive correlation between two
memory-related ERP components, the early and late repetition
effects (ERE and LRE, respectively), and individual differences
in face perception accuracy and speed. The findings regarding
the N170 latency and ERE were replicated and extended by
Kaltwasser, Hildebrandt, Recio, Wilhelm, and Sommer (2014).
They applied latent difference score modeling (LDS; McArdle,
2009) to parameterize individual differences in ERPs, defined
as difference waves between primed and unprimed conditions
(i.e., ERE, LRE—for details, see Kaltwasser et al., 2014). LDS
helps to solve the problem of the limited variance and reliability
of difference scores when two initial measures are highly cor-
related (e.g., Rogosa & Willett, 1983).

Emotion specificity is a longstanding topic of debate in the
emotion literature, which has been addressed with different
measurements and analytic approaches (see Hildebrandt
et al., 2015, for an overview). However, the question of the
emotion specificity of individual differences in ERPs in re-
sponse to emotional faces has never been addressed at the
level of latent variables. Psychometric modeling of multitask
data can provide new insights into this longstanding question.
To this end, we applied LDS models to data from ERP com-
ponents reflecting the visual processing of faces and motivat-
ed attention to emotional expressions (the N170, EPN, and
LPC), and investigated the neural underpinnings of individual
differences in emotion perception as one aspect of social cog-
nition. First, we investigated individual differences in these
brain responses to six dynamic facial expressions of emotion
and two neutral facial movements (chewing and blinking).
The main question was whether emotion-specific individual
differences in brain processes are involved in the perception of
facial expressions; namely, do individuals who show strong
brain activation to happy faces show similar reactions to other
expressions? Second, assuming that individual differences in
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social abilities are influenced by the variance in brain activa-
tion, we estimated the relationship between these ERPs and
indicators of performance accuracy in face cognition and emo-
tion processing, as well as their temporal dynamics.

Indicators of behavioral and brain responses were estimat-
ed in different tasks in separate testing sessions to ensure ex-
perimental independence. Measurement models were speci-
fied to test four competing hypotheses. The first model repre-
sented the case in which ERP responses are distinct for each
emotion, and hence that individual differences can be ob-
served for each category. The second model showed distinct
individual differences for valence categories (positive vs. neg-
ative); that is, individuals with enhanced ERPs to given neg-
ative expressions would also show strong reactions to other
negative expressions, but not to positive expressions, and vice
versa. The third model represented distinct individual differ-
ences in the brain responses to emotional relative to neutral
faces, but was unspecific for emotion or valence categories.
The fourth model assumed no emotion specificity at all.

We hypothesized that the N170 component would either
show no emotion-specific individual differences (fourth model)
or would just show differences for emotional expressions relative
to neutral faces (third model), because prior results had shown
rather inconsistent effects of emotional expressions on this com-
ponent (see Eimer, 2011). For the EPN and LPC data we expect-
ed to confirm Model 1, 2, or 3, because both components reflect
the processing of emotion (e.g., Schupp et al., 2006). A previous
study had shown similar topographic distributions and neural
sources for an EPN-like component, reflecting the processing
of facial movement per se (i.e., nonemotional facial movements),
and for the EPN itself, reflecting the processing of emotional
facial expressions (Recio, Schacht, & Sommer, 2014). Hence,
we also modeled an LDS variable representing the difference in
amplitude between two neutral conditions.

Regarding brain—behavior relationships, we expected to
replicate the negative correlation between the N170 latency
and face identity perception (e.g., Kaltwasser et al., 2014).
Moreover, we predicted that the N170 measures of amplitude
and latency, reflecting structural encoding, would be related to
face perception and memory abilities. In contrast, we expected
the EPN and LPC amplitudes to be more strongly associated
with emotion-related abilities than with face perception. The
relationships involving differences in amplitude between neu-
tral conditions and the face cognition factors were less clear,
and these analyses were thus explorative.

ERPs represent cognitive processing occurring in a tempo-
ral sequence, and individual differences may depend on the
interdependencies between different ERPs, and their temporal
dynamics. For example, the onset of the processing of emo-
tional expressions (EPN) might overlap in time with the N170
(e.g., Rellecke, Sommer, & Schacht, 2013). To estimate such
dependencies, we calculated two autoregressive models with
the N170, EPN, and LPC amplitudes.
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Method

The study consisted of a behavioral and a psychophysio-
logical part. In the behavioral part, we assessed individual
differences in face cognition abilities in general, and the
specific abilities of emotion perception and recognition,
using a multivariate test battery consisting of several tasks
for each latent variable (Hildebrandt et al., 2015;
Wilhelm, Hildebrandt, Manske, Schacht, & Sommer,
2014). In the psychophysiological part, we recorded
ERPs while a subsample, randomly selected from the psy-
chometric sample, completed three different tasks: (1)
learning and recognition of facial identity (Kaltwasser
et al., 2014), (2) the classification of dynamic facial ex-
pressions of emotion (Kiinecke et al., 2014; Recio,
Schacht & Sommer, 2014), and (3) the production of fa-
cial expressions (Recio, Shmuilovich, & Sommer, 2014).
In the present study, we focused on the emotion specific-
ities of the ERPs recorded during the emotion classifica-
tion task, and on their relationship to the accuracy of face
identity and facial emotion processing obtained in the
psychometric part. Therefore, we considered 14 tasks
measuring abilities relevant for our hypotheses (see the
supplementary materials). The relationships of these abil-
ities with speed indicators or with other abilities like ex-
pressivity were beyond the scope of the present report.

Participants

In general, we aimed to test similar numbers of women and
men in our sample, from heterogeneous educational back-
grounds. The psychometric study was completed by 269
young adults (52.4% women), mean age M = 25.9 years (SD
= 5.9), with normal or corrected-to-normal visual accuracy
and diverse educational backgrounds (26.8% without high
school degrees, including occupational education; 62.5% with
high school degrees; 10.7% with academic degrees).

We randomly recruited participants for the psychometric
sample by keeping sex and educational background con-
stant to given values. A total of 110 agreed to participate in
the psychophysiological part of the experiment. The demo-
graphic structure of the subsample was similar to that of
the original sample (45.5% women; mean age M =
26.5 years, SD = 4.8, 25.4% without high school degrees,
including occupational education; 47.3% with high school
degrees; 27.3% with academic degrees). Although the pro-
portion of persons with academic degrees increased, lead-
ing to a subsample in the EEG study that did not fully
reflect the larger sample, the subsample of persons without
high school degree remained sufficiently large, which im-
proved generalizability to a more heterogeneous popula-
tion. Participants’ data with error rates more than two
SDs beyond the mean (more than 30% errors overall across

trials) in the emotion classification task (n = 3), or with
excessive artifacts in the EEG (n = 5), were excluded for
all subsequent analyses. The final sample with complete
ERP and behavioral data was n = 102 (46 women, 56
men), mean age M = 26.64 years (SD = 4.82).

All participants provided informed consent for the study
and were paid for their contribution. A local ethics committee
approved the experiments.

Stimuli, apparatus, and procedure

The supplementary materials provide a brief description of the
14 tasks used in the present report. During the psychophysio-
logical part, participants completed an emotion classification
task with dynamic facial expressions. We used dynamic ex-
pressions to aim at a more ecologically valid appearance of
our facial expressions, which has been shown to produce a
greater impact on brain responses than static pictures (e.g.,
Arsalidou, Morris, & Taylor, 2011; Recio, Sommer, &
Schacht, 2011).

Face stimuli were obtained from the Radboud Faces
Database (Langner et al., 2010) and morphed with the
computer software FantaMorph (Abrosoft, 2010). Using
the morphing technique, we manipulated the intensity of
the expressions by showing them in an intermediate state
between emotional and neutral expressions. The intensity
manipulation aimed to increase the task difficulty and thus
avoid ceiling effects for expressions of high intensity
(e.g., Suzuki et al., 2006). Videos of our dynamic emo-
tional stimuli started with a neutral face and progressively
increased in expression intensity over six frames, reaching
maximal intensity 200 ms after onset. The frame with
maximal intensity was repeated (static) for 400 ms—that
is, until the end of the video (600 ms after onset). Neutral-
expression videos also started with a neutral face, and
showed either a chewing or a blinking movement within
the first 200 ms after onset, returning to the neutral ex-
pression of the first frame until video offset (also 600 ms).
The stimuli consisted of 38 models displaying six facial
expressions (anger, disgust, fear, happiness, sadness, and
surprise) at two intensity levels (moderate and full inten-
sity), as well as two types of nonemotional movements
(blinking, chewing). Each model was shown once with
both intensity levels. Half of the models were shown a
third time in the low-intensity condition, and the other
half in the high-intensity condition.

The task consisted of 798 trials, 57 per condition, pre-
sented in fully randomized order, with short breaks after
every 200 trials. All participants saw the same random-
ized sequence. The stimuli were presented as color video
clips of 600-ms duration, at 30 frames per second over a
dark gray background and with an oval mask of the same
color covering the hair and shoulders, and were preceded

@ Springer



368

Cogn Affect Behav Neurosci (2017) 17:364-380

by a fixation cross presented for 700 ms. After each vid-
eo, a scale appeared on the screen depicting the names of
the six emotion categories and “neutral” in German.
Participants were to classify the facial expressions by
clicking on the scale with the mouse. There was no time
limitation for the response.

Signal processing

Psychophysiological recordings were obtained from 42
electrodes referenced to the left mastoid with a bandpass
filter of 0.032—70 Hz. The signal was filtered oftline with a
low-pass filter (30 Hz, 24 dB/oct) and transformed to the
average reference. An electrooculogram was recorded from
electrodes placed below and lateral to the eyes. Blinks and
other eye movement artifacts were removed by means of
independent-component analyses. The artifact-free signal
was then segmented into 1.2-s epochs, starting 200 ms be-
fore stimulus onset (used as the prestimulus baseline). For
the psychometric modeling, we needed at least four statis-
tically independent indicators (measured values)
representing individual differences in the ERPs for each
of the seven latent ERP factors of the facial expressions.
With this aim, ERPs were averaged separately for each
condition and for odd and even trials. The N170 peak am-
plitudes and latencies were detected by a software algo-
rithm as the maximal amplitude within the time window
155-210 ms at the P10 channel, where the N170 was over-
all most pronounced. Amplitudes of the ERP components
without a clear peak deflection, but that rather were
sustained for a longer period of time, were estimated as
the mean amplitudes in the time window during which they
were maximal. The time windows and electrode clusters
were based on visual inspection of the ERP wave shapes
and their topographies (see the supplementary material)
and covered scalp regions similar to those reported in pre-
vious studies. For the EPN component, the mean ampli-
tudes were averaged at 12 posterior electrodes (P7, P8,
P9, P10, PO7, PO8, POY, PO10, O1, O2, Oz, and Iz) in
the time window 220-400 ms, and for the LPC at five
centro-parietal electrodes (CP1, CP2, Pz, P3, and P4) in
the 400- to 500-ms interval—hence, before stimulus off-
set—avoiding possible overlap with offset potentials. Only
about 2.5% of the RTs felt within the LPC time window.
Four ERP values (odd, even % low, high intensity) for each
of the six facial expressions served as indicators of the
latent factors modeling the brain responses (see Fig. 1).
Indicators from the blinking condition served as the base-
line in all models, because they showed the lowest ampli-
tude, allowing for estimations of the EPN effects for emo-
tional expressions and also for the chewing condition.
Trials with errors were not excluded, in order to obtain
sufficient and similar numbers of trials in the ERPs used
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as indicators. The overall good performance—90% hits
(SD = .06) across conditions and participants in the final
sample (n = 102)—argues against strong impact of aver-
aging trials with errors.

Data analyses

Our indicators of performance accuracy derived from the
psychometric measures included proportions of correct
responses across the trials of a given task. For tasks with
multiple emotions as response options (fEP1, fEP2; see
the supplementary materials), in which confusions among
the response categories would often occur, hit rates were
corrected for response bias and recalculated as unbiased
hit rates (Wagner, 1993). Measurement models of the be-
havioral indicators for all 269 participants are reported in
Hildebrandt et al. (2015).

In the present study, we applied LDS models in the
measurement models for the neurocognitive indicators to
parameterize the differences in brain responses (ERPs)
between emotional (experimental conditions) versus neu-
tral (baseline condition) facial expressions, in the time
windows of the N170, EPN, and LPC components. We
did not consider the P1 component in our analyses be-
cause the dynamic stimuli started with a neutral face (first
frame, from onset to 33 ms), changing to a very low-
expressive intensity (second frame, interval 33—66 ms).
The P1 response (peaking 90 ms post-stimulus-onset)
would necessarily reflect the processing of neutral faces
in all conditions, and therefore was not suitable to inves-
tigate emotional specificity.

Measurement models We entered all emotion conditions
into a single model, considering each of them as separated
targeted experimental condition in one LDS model con-
taining six latent variables representing individual differ-
ences during emotional face processing (AN, DI, FE, HA,
SA, and SU in Fig. 1). These latent variables were
completely determined by the neutral baseline condition
(latent variable N in Fig. 1) and an LDS representing the
difference in amplitude between each emotion (e.g., an-
ger, AN) and the neutral condition (e.g., Aan n in Fig. 1).
To specify this assumption in a psychometric model, re-
gressions of the brain responses elicited by the emotion
condition onto (a) the brain responses measured during
the neutral condition and (b) the differences between the
two (e.g., the EPN) was fixed at 1. That is, the brain
response to an emotional expression was completely de-
termined by the baseline (neutral) condition and the dif-
ference between the baseline and the experimental
(emotion) conditions. Importantly, the residual of the la-
tent variable representing ERPs to emotional faces was
fixed at zero. The LDS variables Aan n» Apr no AFE N
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—— > Residuals

---------- > Parameter fixed to 1

———

Parameter freely estimated

Fig. 1 First measurement model used for all ERP components. ERPs
served as the indicators after being averaged separately for each facial
expression and intensity level, and then being spilt into odd and even
trials. Each emotional expression (E1-E6) was split across four
indicators (i.e., moderate-intensity odd trials, moderate-intensity even
trials, high-intensity odd trials, and high-intensity even trials). Neutral
blinking (N1) always served as the baseline condition, with two
indicators (odd, even). The indicators loaded to seven latent variables
representing the processing of each facial expression: neutral (N), angry
(AN), disgust (DI), fear (FE), sadness (SA), surprise (SU), and happiness

Apa N> Asa n» and Agy y in Fig. 1 represent the sizes of
individual differences in ERP amplitudes or latencies be-
tween the emotional and neutral conditions, adjusted for
measurement error.

Because we modeled only one neutral condition as the
baseline (i.e., blinking), subtracted from all six emotion
conditions, a baseline correction of the LDS variables was
needed to prevent correlations between the LDS results
being biased because they included the same baseline sub-
traction. That would clearly lead to statistical dependency
between the LDS variables. In LDS models, the baseline
condition is generally modeled as being correlated with
the LDS variable (McArdle, 2009). However, regressing
the LDS variable onto the baseline allows for controlling
for this baseline dependency of the difference scores (see
Fig. 1). The residualized LDS is consequently represented
as being baseline-controlled, and will be referred to as
baseline-free LDS throughout this article (éAan n»
EADLN, EAFEiNs EAHAiNs 5ASA7N3 and SASUJ\I in

(HA). The latent difference scores (LDSs) Aan_ N> Api N> Arg N Asa Ns
Agy > and Apa n represent individual differences in the processing of
emotional as compared with neutral expressions. The residual variances
of these LDSs, in which baseline dependency is partialed out, are
represented at the top by AN N €Ap1 Ny EAFE N> €A5a N> EASU N
and eApa . In the first model, the correlations between the baseline-free
LDS values for each expression are freely estimated. The second model,
for N170 latencies, is very similar, but these correlations are fixed at zero.
All facial stimuli were taken from the Radboud Face Database (Langner
etal., 2010)

Fig. 1). Likewise, these latent factors represent individual
differences in brain responses to the emotional versus
neutral condition.

Models estimating brain—behavior relationships The rela-
tionships between ERPs and face cognition abilities were
estimated as the correlations in the LDS models. These
correlations were calculated separately for each ERP com-
ponent, modeled as the baseline-free LDS, representing
the difference in amplitude or latency between (all) emo-
tional and neutral expressions, and each face cognition
ability, modeled as a behavioral latent factor.

As measures of model fit, we examined the X2 value,
the root mean-square error of approximation (RMSEA),
the standardized root-mean-square residual (SRMR), and
the comparative fit index (CFI). We followed standards
suggesting that for an acceptable fit, a model should
show CFI values of .95 or higher, RMSEA values of
.06 or less, and SRMR values of .08 or less (e.g.,
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Bollen & Long, 1993). Differences in the fits of the
nested models were inferentially tested by means of the
x* difference test. Significant values of these tests would
indicate that introducing constraints on the parameters
hampered the model fits in a statistically meaningful
way. All models were computed with Mplus, version 7
(Muthén & Muthén, 2012).

Because we had a clear hypothesis regarding the emotion
specificities of different components and their relationships
with the behavioral factors, we did not apply Bonferroni cor-
rections, but exact p values will be provided.

We conducted a post-hoc Monte Carlo simulation for
testing the robustness of the measurement models and our
power to detect emotion specificity with Mplus. The sim-
ulation, based on the model depicted in Fig. 1, included
observations from 102 persons and followed recommen-
dations by Muthén and Muthén (2002). The results re-
vealed satisfactory robustness and power.

Results

The mean amplitudes and latencies of the ERPs and their
difference scores from the neutral baseline (blinking) are
provided in Table 1. In this section, we focus on the two
aims of the present study: the measurement models of the
ERP components, followed by the brain—behavior rela-
tionships. For detailed results for the experimental effects
observed for the different tasks used in the psychometric
study, please see Wilhelm et al. (2014). The experimental

effects and waveforms of all components in the psycho-
physiological studies are provided in Recio, Schacht, and
Sommer (2014). The supplementary materials provide a
short description of the tasks and a summary of the
results.

Measurement models

By estimating a series of measurement models, we tested
for the emotion and valence specificity of individual dif-
ferences in the ERP amplitudes and latencies. Detailed
results for all measurement models are provided in
Tables 2, 3, and 4. Tables with factor loadings for all
models are available online in the supplementary mate-
rials. The first measurement model, shown in Fig. 1,
was equivalent for all ERP components. It examined
whether the difference in brain responses (N170, EPN,
LPC) between emotional and neutral expressions varied
significantly across persons, by estimating the variances
of the LDSs for each emotion separately. In this model,
the correlations between the baseline-free LDSs for all
emotion categories were freely estimated. This model as-
sumes systematic individual differences for the processing
of each emotion category as compared with the neutral
condition. The same sequence of steps was used to con-
struct the subsequent models for each ERP component.
However, the model sequence was component-specific,
since it was based on the results of the first and further
models. For example, if the variance of the LDS of a
given emotion was not significant in the first model, this

Table 1  Average event-related potentials on study, and differences scores (DS) calculated in comparison with the neutral baseline (blinking)

N170 Latency (ms) N170 Amplitude (1V) EPN Amplitude (V) LPC Amplitude (V)
Intensity Moderate Full Moderate Full Moderate Full Moderate Full
Anger 179.14 (13.58) 179.73 (14.53) —5.78 (4.25) —5.72 (4.26) 1.68 (2.96) 1.64 (3.07) 4.96 (2.06) 5.00 (1.99)
DS (An) —11 48 -.50 —44 -.95 -99 45 49
Disgust 179.65 (13.98) 179.53 (13.36) -5.70 (4.29) —5.87 (4.46) 1.81 (3.05) 1.49 (3.07) 4.89 (2.14) 5.00 (2.09)
DS (Di) 40 28 -42 —.60 -.82 -1.15 .38 49
Fear 178.08 (14.33) 178.59 (13.56) -5.69 (4.39) 5.63 (4.43) 1.75 (3.06) 1.53 (3.06) 5.07 (2.21) 538 (2.27)
DS (Fe) -1.17 —.66 -42 =35 —.88 -1.10 .56 .87
Happiness 180.12 (14.01) 179.06 (13.89) —5.76 (4.56) —5.83 (4.40) 1.52 (3.07) 1.20 (3.07) 4.62 (2.21) 4.53 (2.13)
DS (Ha) .87 -19 —48 -.55 -1.11 -1.43 A1 .02
Sadness 177.57 (13.60) 178.31 (13.81) -5.53 (4.13) —5.60 (4.06) 1.79 (3.14) 1.53 (3.07) 4.98 (2.15) 522 (2.13)
DS (Sa) —-1.68 -94 =25 =33 -84 -1.10 47 71
Surprise 175.84 (12.91) 179.57 (13.84) —5.97 (4.36) —5.73 (4.34) 2.05 (3.11) 1.93 (2.96) 4.90 (2.21) 5.01(2.19)
DS (Su) -3.41 32 =70 —46 -.58 =70 .39 .50
Neutral Blink Chewing Blink Chewing Blink Chewing Blink Chewing

179.25 (13.63) 176.98 (13.72) —5.28 (4.26) -5.13 (4.27) 2.63 (3.13) 245 (3.13) 4.51(2.12) 4.64 (2.22)
DS (Ne) — -2.27 - 15 - —18 - 13

SDs are provided in parenthesis
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Table 2
testing emotion specificity

Variances of baseline-corrected difference scores between emotional and neutral expressions for N170 latencies, and model comparisons for

Model Specificity

2 .
EAANiN SADliN EAFEiN EAHAiN EASAiN EASUiN 8AEM07N CFI RMSEA SRMR X (d/) AXZ p

N170  Fig. 1 Eachemotion 7.72 4.55 6.52 5.21 7.70
vs. neutral
category
Latency Fig. 1 Fixedtozero 0 0 0 0 0
Fig. 2 Emotion vs. - - - - -

neutral
Fig. 2a Fixed to zero

(Adf)
6.55 - 91 .09 04 524.56 (278) - -
0 - 91 .09 04 54475 (299) 20.19 (21) .51
- 637 1.00 .00 01 18 (19) - -
- 0 1.00 .00 01 18.54 (20)  0.54(1) .46

€A\, baseline-corrected difference score (residualized difference score, therefore denoted by €); AN, Anger; DI, Disgust; FE, Fear; HA, Happiness; SA,

Sadness; SU, Surprise; N, Neutral. *p <.05; **p <.01; ***p <.001

nonsignificant variance was fixed at zero in the next mod-
el. Also, if all variances for each emotional expression
considered separately were nonsignificant, they were all
fixed at zero and collapsed into one global emotional LDS
factor. See the detailed elaborations for each component
below, and Tables 2, 3, and 4 for overviews of the suc-
cessive models.

N170 latencies In the first measurement model (fits
provided in Table 2), none of the baseline-free LDSs
showed significant variances, and the latent means of
these factors did not statistically differ from zero. In other
words, (a) we found no overall difference between the
neutral and emotional conditions in the N170 latencies
averaged across participants, and (b) individuals did not
vary with respect to this difference. In the second mea-
surement model, the variances of the baseline-free LDSs
were fixed at zero, hence assuming no individual differ-
ences in brain responses for any emotional expression.
Comparing the model fit with that for the first model
shows whether emotion specificity generally held for the
N170 latencies. The restriction of variances to zero did
not impair the model fit significantly: Ax* = 20.19, Adf
= 21, p = .51 (see Table 2).

The third model (Table 2 and left side of Fig. 2a) tested
individual differences over all emotion categories com-
pared with the neutral condition. Hence, the indicators
related to all emotion categories (across intensity levels
and odd and even trials) were aggregated into one simpli-
fied score that served as a latent variable representing the
difference in N170 latencies between emotional and neu-
tral expressions. The variance of the simplified, baseline-
free LDS of N170 latencies in the third model was not
significant. Fixing the variance of the baseline-free LDS
at zero in the fourth model did not impair the model fit
significantly, Ax* = 0.54, Adf =1, p = .77.

Summarizing, the results of the model series for N170 la-
tencies did not indicate emotion-specific individual differ-
ences for (a) any emotional expressions in particular, or (b)
overall emotional expressions as compared with neutral faces.
Hence, in the final measurement model, only the variance of
the latent factor representing the N170 latency to neutral faces
was freely estimated (Table 2, right side of Fig. 2a).

N170 amplitudes In contrast to the model for N170 laten-
cies, the first measurement model estimated for the N170
amplitudes revealed significant variances of the baseline-
free LDSs for anger, 025AAN7N = .45, p < .05; fear,

Table 3  Variances of baseline-corrected difference scores between emotional and neutral expressions for N170 amplitudes, and model comparisons

for testing emotion specificity

Model Specificity eAann €Apin €A N €Ana N €Asa v €Asy n Higher-Order  CFI RMSEA  SRMR X dh AX? P
Factor (Adf)
N170 Fig. 1 Each emotion .45" 20 67" 65" 40 .66 B 98 .06 .01 386.65 (278) — B
vs. neutral
Amplitude Fig. 3 Each emotion .04 .05 .09 .16 .01 .06 N170 73" 98 .06 .01 394.64 (287) - —
vs. neutral
Fig. 3 Fixedtozero 0 0 0 0 0 N170 .40 98 .06 .01 409.42 (298) 14.78 (11) .19
Fig. 2b Emotionvs. — - - - — eAgmo N 517 1 .02 .01 19.49 (19) — —

neutral

e/, baseline-corrected difference score (residualizeq difference score, therq_fore denoted by ¢); AN, Anger; DI, Disgust; FE, Fear; HA, Happiness; SA,
Sadness; SU, Surprise; N, Neutral; NEG, negative. " p <.05; ™ p <.01; ™ p < .001
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Table 4  Variances of baseline-corrected difference scores between emotional and neutral expressions for the EPN and LPC components, and model

comparisons for testing emotion specificity

Model  Specificity eAanN EApIN EApe N £Apa N EAsan €Agy N Higher-Order CFI RMSEA SRMR X2 (df) AXZ (Adfy p
Factor
EPN Fig. 1  Eachemotion .36 4 437 66" 417 43" - 99 .06 .01 367.63 (278) — -
vs. neutral
Fig. 3 Eachemotion  —01 02 02 28" 04 05 EPN 417" 98 .06 01 383.19 (287) - -
vs. neutral
Fig. 3 Valence specific 0 0 0 19" 0 0 EPN 39" 99 .05 .01 388.88 (296) 5.70 (9) 77
Fig. 3 Fixed to zero 0 0 0 0 0 0 EPN 41" 98 .06 .01 413.45 (298)  24.56 (2) <001
Fig. 4  Valence-specific — - - 65" - - ANEG* 39" 99 .05 .01 5327 (41) - -
LPC Fig. 1  Eachemotion  .84" 99" 1" 1 89" 91" - 97 .07 .02 407.66 (278) — -
vs. neutral
Fig. 3 Eachemotion .04 .08 04 32 02 a1 LPC 99" 97 07 .02 430.73 (287) — -
vs. neutral
Fig. 3 Valence specific 0 0 0 317 0 12" LPC 90" 97 .06 02 438.48 (294) 821 (7) 31
Fig. 3 Fixed to zero 0 0 0 0 0 0 LPC 90" 96 .08 02 486.15 (298) 47.21 (4) <001
Fig. 4  Valence-specific — - - 126" - Aneg N 957799 .06 01 5887 (41) - -

e/, baseline-corrected difference score (residualized difference score, therefore denoted by ¢); AN, Anger; DI, Disgust; FE, Fear; HA, Happiness; SA,
Sadness; SU, Surprise; N, Neutral; NEG, negative. * In MMS, for the EPN and LPC this row provides the residual variance for difference score between
aggregated indicators for expressions of negative emotions ANEG (i.e., anger, disgust, fear, sadness, surprise) and neutral. *p <.05; ™ p <.01; ™" p <

.001

azsAFE_N = .67, p < .05; and happiness, UzsAHA_N = .66,
p < .05. When we included a higher-order factor in a
second model, these variances were not significant (see
the structure depicted in Fig. 3). This second model
indicated a significant variance only for the higher-order
N170 amplitude factor, UzsAEMOfN = .73, p < .05. In the
third model, the variance of the first-order baseline-free
difference score factors for all emotional expression
categories (€AaN N> €Apr N, EAFE N EAnA N> EAsA N
eAgy n) were fixed at zero, and only the variance of the
higher-order factor—representing the shift in amplitude of
all emotional relative to neutral expressions—was freely
estimated. Fixing these variances to zero did not diminish
the fit, Ax? = 14.78, Adf = 11 (see Table 3 and Fig. 3).
This model still showed significant variance for the N170
higher-order factor, JZEAEMoiN = .40, p < .05.

In all, measurement models of N170 amplitudes revealed
systematic individual differences regarding the shift in ampli-
tude for emotional relative to neutral expressions. The final
measurement model for N170 amplitudes (Table 3, Fig. 2b)
used aggregated indicators across trials for processing differ-
ent emotion categories as indicators, and one baseline-free
LDS variable representing the processing of all emotional ex-
pressions relative to the neutral baseline.

EPN and LPC amplitudes The sequences of models are
equivalent for ERP amplitudes in the time frame of the EPN
and LPC, because the results across subsequent models testing
emotion specificity were similar. The first model (Fig. 1) re-
vealed significant individual differences for the baseline-free
LDS estimated for all facial expressions in both the EPN and
LPC components (Table 4). The correlations between
emotion-specific factors (cAan n, €Apr N, EAFE Ns
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eApa N> €Asa N, Easu n) were very high (see
Supplementary Table 4).

Hence, introducing higher-order EPN and LPC factors,
respectively, to account for these correlations was a plau-
sible and parsimonious modeling step. After including the
higher-order factor in the second model (see Fig. 3), only
the variance of the first-order baseline-free LDS for hap-
piness remained significant, JZSAHA_N = .28, p < .01, in
case of the EPN, and happiness and surprise remained
significant for the LPC, azsAHA_N = .32, p < .01, and
Ungsqu = .11, p < .05, respectively. Consequently, in
the third model for the EPN and LPC, the residual vari-
ances of all expressions but happiness (EPN) or happiness
and surprise (LPC) were fixed at zero (see Table 4, EPN
and LPC sections). The comparison with the second mod-
el did not reveal significant fit impairments: EPN, Ay? =
5.70, Adf=9, p = .77; and LPC, sz =821, Adf="7,p
= .31. As a further statistical test, in a fourth model the
residual variance for the first-order happiness LDS factor
was also fixed at zero, as well as that for surprise (in the
case of LPC, given the relatively low residual variance
025ASU7N = .11 of the first-order surprise factor).
However, as a consequence of these parameter restric-
tions, the model fits deteriorated relative to the third mod-
el: EPN, Ax? = 24.56, Adf= 2, p < .001, and LPC Ay?
=47.21, Adf =4, p < .001.

Summarizing, the measurement models revealed sys-
tematic and specific individual differences in EPN and
LPC amplitudes for expressions of happiness, on the one
hand, and for a higher-order factor including all negative
expressions, on the other. The final measurement models
used aggregates across all trials as indicators for expres-
sions of anger, disgust, fear, sadness, and surprise,
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Fig. 2 In the final measurement models for the N170 components
(amplitude and latency), the indicators for emotional expressions (Emo)
are aggregates, with estimated loadings to one simplified LDS (Agyo ~)
common to all emotional expressions. The baseline-free LDS (¢Agmo n)
represents the amount of the individual change difference in amplitude
between emotional expressions and the neutral condition (N). (a) For

collapsed onto one baseline-free LDS factor for negative
expressions, and a separate baseline-free LDS factor for
happiness (see Fig. 4).

Measurement model for the EPN contrasting the neutral
conditions In this model, the chewing condition was con-
sidered as the experimental condition and contrasted to
blinking as the baseline (see Fig. 5). Each latent factor
in the model (blinking, chewing) contained two indica-
tors. The model showed a very good fit to the data: CFI
= 1, RMSEA = .00, SRMR = .001, y*(1) = 0.35, and
revealed significant individual differences of the
baseline-free LDS variable contrasting chewing with
blinking, 0°An2 N1 = .69, p < .01.

Brain—behavior relationships

In structural models, ability factors were related to the final
measurement models for the N170 latency and amplitude and

[ E1 | e2 [ E3 [ ea ] €5 [ €6 |

N170 latencies, the variance of this LDS cAgyo n Was fixed at zero,
and only the latent factor representing the processing of neutral
expressions (N) was correlated with the behavioral factors (in the figure
shown as face perception, FP, for example). (b) In contrast, for N170
amplitudes, only the LDS eAgpmo N Was correlated with the behavioral
factors

the EPN and LPC amplitudes—that is, four single models
correlating each measure of each component and one behavior
factor at a time. Table 5 provides the results of all correlations
and model fit indices obtained for the models estimating
brain—behavior relationships. To visualize the data, Fig. 7 in
the supplementary material shows scatterplots of the substan-
tial correlations reported in Table 5.

The most parsimonious measurement model for the
NI170 latency did not include an LDS factor representing
emotion specificity. Thus, only the latent factor
representing the N170 latency in response to neutral faces
was correlated to the ability factors in four structural
models (Fig. 2a). All four models showed good fits to
the data (Table 5, N170 latency section). The results
showed negative correlations with face perception, r =
=51, p < .001, and face memory, » = —.42, p < .001.
The correlations with facial emotion perception and mem-
ory were not significant, » = .19, p = .122, and » = .19, p
= .148, respectively.
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—— >  Residuals

---------- > Parameter fixed to 1

——>  Parameter freely estimated

<

Fig. 3 The second model for N170, EPN, and LPC amplitudes included a higher-order factor (named here ERP). The final model diverged among the
components (see the explanations in the text and Fig. 4). For the abbreviations, see the caption of Fig. 1

—— > Residuals
---------- >  Parameter fixed to 1
—————————>  Parameter freely estimated

Fig. 4 In the final measurement models for the EPN and LPC
components, indicators for the ERPs of facial expressions of anger,
disgust, fear, sadness, and surprise were aggregated and simplified in
one latent factor (Neg_Emo), which was compared with the latent

@ Springer

factor for neutral (N). The indicators for happiness were modeled
separately (HA). The two resulting baseline-free LDSs for negative and
positive expressions are both correlated with the behavioral factors—in
the figure shown as face perception (FP), for example
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€A

Fig. 5 Measurement models for the difference in amplitude between the
two neutral conditions (blinking, chewing) in the EPN interval, using
blinking as the baseline condition. The LDS representing the processing

For the N170 amplitude, the most parsimonious mea-
surement model included an LDS factor representing in-
dividual differences in the negative shift in N170 ampli-

Blink_Chewing

tude for emotional (aggregated across emotion categories)

—

--------- >
>

Residuals
Parameter fixed to 1

Parameter freely estimated

of nonemotional facial movement is correlated with the behavioral
factors—in the figure shown as face perception (FP), for example

relative to neutral expressions. The four structural models
estimating brain—behavior relationships (Table 5, N170
amplitude section) revealed the following correlations:
face perception (r = .27, p = .162), face memory

Table 5 Results from structural models estimating brain—behavior relationships between ERP components and face cognition abilities

Model r CFI RMSEA SRMR X @
N170 latency 1 Face perception -5 .99 .04 .04 75.91 (63)
(Neutral) 2 Face memory 4 1 0 .02 4051 (52)
3 Facial emotion perception .19 1 0 .03 40.96 (43)
4 Facial emotion memory .19 1 .03 .03 57.48 (52)
N170 amplitude 1 Face perception 27 99 .03 .04 67.64 (61)
(Diff emo_neu) 2 Face memory ~13 1 0 04 45.85 (51)
3 Facial emotion perception .26 1 0 .01 40.61 (41)
4 Facial emotion memory .04 .99 .07 .05 73.45 (51)
EPN 1 Face perception (Ha) 41" 99 .05 .08 128.84 (99)
(Ha) = Happiness (Ne) .26
(Ne) = Negative 2 Face memory (Ha) .06 .99 .04 .08 100.70 (85)
(Ne) .06
3 Facial emotion perception (Ha) .45 .99 .06 .09 103.55 (72)
(Ne) .32
4 Facial emotion memory (Ha) .09 .99 .04 .04 100.01 (85)
(Ne) .03
EPN 1 Face perception 22 98 .08 .08 39.81 (24)
Neutral 2 Face memory .07 .98 .04 .09 21.21 (18)
3 Facial emotion perception 517 .99 .08 A1 20.02 (12)
4 Facial emotion memory 24 97 .09 .09 34.06 (19)
LPC 1 Face perception (Ha) .02 .98 .06 .05 132.14 (99)
(Ha) = Happiness (Ne) —.01
(Ne) = Negative 2 Face memory (Ha) —.01 .99 .05 .06 107.58 (85)
(Ne) .05
3 Facial emotion perception (Ha) .05 .99 .05 .04 94.05 (72)
(Ne) .01
4 Facial emotion memory (Ha) .20 .99 .05 .05 107.55 (85)
(Ne) .29"

The abbreviations under each component in the first column stands for the latent variables representing individual differences in ERP components
reflecting: (a) the processing of neutral faces (Neutral); (b) the processing of emotional expressions, averaged across emotional categories, in relation to
neutral faces (Diff emo_neu), (c) the processing of happiness in relation to neutral expressions (Ha); and (d) the processing of negative in relation to

neutral expressions (Ne). “p < .05, " p < .01, ™ p < .001
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(r = —.13, p = .443), facial emotion perception (r = .26,
p =.194), and facial emotion memory (r = .04, p = .824).

The final measurement models for the EPN and LPC
were similar and included two valence-specific LDS fac-
tors, one representing the processing of happiness as com-
pared to neutral expressions (Table 5, EPN/LPC Ha fac-
tors), and one for negative as compared to neutral expres-
sions (Table 5, EPN/LPC Ne factors). The structural
models estimating relationships with the behavioral fac-
tors showed acceptable fits. The correlation of the EPN
baseline-free LDS for negative expressions with facial
emotion perception was r = .32, p = .035. The EPN
baseline-free LDS representing individual differences in
the processing of happiness versus neutral expressions
correlated with facial emotion perception, » = .45,
p < .001, and with face perception in general, » = .41,
p = .002. Other correlations involving the latent EPN fac-
tors were not significant. For the LPC (Table 5, LPC
section), we observed only a moderate correlation
between the LDS factor for negative expressions and
emotion memory, » = .29, p = .029.

Finally, the four models estimating the relation of the
measurement model contrasting the two different neutral
conditions (blinking vs. chewing) in the EPN amplitudes
with behavioral factors showed a significant correlation with
facial emotion perception, » = .51, p < .001. All other
correlations did not reach significance (Table 5, EPN neutral
section).

Autoregressive models relating the N170, EPN and LPC
components

These models estimated the temporal dynamics and linear
dependency between the LDSs for the N170, EPN, and LPC
amplitudes. Toward this end, later components were regressed
onto earlier ones. That is, the LPC was regressed onto the
EPN, and by means of an autoregressive path of the second-
order factor, onto the N170 LDS representing the processing
of emotional versus neutral expressions. Because the EPN and
LPC turned out to be valence-specific, we calculated separate
autoregressive models for negative and happy expressions,
using the same LDS modeling as we described in the mea-
surement models.

The first autoregressive model, representing the processing
of negative as compared with neutral expressions, fitted the
data well: CFI = .98, RMSEA = .07, SRMR = .02, x*(180) =
276.23. The autoregressive paths were Sgpn ni70 = .73,
p < .01; Bipc n170 = =26, p = .45; and Bipc gpn = .09,
p = .79, indicating a strong linear dependency of the EPN
determined by emotion effects in N170 amplitudes. The
second autoregressive model, representing the processing of
happiness relative to the neutral condition, also showed very
good fit: CFI = .96, RMSEA = .09, SRMR = .04, y*(126)
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= 249.39. The autoregressive paths were similar to those for
negative emotions: ﬂEPN7N170 = 83,[7 < 01, ﬁLPC7N170 = 18,
p= 66, and BLPCiEPN = —.27,p = 511

Discussion

In the present study, we investigated individual differences in
brain responses to emotional face stimuli. Toward this end,
ERPs—modeled as latent factors—were considered as
neurocognitive correlates of different stages in the processing
of facial identity and expression information, which arguably
underlie individual differences in social cognition abilities.
Two questions stand at the center of the present report: Do
individuals who show strong brain activation to happy faces
tend to show similar reactions to other facial expressions, like
anger or sadness? And are ERPs to facial expressions of emo-
tion related to individual differences in face cognition abilities?

Emotion specificity

The results of the N170 latencies were straightforward and
confirmed our hypothesis. The measurement models showed
no effect of emotion on the N170 latency, with respect either
to the average across persons or to individual differences.
Only the latent factor representing the speed of structural
encoding of neutral stimuli showed systematic individual dif-
ferences. This finding indicates that individuals differ in how
fast they create structural and holistic representations of neu-
tral faces, but any possible differences in the encoding of facial

! One reviewer was concerned whether the psychometric performance vari-
ables and the performance in emotion recognition during the EEG recording
were correlated, since both are indicators of the same latent variable, facial
emotion perception. To answer this question, we estimated one-factor mea-
surement models separately for each emotion category, including the three
performance indicators for facial emotion perception measured in the psycho-
metric session and, additionally, two performance indicators during the EEG
session. The latter were calculated as unbiased hit rates for each facial expres-
sion in the high- and moderate-intensity conditions. These measurement
models showed that the factor loadings of the performance indicators from
the EEG session were somewhat lower than those from the psychometric
session; still, they nicely went along with the indicators of the latent variable
emotion perception. The main reason for the difference in factor loadings
between the two sessions was that the emotion recognition performance data
in the EEG session task were close to ceiling.

One reviewer had doubts about whether we could replicate the observed
brain—behavior relationships using ERP and performance data from the EEG
session only. We calculated Pearson correlations between the ERPs, separated
for each facial expression and each intensity condition, as brain measures, and
unbiased hit rates, also separated by condition, as behavioral measures. The
correlations tended to replicate the direction of the relationships observed in
the data from the psychometric session—for example, a negative correlation
between the N170 latency and face perception—but were somewhat lower.
However, the limited variance in the performance data from the EEG ses-
sion—close to ceiling for several conditions—complicates the interpretation
of these correlations. Our multitask approach should be seen as a strength of
our study, because, in contrast to single-task approaches, neither task specific-
ities nor statistical artifacts can account for the observed relationships.
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expressions of emotion are not statistically significant at this
stage of processing. Thus, our data indicate that the speed of
structural face encoding is an emotion-unspecific process,
overlapping for neutral and emotional faces, at least as far as
individual differences are concerned.

The measurement model that fitted the N170 amplitudes
best included an LDS factor aggregated across all facial
expressions, illustrative of a negative shift in amplitude for
emotional as compared to neutral expressions. This latent
factor revealed systematic individual differences, indicating
that individuals differ in two aspects of the structural
encoding process: (1) the amount of resources required to
form structural representations of faces in general, and (2)
modulation of the structural encoding of faces displaying
emotional expressions, relative to neutral faces. This is in line
with the view that the distinction between emotional and neu-
tral expressions starts in the N170 time window, partially
overlapping the process of structural encoding (e.g., Luo
et al., 2010). Brain—behavior relationships and autoregressive
models for the ERPs helped us to deepen the implications of
this finding.

Emotion-specific individual differences in ERPs appeared
during the EPN time interval and continued to be discernible
for the LPC. The measurement models of the EPN and LPC
amplitudes indicated a latent structure involving two dimen-
sions, one representing the difference in amplitude between
happy and neutral expressions, and another representing the
difference between negative and neutral expressions. Both
dimensions showed significant and distinct individual differ-
ences. A similar latent structure, with distinct contributions for
the valence dimensions was reported for a behavioral measure
of sensitivity to emotional expressions (Suzuki et al., 2010).
Our results extend this finding to brain responses and indicate
that individuals who allocate more processing resources to
visual brain systems (EPN), and those who provide sustained
processing (LPC) to a given negative expression due to its
intrinsic relevance (e.g., threat), are likely to show similar
enlargements for other negative expressions, but not necessar-
ily of the same amount for expressions of happiness, and vice
versa. Hence, the amount of processing resources devoted to
process emotional stimuli and the selective attention triggered
by their intrinsic relevance may engage distinct brain systems
for the perception and inhibition of positive and negative emo-
tional information.

The second aim of the present study was to examine wheth-
er this enhancement in the ERPs reflecting emotion processing
was associated with individual differences in facial emotion
perception and memory. This will be discussed after we ad-
dress the neutral conditions.

Models comparing the ERPs to neutral facial
movements—that is, blinking versus chewing—revealed
systematic individual differences in the processing of facial
movement per se during the time window of the EPN.

Hence, beyond the experimental effects (Recio, Schacht, &
Sommer, 2014), our results demonstrate that some individuals
show particularly enhanced processing of nonemotional facial
movement. These individuals might engage more reflexive
attention in response to facial movement per se, and thus track
facial changes unfolding over time more accurately than
others.

Taken together, our estimation of individual differences in
ERPs reflecting the processing of dynamic facial expressions
argue in favor of theories that posit brain systems for process-
ing of the broader emotional dimensions of valence and arous-
al (e.g., Russell, 2003), rather than distinct systems for each
facial expression (e.g., Ekman, 1999).

Brain—behavior relationships

Notably, we replicated the negative correlation of N170
latencies with face perception and memory abilities that had
been observed in two previous studies, indicating that a faster
process of creating structural representations of faces
facilitates accurate performance in recognizing and
remembering identity from faces (Herzmann et al., 2009;
Kaltwasser et al., 2014). Since this relationship appears to be
consistent across different tasks that focus on face identity or
emotion processing, different stimulus materials (neutral or
emotional, dynamic or static), and different modeling
approaches (confirmatory factor analysis, LDS), the N170
latency seems to be a robust psychophysiological predictor
of an individual’s performance at identifying and
remembering identity from faces.

Individual differences in the baseline-free LDS
representing the shift in N170 amplitudes for emotional rela-
tive to neutral expressions were unrelated to differences in
general face cognition or emotion-processing abilities.
Autoregressive models capturing the temporal dynamics of
ERPs across the N170, EPN, and LPC components, however,
revealed a strong dependency between individual differences
in the N170 and EPN, suggesting an overlap between the
structural encoding of faces and emotion processing in these
time windows.

Brain—behavior relations involving the EPN amplitude
were separately calculated for expressions of negative and
positive (happiness) emotions. The latent EPN factor
representing the amplitude difference for happiness versus
neutral expressions correlated with face perception and facial
emotion perception. This finding is in line with our hypothe-
sis, and indicates that individuals who devote more sensory
resources to the processing of facial expressions of happiness
tend to perform better in tasks that involve perceiving both the
identity and the emotion revealed by faces. The latent EPN
factor representing the effect for negative expressions showed
a moderate but, after correction for multiple comparisons,
nonsignificant correlation with facial emotion perception.
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The same effect for negative emotions might be observed in
future studies with more power, thereby increasing the gener-
ality of this finding.

Interestingly, the latent factor representing the ampli-
tude difference between two neutral expressions—which
according to Recio, Schacht, and Sommer (2014) could
represent a low-level pattern detector that engages reflex-
ive attention to search for meaningful patterns in facial
movement—showed a moderate to high correlation with
facial emotion perception ability. This intriguing finding
suggests that this ability relies to some extent on the reac-
tivity of the visual cortex to facial movement per se. This
result is not surprising, given the type of information nec-
essary to categorize facial expressions. At the perceptual
level, this information is precisely how changes in facial
configuration unfold over time during a facial expression.
Hence, individuals who allocate more processing resources
to brain systems dedicated to the visual processing of any
kinds of facial movement might also dedicate more reflex-
ive attention to the reconfiguration of facial features during
emotional expressions. Enhanced processing and greater
attention put individuals at an advantage for perceiving
and categorizing facial expressions.

Taken together, the results from the EPN indicate that facial
emotion perception ability is related not only to the amount of
sensory resources devoted to the processing of emotional in-
formation, but also to the quick detection of facial movements
as meaningful patterns in the flow of incoming sensory infor-
mation. This novel finding fits well with the notion that the
brain systems involved in selective attention driven by salient
perceptual features (e.g., motion) or motivationally relevant
information (e.g., emotion) aim at the same targets in the vi-
sual brain systems (e.g., Pourtois et al., 2012).

The amount of sensory resources mobilized during the
processing of dynamic expressions of happiness correlat-
ed with face perception abilities, as well, indicating that
individual differences in this ability are related to activa-
tion in the brain systems engaged during the processing of
facial expressions of happiness. This unexpected finding
argues against the independence of perceptions of facial
identity and emotional expressions and their underlying
brain systems, as was proposed in early models of face
processing (e.g., Bruce & Young, 1986). However, our
results are in line with recent data indicating interdepen-
dence between the processing of facial identity and facial
expressions (e.g., Haxby & Gobbini, 2011), and more
particularly, with the “smiling effect,” a benefit for the
recognition and encoding of smiling faces that has been
observed in some studies (e.g., Lander & Butcher, 2015).

The latent LPC factor for negative expressions showed
a moderate correlation with individual differences in
memory for emotional facial expressions. This relation
should be interpreted with care, since it would not be

@ Springer

significant if a Bonferroni correction were applied. It sug-
gests that participants who devote more sustained process-
ing and motivated attention to facial expressions of nega-
tive emotions perform better in tasks involving remember-
ing and recognizing emotions from faces. Negative ex-
pressions might be very effective at recruiting attention
resources because they signal danger, and this gain in
attention seems to benefit the representation of emotion
in memory. Alternatively, the emotion-specific relation-
ships observed for the LPC could relate to the lower prob-
ability of the positive (one expression), relative to the
negative (five expressions), category. Happiness being
the only positive expression could benefit processing,
for example, if participants used polarity to solve the task,
and then the motivated attention toward happy faces
would occur at an earlier stage. This explanation does
not seem to be plausible, because facial expressions of
happiness showed lower LPC amplitudes than did the
more frequent negative ones, a result opposite to typical
oddball effects (e.g., Duncan-Johnson & Donchin, 1977).
Future studies might control for this issue by increasing
the number of positive expressions.

We used a condition showing moderate-intensity ex-
pressions in order to increase the task difficulty and facil-
itate individual differences. Still, it might be argued that
the task in the EEG study was rather easy (performance
was nearly ceiling for some emotion categories).
Furthermore, excluding those participants with the worst
performance (n = 3) may have reduced individual differ-
ences in the ERPs. We do not see a limitation here, be-
cause we aimed to measure individual differences associ-
ated with the processing of the emotional content of stim-
uli, rather than the task difficulty per se. Future research
could investigate task effects, controlling such aspects as
task difficulty or the level of processing.

Main contributions of the present study, and future
directions

Do individuals who show strong brain activation to a giv-
en expressions tend to show similar reactions to other
facial expressions? As expected, individual differences
in the N170 component showed little emotion specificity;
they mainly seemed related to overlap with the EPN ef-
fect. Emotion-specific individual differences in brain re-
sponses appeared for the EPN and LPC components, in
the form of valence specificity—that is, individuals with a
large EPN (or LPC) for a given negative expression
tended to show large effects for other negative expres-
sions, as well, but not necessarily for happiness, and vice
versa. This finding suggests distinct brain systems for the
processing of valence categories.
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Are the ERPs to facial expressions related to individual
differences in face cognition abilities? Our results confirm
that the speed of structural encoding, measured in the N170
latency, is negatively correlated with face perception and
face memory abilities (Herzmann et al., 2009; Kaltwasser
et al., 2014), highlighting the utility of the N170 latency as
a neurocognitive correlate of face perception. The latent
EPN factor for happiness expressions correlated with face
perception and facial emotion perception. Thus, individual
differences in these abilities to some extent may be related
to the amount of sensory resources devoted to the process-
ing of facial expressions of happiness. A similar brain—
behavior relationship was observed for the LPC to negative
expressions and individual differences in memory for emo-
tional facial expressions.

The brain—behavior relationships reported here might
reflect a particular time course in the processing of va-
lence, first positive and neutral, then negative expressions.
This time course could relate to the lower probability of
the positive and neutral categories in the design we
employed in the EEG experiment. We believe, however,
that these findings fit well with the advantage for happy
faces observed in many studies, which has been consid-
ered to rely on an earlier encoding of expressive intensity
(e.g., Calvo & Beltran, 2013). The EPN results presented
here further indicate that enhanced early encoding of hap-
piness expressions underlies individual differences in rec-
ognizing emotion from faces.

The roles of perceptual and affective processes in the
recognition of facial expressions have often been debated
in the emotion literature. A recent integrative review con-
cluded that expression recognition relies to a greater ex-
tent on perceptual processing of morphological features in
the face than on affective processes (Calvo &
Nummenmaa, 2016). An intriguing finding in the present
study is that individual differences in the ability to recog-
nize emotion from faces are related to the amounts of
sensory resources available in two brain systems: those
dedicated to the processing of affective information—
namely, the encoding of valence categories—and also
those dedicated to perceptual processing per se—namely,
the encoding of (nonemotional) changes in facial features
unfolding over time.

An important consideration when evaluating behavioral
factors is the distinction between accuracy and speed in per-
formance (e.g., Carroll, 1993). Hildebrandt, Schacht,
Sommer, and Wilhelm (2012) showed that speed in facial
emotion perception is highly correlated with the speed of face
perception, but is still separable from the speed of perceiving
nonfacial stimuli. Here we focused on accuracy indicators. In
future research, it will be interesting to estimate the relation-
ships of the ERPs reflecting face and emotion processing with
different indicators of performance speed.
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