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Abstract Depressive symptomatology has been associated
with alterations in decision-making, although conclusions
have been mixed, with depressed individuals showing impair-
ments in some contexts but advantages in others. The dopa-
minergic system may link depressive symptoms with
decision-making performance. We assessed the role of striatal
dopamine D2 receptor density, using spontaneous eye blink
rates, in moderating the relationship between depressive
symptoms and decision-making performance in a large under-
graduate sample that had not been screened for mental illness
(N=104). The regression results revealed that eye blink rate
moderated the relationship between depressive symptoms and
advantageous decisions on the Iowa Gambling Task, in which
individuals with more depressive symptomatology and high
blink rates (higher striatal dopamine D2 receptor density) per-
formed better on the task. Our computational modeling results
demonstrated that depressive symptoms alone were associated
with enhanced loss-aversive behavior, whereas individuals
with high blink rates and elevated depressive symptoms
tended to persevere in selecting options that led to net gains
(avoiding options with net losses). These findings suggest that
variation in striatal dopamine D2 receptor availability in indi-
viduals with depressive symptoms may contribute to differ-
ences in decision-making behavior.
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Decision-making is prevalent in nearly every aspect of daily
functioning, from major decisions such as career choices and
financial planning to routine decisions such as whether to
exercise or attend a social engagement. Despite the impor-
tance and frequency of decision-making, this process can be
influenced by many factors, including mental disorders and
affective states. One mental disorder that has been shown to
impact decision-making is major depression (Paulus & Yu,
2012). The National Institute of Mental Health reported that
in 2012 an estimated 16 million Americans exhibited at least
one depressive episode in the course of the year, a rate that has
more than doubled since the 1990s (Compton, Conway,
Stinson, & Grant, 2006). Given the pervasiveness of depres-
sion and the importance of decision-making, in the present
study we assessed the relationship between depression and
decision-making and the possible role of striatal dopamine in
moderating this relationship.

Theories aimed at identifying the neural and behavioral
mechanisms of depression suggest that aberrations in reward
and punishment responsiveness may contribute to depressive
phenotypes (Beck, 1979; Elliott, Sahakian, Herrod, Robbins,
& Paykel, 1997; Henriques & Davidson, 2000; Pizzagalli
et al., 2009). Specifically, depression can be characterized by
decreased sensitivity to reward feedback and altered sensitiv-
ity to punishment (Eshel & Roiser, 2010). Previous work has
demonstrated that depressed individuals exhibit heightened
attention to negative information and enhanced sensitivity to
punishment feedback and losses (Berenbaum & Oltmanns,
1992; Carver, Johnson, & Joormann, 2008; Gotlib &
Joormann, 2010; Mathews & MacLeod, 2005; Pizzagalli,
Iosifescu, Hallett, Ratner, & Fava, 2008; Taylor Tavares
et al., 2008), as well as decreased behavioral sensitivity to
reward and ventral striatum activation in response to reward
(Henriques, Glowacki, & Davidson, 1994; Eshel & Roiser,
2010; Pizzagalli et al., 2009; Robinson, Cools, Carlisi,
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Sahakian, & Drevets, 2012). Given the extensive work on this
theory, strong evidence suggests that altered reinforcement
processing in depressed individuals may be due to differences
in functioning of the striatum, a region involved in reward
processing (Delgado, Nystrom, Fissell, Noll, & Fiez, 2000;
Eshel & Roiser, 2010). Moreover, neuroimaging research
has demonstrated that the striatum is able to distinguish be-
tween gain and loss feedback (Delgado et al., 2000). Because
depression is characterized by altered reward and punishment
responses, and striatal dopamine has been shown to underlie
reward processing, it is reasonable to predict that striatal dopa-
mine may influence decision-making in individuals with depres-
sive symptoms (Delgado, 2007; Delgado et al., 2000). To inves-
tigate this hypothesis, we utilized the Iowa Gambling Task
(IGT), a decision-making task that assesses risk preferences,
responsivity to uncertainty, and gain and loss sensitivity.
Both information processing and reward sensitivity are key
components of decision-making, and therefore, the cognitive
biases associated with depression directly impact decision-
making processes. Although depressed individuals have
shown deficits in some decision-making situations, including
gain maximization tasks, they excel on tasks that rely on loss
sensitivity, such as loss minimization tasks (Beevers et al.,
2013; Cooper et al., 2014; Maddox, Gorlick, Worthy, &
Beevers, 2012). Computational modeling results have indicat-
ed that depressed individuals are more likely to choose options
with the smallest expected rewards under loss minimization
conditions (Beevers et al., 2013). Thus, previous research on
depression and decision-making has shown that individuals
with elevated depressive symptoms have clear cognitive
biases that lead to success in some decision-making situations,
but failure in others.

Several studies have examined the relationship between
depressive symptoms and the IGT. For example, previous
work using the Hamilton Rating Scale for Depression to ex-
amine differences between clinically depressed individuals
and healthy controls showed that depressed individuals select-
ed the advantageous decks more than controls, earned more
points on the task, and learned to avoid the high-risk decks
faster (Smoski et al., 2008). Therefore, evidence suggests that
depressive symptoms may actually confer an advantage in
some decision-making contexts. However, other research has
shown that individuals diagnosed with major depressive dis-
order (MDD) using the DSM-IV criteria perform worse on the
IGT than do healthy controls (Cella, Dymond, & Cooper,
2010; Must et al., 2006). Specifically, depressed individuals
selected more cards from the low-magnitude, high-frequency-
of-losses disadvantageous Deck A, whereas control partici-
pants selected the high-magnitude, low-frequency-of-losses
advantageous Deck D (Cella et al., 2010). Further work has
supported this effect in adolescents, in that adolescents with
MDD selected the advantageous decks less than did control
group adolescents (Han et al., 2012). Although the research on

depression and IGT performance has been mixed, with some
studies showing that depressed individuals perform worse and
others showing that they perform better on the task, the pres-
ent study differs in three key ways. First, we used a sample of
healthy volunteers and a different measure of depressive
symptomatology. Second, we used a continuous measure of
depression, rather than dividing the sample into groups, to
better represent the range of depressive symptomatology in
our sample. Finally, we measured spontaneous eye blink rates
(EBRs) to indirectly assess striatal dopamine D2 receptor den-
sity as a potential moderator of depressive symptoms and
decision-making performance on the IGT.

A key association between depression and decision-
making can be attributed to the dopaminergic system.
Dopamine regulates feedback processing and reward learning
during decision-making (e.g., Brand, Labudda, &
Markowitsch, 2006; Doya, 2008; Rolls, 2000; Schultz,
2006). Furthermore, dopaminergic striatal neurons have been
shown to have a specific role in encoding reward prediction
errors (Doya, 2008; Schultz, Dayan, & Montague, 1997). In a
pharmacological research study of the relationship between
dopamine and IGT performance, a branched-chain amino acid
mixture was administered that resulted in decreased neural
tyrosine availability and dopamine synthesis. The reduction
in dopaminergic activity led to increased focus on immediate
rewards and, consequently, poorer decision-making perfor-
mance (Sevy et al., 2006). Similarly, a recent positron emis-
sion tomography (PET) study examining the relationship be-
tween amphetamine-induced ventral striatal dopamine release
and decision-making performance showed a correlation be-
tween the magnitude of striatal dopamine release and disad-
vantageous selections on the IGT (Oswald et al., 2015).
However, given the nature of the IGT, it could not be deter-
mined whether the decision-making deficits associated with
elevated dopamine release (lower D2/D3 receptor binding po-
tentials) should be attributed to increased reward sensitivity or
reduced sensitivity to losses. In contrast to these studies show-
ing that greater dopamine release was associated with subop-
timal decision-making, additional work using PET imaging
demonstrated that increased dopamine release in the ventral
striatum predicted selection of the advantageous decks on the
IGT (Linnet, Møller, Peterson, Gjedde, & Doudet, 2011). One
potential difference in these findings, as Oswald and col-
leagues mentioned, was in the mechanisms underlying advan-
tageous and disadvantageous performance on the IGT. Both
hypersensitivity to reward and diminished loss sensitivity can
result in suboptimal IGT performance, but examination of
IGT performance differences alone makes it difficult to deter-
mine which reward-processing mechanism accounts for the
performance effects. We therefore applied computational
models to the data in the present work to assess specific strat-
egies that underlie decision-making performance. In addition
to work linking the dopaminergic system to the IGT, a large
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body of research has demonstrated that dopamine moderates
depressive symptoms (see Brown & Gershon, 1993; Depue &
Iacono, 1989; Dunlop & Nemeroff, 2007; Kapur & Mann,
1992; and Rampello, Nicoletti, & Nicoletti, 2000, for re-
views). Consequently, it is important to consider the interplay
between both observed depressive symptoms and dopamine
in predicting decision-making behavior.

In order to assess how dopamine may modulate decision-
making behavior in depressed individuals, we utilized the
spontaneous EBR. Although previous research had proposed
that EBR is an indicator of striatal dopamine levels (Karson,
1983; Taylor et al., 1999), extensive pharmacological and be-
havioral work in both monkeys and humans has implicated
the role of EBR as an indicator specifically of dopamine D1

and D2 receptor availability in the striatum (Elsworth et al.,
1991; Groman et al., 2014; Jutkiewicz & Bergman, 2004;
Kaminer, Powers, Horn, Hui, & Evinger, 2011; Kleven &
Koek, 1996; Slagter, Georgopoulou, & Frank, 2015).
Although there has been evidence for the contributions of both
D1 and D2 receptors, a recent pharmacological PET study
compared the effects of D1 and D2 receptor agonists on the
spontaneous EBR in male vervet monkeys (Groman et al.,
2014). Their findings indicated that the spontaneous EBR
was correlated with dopamine D2 receptor density in the ven-
tral striatum and caudate nucleus, but no association with D1

receptors in the striatum was observed. They also found that
D2 receptor density predicted learning from positive feedback
during reversal learning. Behavioral evidence with humans
supports the role of EBR as an indicator of D2 receptor avail-
ability (Slagter et al., 2015). However, in this study, which
focused on the effect of spontaneous EBR on a probabilistic
reinforcement-learning task, EBR predicted learning from
negative outcomes. The authors reconciled their findings with
those of the Groman group by suggesting that positive feed-
back sensitivity can result from negative prediction errors
(Piray, 2011; Slagter et al., 2015).

Importantly, the findings from studies that have examined
the relationship between EBR and depression have been in-
consistent. Although some work has demonstrated that indi-
viduals with MDD and subvocal rumination have increased
EBRs (Cruz, Garcia, Pinto, & Cechetti, 2011; De Jong &
Merckelbach, 1990; Mackintosh, Kumar, & Kitamura,
1983), other studies have shown a different pattern of results.
For example, in a study that compared 12 male individuals
with MDD to 12 male healthy control participants, no differ-
ences between the groups were observed under normal condi-
tions. Following sleep deprivation, however, the depressed
individuals had higher EBRs than did the controls (Ebert
et al., 1996). Additional work comparing two in-patient
groups with MDD receiving either electroconvulsive therapy
or antidepressant drugs showed that EBRs were elevated fol-
lowing treatment (Berrios & Canagasabey, 1990). A critical
distinction between these previous studies on EBR and

depression and the present investigation is that we utilized a
large representative sample of males and females and exam-
ined a broad range of depressive symptoms. Because the pre-
vious studies have shown inconsistent results, we could not
provide a clear hypothesis about the relationship between
EBR and depressive symptoms; however, the results of this
study will provide directional support for this relationship and
clarify the inconsistencies in previous studies.

Therefore, in the present study, we sought to determine
whether the spontaneous EBR modulates the relationship be-
tween depression and decision-making behavior. Although
the research on depression and IGT performance has had
mixed results, on the basis of prior work demonstrating that
striatal dopamine D2 receptor density specifically regulates
learning from negative outcomes, we predicted that increased
D2 receptor density, as indexed by higher EBR, could result in
decision-making benefits in individuals expressing depressed
symptoms. This could account for the differences in decision-
making performance noted in previous studies (Cella et al.,
2010; Must et al., 2006; Smoski et al., 2008), whereby de-
pressed individuals with lower D2 receptor density might per-
form worse on the IGT, and those with higher D2 receptor
density might show enhanced IGT performance. In addition
to examining the behavioral results of the IGT, we also applied
reinforcement-learning models to the data in order to more
critically determine the precise cognitive mechanisms under-
lying individuals’ decision-making behavior. Because altered
reinforcement processing is a defining characteristic of de-
pression, it is important to utilize these models in order to
allow inferences about which aspect of reinforcement process-
ing drives decision-making performance effects. From the
computational modeling results, we could directly assess the
degrees to which depression and D2 receptor density are
linked to enhanced loss aversion and reward sensitivity in
the task.

Method

Participants

The study was approved by the Institutional Review Board at
Texas A&M University (approval number IRB2012-0719D)
before any procedures were implemented. A total of 104 un-
dergraduate students (54 females, 50 males; Mage=18.81,
SDage=0.95) were recruited from an introductory psychology
course at Texas A&M University. To determine the sample
size, we conducted a power analysis using G*Power 3.1.9.2
(Faul, Erdfelder,Buchner, & Lang, 2009) to determine the
minimum sample size that would be needed to detect a
medium-sized effect using a two-tailed alpha level of .05.
Our main analysis of interest was a multiple regression with
four predictors: our metric for symptoms of depression,
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spontaneous eye blink, the interaction term between depres-
sion symptoms and spontaneous eye blink, and gender, which
was included as a covariate. Power calculations indicated that
our study design would require a sample size of at least 84
participants to achieve 80 % power. With 95 participants, we
would have 85 % power. On the basis of this calculation, our
goal was to collect a sample size of at least 100 participants, to
account for data collection errors, smaller effect sizes than the
one used in our power analysis, or other issues. We ran par-
ticipants until we reached that number and then continued
through the end of the work week. Students received partial
course credit for completing the study.

Materials and Procedure

Spontaneous EBR (dopamine D2 receptor marker) In line
with previous work (e.g., Chermahini & Hommel, 2010;
Colzato, Slagter, van den Wildenberg, & Hommel, 2009; De
Jong & Merckelbach, 1990; Ladas, Frantzidis, Bamidis, &
Vivas, 2014), we recorded spontaneous eye blink using an
electrooculogram (EOG). Following Fairclough and
Venables (2006), vertical eye blink activity was collected by
attaching Ag–AgCl electrodes above and below the left eye,
with a ground electrode placed at the center of the forehead.
All EOG signals were filtered at 0.01–10 Hz and amplified by
a Biopac EOG100C differential corneal–retinal potential am-
plifier. In line with previous research, eye blinks were defined
as increases in EOG amplitude greater than 100μV and less
than 500ms in duration (Barbato et al., 2000; Colzato, Slagter,
Spapé, &Hommel, 2008; Colzato et al., 2009a, b; Colzato, van
Wouwe, & Hommel, 2007). Eye blink frequency was both
manually counted and derived using BioPac Acqknowledge
software functions, which computes the frequency of ampli-
tude changes of greater than 100μV, but not duration dif-
ferences, in order to ensure valid results. The manual and
automated EBRs were strongly positively correlated, r=.92,
p<.001. Because the automated results were not sensitive
to differences in duration and included only blinks less than
500 ms in duration, the manual EBR was used for all other
statistical analyses.

All recordings were measured during daytime hours before
4 pm, because previous work had shown that diurnal fluctua-
tions in spontaneous EBR can occur in the evening hours
(Barbato et al., 2000). A black “X” was marked at eye level
1 m from where the participant was seated. Instructions were
given for the participant to look in the direction of the marker
for the duration of the recording and to try to avoid moving or
turning the head. Eye blinks were recorded for 6 min under
resting conditions. Each participant’s EBR was determined by
computing the average number of blinks across the 6-min time
interval. The individual EBRs ranged from 4.33–41.17 blinks/
min (M=17.80, SD=8.34) in our sample, suggesting a wide
range of dopaminergic functioning; this was similar to the

range reported in previous work (Colzato, van den
Wildenberg, van Wouwe, Pannebakker, & Hommel, 2009).
A faster EBR is indicative of higher striatal dopamine D2

receptor density, whereas a slower EBR signifies lower striatal
dopamine D2 receptor density.

Depression Questionnaire The 20-item Center for
Epidemiological Studies–Depression Scale (CES-D) was
employed to measure depressive symptomatology in our sam-
ple (Radloff, 1977). The CES-D is a reliable measure of de-
pression with high internal consistency (α=.85). The overall
reliability of the CES-D in our sample was similar to the norm
(α=.90). Although not designed as a clinical diagnostic tool, a
standard cutoff score of 16 on the CES-D scale, out of a
maximum score of 60, is typically used to designate clinical
from nonclinical levels of depressive symptoms. In the present
study, the mean CES-D scale score was 17.31 (SD=9.54,
range=2–49), suggesting that our sample contained a broad
range of depressive symptomatology. It is important to note
that these scores were reported at a single time point, and thus,
the CES-D scores are not necessarily indicative of a clinical
condition, but rather reflect depressive symptoms occurring in
the past 7 days only.

Participants were given the standard CES-D scale instruc-
tions indicating that they would be shown a list of ways they
might have felt or behaved. They were asked to respond how
often they had felt those ways in the last 7 days. Participants
responded on a scale from 0 (Less than 1 day) to 3 (5–7 days),
and the questions included items such as “I felt that everything
I did was an effort” and “I had crying spells.”

Iowa Gambling Task The decision-making instructions and
task design were the same as those used in the original IGT
version (Bechara, Damasio, Damasio, & Anderson, 1994).
The IGT has been utilized to identify neurocognitive differ-
ences in individuals with lesions to the ventromedial cortex
and amygdala (Bechara & Damasio, 2005; Bechara et al.,
1994). Recent neuroimaging work has demonstrated that in
addition to these neural regions, both the dorsal and ventral
striatum—areas involved in reward processing—are activated
during the IGT, indicating that the IGT is sensitive to differ-
ences in striatal function (X. Li, Lu, D’Argembeau, Ng, &
Bechara, 2010).

The task instructions specified that the purpose of the task
was to gauge how people use information to make decisions.
Participants were asked to repeatedly select from one of four
decks of cards, and that they could either gain or lose points on
each draw. Each deck corresponded to a key on the keyboard.
Participants began the task with 2,000 hypothetical dollars and
were given a goal of earning at least $2,500 by the end of the
task. They were not informed that the task included 100 trials
of selections from one of the four decks of cards. Deck A
offered a high magnitude of reward and a high frequency of
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losses (five loss trials equivalent to $250 each), with a net loss
of $250 over every ten trials. Deck B yielded the same net loss
as Deck A for every ten trials, but offered high-magnitude,
low-frequency losses (one loss trial valued at $1,250), with a
net loss over every ten trials of $250 dollars. In contrast,
Decks C and D both offered a net gain of $250 across every
ten trials. Like Deck A, Deck C gave frequent losses of low
magnitude, but yielded more gains than losses overall.
Similarly, Deck D provided infrequent losses of high magni-
tude, but offered more gains than losses over every ten trials.
Thus, Decks A (high-magnitude reward, frequent losses) and
B (high-magnitude reward, infrequent losses) were the disad-
vantageous decks, because they resulted in overall net losses,
whereas Decks C (low-magnitude reward, frequent losses)
and D (low-magnitude reward, infrequent losses) were the
advantageous decks, because they yielded overall net gains.
Table 1 shows the exact payoff structure for each deck across
every ten trials. IGT performance was determined by comput-
ing the difference in proportions of advantageous versus dis-
advantageous deck selections [(C+D) – (A+B)] across all
trials during the task. Although analysis of IGT performance
is useful in assessing advantageous decision-making, it still
remains unclear whether good performance on the IGTshould
be attributed to increased loss aversion, diminished sensitivity
to reward, or perseveration in choosing net gains. In order to
determine which reinforcement-processing strategies drive
IGT performance effects, we applied computational models
to our data.

Model descriptions Several models were fit to the data, in-
cluding two single-term reinforcement-learning (RL) prospect
valence learning (PVL) models, as well as a two-term RL

valence-plus-perseveration (VPP) model. The VPP model
has recently been shown to provide a significantly better fit
to IGT data than do single-term models such as the PVL
model, because it accounts for participants’ tendencies to both
select options with relatively greater expected value and to
persevere with options that have recently provided net gains
(Ahn et al., 2014; Worthy, Pang, & Byrne, 2013). The PVL
model (Ahn, Busemeyer, Wagenmakers, & Stout, 2008; Ahn,
Krawitz, Kim, Busemeyer, & Brown, 2011) assumes that the
weights given to gains and losses follow the assumptions of
prospect theory (Kahneman& Tversky, 1979). The VPPmod-
el is similar to the PVL models, except that the terms for
perseveration and expectancies are isolated as separate terms.
A win–stay/lose–shift (WSLS) model was also included, to
determine whether choices were determined strictly by the
outcome of the previous trial (Worthy, Hawthorne, & Otto,
2013). The WSLS model assumes that an individual will per-
severe in selecting the same option if the previous trial resulted
in a net gain, or will switch to a different option if the previous
trial resulted in a net loss. Finally, a baseline, or random-
responding, model was applied to the data, which assumes
stochastic responses.

Prospect valence learning models We applied two PVL
models to the data. Both models have four free parameters
and include a utility function and a trial-independent action
selection rule. However, in the first model, the PVL delta
model, a value-updating rule was incorporated as a param-
eter in the model to update expected values on each trial. In
the second model, the PVL decay model, rather than a
value-updating parameter, a decay rule was included in
the model, which assumes that the values of all options
decay over time.

The prospect valence utility function assumes that the
evaluation of each outcome on each trial operates in accor-
dance with the utility function derived from prospect the-
ory (Ahn et al., 2008; Kahneman & Tversky, 1979). The
utility function exhibits decreasing sensitivity to increases
in magnitude, as well as different sensitivities to losses
versus gains. The utility on trial t, u(t), of each net out-
come, x(t), was

u tð Þ ¼ x tð Þ∝ i f x tð Þ ≥ 0
−λ x tð Þj j∝ i f x tð Þ<0

�
: ð1Þ

Here, the utility function shape is determined by α, the
shape parameter (0<α<1), and λ represents the loss aversion
parameter (0<λ<5) that governs loss sensitivity relative to
gain sensitivity. A value of λ greater than 1 indicates that an
individual is more sensitive to losses than to gains. Similarly, a
λ value less than 1 signifies enhanced sensitivity to gains as
compared to losses.

Table 1 Reward schedule for the Iowa Gambling Task

Draw from Deck Deck A Deck B Deck C Deck D

1 100 100 50 50

2 100 100 50 50

3 100, −150 100 50, −50 50

4 100 100 50 50

5 100, −300 100 50, −50 50

6 100 100 50 50

7 100, −200 100 50, −50 50

8 100 100 50 50

9 100, −250 100, −1,250 50, −50 50

10 100, −350 100 50, −50 50, −250
Cumulative payoff −250 −250 250 250

See Bechara et al. (1994) for the full table of payoffs for the first 40 cards
drawn from each deck. In the present task, the sequence was repeated for
cards 41–80 and 81–100, so that a participant could potentially select the
same deck on all 100 draws.
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The action selection rule controlled the predicted probabil-
ity that deck i would be chosen on trial t, and was calculated
using a Softmax rule (Sutton & Barto, 1998):

Pr i tð Þð Þ ¼ e θ tð Þ⋅Ei tð Þ½ �
X 4

j ¼ 1
e θ tð Þ⋅E j tð Þ½ �

: ð2Þ

The trial-independent action selection1 rule governed ex-
pected values and was represented as

θ tð Þ ¼ 3c− 1; ð3Þ

where c (0≤c≤5) is the response consistency or exploita-
tion parameter. Larger values of c indicate that an individ-
ual has a greater tendency to choose options with higher
expected values. Similarly, smaller c values indicate a
greater tendency to explore options with lower expected
values.

The PVL delta model included the value-updating rule,
which determines how the utility u(t) is used to update expect-
ed values or expectancies Ej(t) for the selected option, i, on
trial t. The delta rule assumes that expected values are
recency-weighted averages of the rewards received for each
option:

Ei tð Þ ¼ Ei t−1ð Þ þ ϕ⋅ u tð Þ−Ei t−1ð Þ½ �: ð4Þ

The recency, or learning rate, parameter ϕ (0≤ϕ≤1) defines
the weight given to recent outcomes in updating expected
values. Higher values of ϕ denote a greater weight to recent
outcomes.

Instead of the value-updating rule, the PVL decay model
used the decay rule (Erev & Roth, 1998) in which expectan-
cies of all decks decay, or are discounted, over time. The
expected value of the selected deck is then added to the current
outcome utility:

Ei tð Þ ¼ A⋅Ei t−1ð Þ þ δi tð Þ⋅u tð Þ: ð5Þ

The decay parameter A (0≤A≤1) determines the extent to
which the previous expected value is discounted. δj(t) is a
dummy variable that is 1 if deck j is chosen and 0 otherwise.
Thus, the utility shape (α), loss aversion (λ), and exploitation
(c) free parameters are common to both the PVL delta and
decay models, whereas the recency free parameter ϕ defines
the PVL delta model, and the decay A free parameter defines
the PVL decay model.

Valence-plus-perseveration RL model We used the PVL
utility function (Eq. 1) and the delta rule from the PVL delta
model (Eq. 4) to determine the expected reward value [Ej(t)]
for each choice j for the two-term VPP model (Worthy et al.
2013). The VPP model includes seven free parameters: utility
shape (α), loss aversion (λ), exploitation (c), decay (k), recency
or learning rate (ϕ), gain increment (εpos), and loss increment
(εneg) parameters. The perseveration [Pj(t)] strengths for each
option j were determined by a more general form of the decay
rule that had previously been used to model perseveration or
autocorrelation among choices (Kovach et al., 2012;
Schönberg, Daw, Joel, & O’Doherty, 2007). The perseveration
term for chosen option i on trial t differed depending on wheth-
er the net outcome, x(t), was a positive or negative value:

Pi tð Þ ¼ k⋅Pi t−1ð Þ þ εpos i f x tð Þ ≥ 0
k⋅Pi t−1ð Þ þ εneg i f x tð Þ<0

�
: ð6Þ

Here the decay parameter k (0≤k≤1) is similar to the decay
parameter A in Eq. 5 above for the PVL decay model. The
tendency to perseverate or switch is incremented, each time an
option is chosen, by εpos and εneg, which were allowed to vary
between −1 and 1. A tendency to persevere by choosing the
same option on succeeding trials is represented by positive
values, whereas negative values denote a tendency to switch.
The values Vj(t) for each option jwere the sums of the expect-
ed value and perseverative value from Eqs. 4 and 6. The com-
bined values were entered into a Softmax rule to determine the
probability of selecting each option, i, on each trial t:

Pr i tð Þð Þ ¼ e θ tð Þ⋅Vi tð Þ½ �
X 4

j ¼ 1
e θ tð Þ⋅V j tð Þ½ �

; ð7Þ

where θ(t) is a free parameter that accounts for participants’
tendencies to exploit the highest-valued option or to select
options randomly.

Win–stay/lose–shift model In addition to fitting the RL
models described above, we also fit a WSLS model and a
baseline model. The WSLS model has two free parameters
and is identical to the model used in prior work from our lab
(Worthy, Hawthorne, & Otto, 2013). The first parameter rep-
resents the probability of perseverating with the same option,
i, on the next trial if the net gain received on the current trial is
greater than or equal to zero:

P i tð Þjchoicet−1 ¼ i & r t−1ð Þ ≥ 0ð Þ ¼ P stayjwinð Þ: ð8Þ

Here r represents the net payoff received on a given trial, in
which any loss is subtracted from the gain received. The prob-
ability of switching to another option following a win trial is 1
– P(stay|win). To determine a probability of selecting each of

1 A trial-dependent rule has also been applied to models that have been fit
to IGT data (Yechiam & Busemeyer, 2005). We found that the pattern
between the relative fit of each model that we presented was the same
regardless of which action selection rule was used, and that the trial-
independent rule fit best in most cases. Therefore, for simplicity we only
use the trial-independent rule in the present work.
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the other three options, we divided this probability by 3, so that
the probabilities for selecting the four options summed to 1.

The second parameter represents the probability of shifting
to another option j on the next trial if the reward received from
selecting option I on the current trial is less than zero:

P j; tð Þjchoicet−1 ¼ i & r t−1ð Þ < 0ð Þ ¼ P shiftjlossð Þ:ð9Þ

This probability is divided by 3 and assigned to each of the
other three options. The probability of staying with an option
following a “loss” is 1 – P(shift|loss).

Baseline model Finally, the baseline model assumes fixed
choice probabilities (Gureckis & Love, 2009; Worthy &
Maddox, 2012). The baseline model has three free parameters
that represent the probabilities of selecting Decks A, B, and C
(the probability of selecting Deck D is 1 minus the sum of the
three other probabilities).

Procedure

After providing written informed consent, participants began
the experiment with 6 min of EBR recordings. After the EBR
physiological measure, participants completed the CES-D de-
pression questionnaire and the IGT decision-making task on
PC computers using Psychophysics Toolbox for MATLAB
(version 2.5; Brainard, 1997). Upon completion of the exper-
iment, participants were debriefed about the nature of the
study.

Results

Statistical analyses

Because previous research had shown gender differences
in EBR (Dreisbach et al., 2005; C. S. R. Li, Huang,
Constable, & Sinha, 2006; Müller et al., 2007; Mulvihill,
Skilling, & Vogel-Sprott, 1997), we examined gender dif-
ferences in our sample. Using an independent-samples t
test, we observed a significant gender difference in EBR
in which females (M=19.53, SD=9.05) had a faster EBR
than males (M=15.91, SD=7.10), t(103)=2.27, p= .03.
Given the significant gender differences in EBR in our
sample and those reported in prior studies, we included
gender as a covariate in our regression analyses.

To determine whether learning occurred over the course of
the IGT, we conducted a repeated measures analysis of vari-
ance with the average IGT performance for each of the five
20-trial blocks entered in the analysis. The results indicated a
significant effect of learning across the task, F(4, 4.16)=7.76,
p<.001 (Fig. 1). To evaluate whether our sample performed
similarly to participants from previously published work, we

compared our data with those of the control participants from
Bechara et al.’s (2001) study, and from a sample of 504 par-
ticipants across several published studies compiled by
Steingroever and colleagues (2014).2 In comparison to the
healthy control participants in previous research (N=40) with
the IGT, in which 32.5 % of participants had net scores of
greater than –.10 (ten more disadvantageous than advanta-
geous selections; Bechara et al., 2001), only 3.85 % of our
sample scored below –.10. Thus, our sample, including all
individuals across the depressive symptoms spectrum, per-
formed better on the IGT than the control sample in previous
research. However, as compared to a large (N=504) sample of
healthy participants from a recently published data pool, our
sample (M=−.01, SD=.26) selected more disadvantageous
options than the sample from the data pool (M= .08,
SD=.32), t(608)=−2.62, p=.01 (Steingroever et al., 2014).
Given these two comparisons, the IGT performance from
our sample appears to fall in between these two normative
populations. In order to verify that our sample comprised a
broad range of depressive symptoms, we determined that
52.89 % (range=2–49) of the participants in our sample had
CES-D scores of 16 or greater, indicating depressive symp-
toms in the clinical range. Figure 2 illustrates the average
numbers of cards selected over the course of the IGT for each
deck.

Correlation analyses

Correlation coefficient analyses were conducted to establish
whether there was a relationship between depressive
symptoms, EBR (striatal dopamine marker), and IGT
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Fig. 1 Overall learning performance on the Iowa Gambling Task (IGT)
for all participants. A significant effect of learning across the task was
observed (p<.001). Error bars represent standard errors of the means

2 These data are from the 504 participants who completed the same 100-
trial version of the IGT in Steingroever et al. (2014). Data were also
available from 113 additional participants who completed a different
number of trials in the IGT.
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performance.3 Preliminary results indicated a significant pos-
itive relationship between depressive symptoms (CES-D
scores) and IGT performance, r=.25, p=.01 (Fig. 3). A mar-
ginally significant positive relationship between EBR and IGT
performance (r=.17, p=.09) was also observed (Fig. 4). The
relationship between depressive symptoms and EBR was not
significant, p>.10.

For individual deck selections, depressive symptoms were
significantly negatively correlated with Deck B selections, r=
−.28, p<.01, and positively correlated with Deck C selections,
r=.26, p<.01. EBR did not correlate with selection of any
individual decks. Table 2 shows the correlations between
overall CES-D depression scores, EBR, and the proportion
of each IGT deck selection.

Regression analyses

A three-step hierarchical multiple regression analysis was per-
formed to determine whether striatal dopamine, as measured
by EBR, modified the relationship between depressive symp-
toms and decision-making performance. CES-D depression
scores and EBRwere both centered at the mean for the regres-
sion analysis. In the first step, gender was added as a covariate.
The results demonstrated that gender was not a significant
predictor of IGT performance, p=.31. In the second step, we
tested whether depressive symptoms and EBR independently

predicted IGT performance. The results from the second-step
model demonstrated that EBR and depressive symptoms sig-
nificantly predicted IGT performance, ΔR2=.09, F(3, 101)=
3.69, p=.01. Depressive symptoms positively predicted per-
formance, β=.23, p=.02, indicating that individuals with
more depressive symptomatology selected the advantageous
decks more often, relative to the disadvantageous decks.
Additionally, EBR was a marginally significant predictor as
a single-order term, β=.18, p=.06, which suggests that indi-
viduals with higher D2 receptor density tended to choose more
advantageous IGT options. In the third step of the model, the
interaction term between EBR and depressive symptoms was
analyzed. The addition of this term accounted for a significant
proportion of variance in decision-making performance,
ΔR2=.04, F(4, 100)=3.86, p=.01, indicating that the EBR
by depressive symptoms interaction significantly influenced
IGT performance, β=.52, p<.05: Individuals who reported
higher levels of depressive symptoms and who had higher
D2 receptor density performed better on the IGT. However,

3 Because approximately half of our sample met the criteria for depressive
symptoms in the clinical range, we also conducted correlational analyses
for participants below the CES-D cutoff and above the cutoff score of 16.
In the low-symptom group, we found a marginally significant correlation
between CES-D depressive symptoms and EBR, r=.25, p=.09, while the
correlations between CES-D scores and IGT performance (r=.04, p=.78)
and between IGT performance and EBR (r=.07, p=.66) were nonsignif-
icant. In the high-symptom group, a significant correlation between EBR
and IGT performance was observed, r=.27, p=.05. We also observed a
marginally significant correlation between CES-D depressive symptoms
and IGT performance, r=.24, p=.07. The association between CES-D
scores and EBR was not significant in the high-depressive-symptom
group, r=.06, p=.65.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Ad
va

nt
ag

eo
us

 M
in

us
 D

is
ad

va
nt

ag
eo

us
 D

ec
k 

Se
le

c�
on

s

CES-D Depression Scores

Rela�onship between CES-D Depression 
Scores and IGT Performance

0        5         10        15       20       25        30       35      40        45        50 
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the main effect of CES-D depression scores and EBR from the
second step were not significant in the last step of the regres-
sion, p>.10. Because some research has shown that individual
difference effects only emerge in the last block of IGT trials
after learning is complete (Sweitzer, Allen, & Kaut, 2008), we
also conducted regression analyses within each of the five 20-
trial blocks. These results revealed that the interaction effect
between depressive symptoms and EBR on IGT performance
was significant in Blocks 2 (β=.77, p=.003) and 3 (β=.55,
p=.04). Figure 5 depicts the simple regression lines for the
effect of CES-D depression scores on IGT performance at the
mean for EBR, one standard deviation above the mean for
EBR, and one standard deviation below the mean for EBR.
The simple regression for the mean (β=.22, p= .02) and one
standard deviation above the mean (β=.39, p<.01) signifi-
cantly predicted IGT performance. The simple regression for
one standard deviation below the mean, however, was not
significant, p>.10.

Furthermore, three-step hierarchical multiple regressions
were conducted for the proportions of selections for each of
the decks individually.4 Decks A and C demonstrated differ-
ential effects of EBR and depressive symptoms. For Deck A,
the first step, with gender entered as a covariate, was not a
significant predictor of Deck A selections, p>.10. Similarly,
the second step, with CES-D depression scores and EBR en-
tered as single-order terms, showed no significant effects,
p>.10. In the last step, however, the overall model was sig-
nificant, ΔR2=.11, F(4, 100)=4.18, p<.01. These results in-
dicated that the EBR by depressive symptom interaction sig-
nificantly influenced the selection of Deck A, β=−.91, p<.01,
indicating that individuals with higher striatal dopamine D2

receptor density and higher depression scores tended to
choose Deck A less frequently. The first step of the regression
for Deck C was not a significant predictor of Deck C

selections, p>.10. In the second step, however, CES-D de-
pression scores significantly predicted the frequency of Deck
C selections, β=.24, p=.01. EBR was not a significant pre-
dictor, p>.10. In the last step of the model, the EBR by de-
pressive symptoms interaction significantly predicted Deck C
selections (β=.55, p=.04), and the overall model was signif-
icant, ΔR2=.04, F(4, 100)=3.60, p<.01. These results dem-
onstrate that depressed individuals with higher blink rates
tended to choose Deck C more and Deck A less often.

Model-based analyses

All participants’ data were fit individually to each of the
models described above. The fits of themodels were compared
using Akaike’s information criterion (AIC; Akaike, 1974).
AIC values are used to compare models with varying numbers
of free parameters, with the AIC penalizing models with more
free parameters. For each model i, AIC is defined as:

AICi ¼ −2logLi þ 2V i; ð10Þ

where Li is the maximum likelihood for model i, and Vi is the
number of free parameters in the model. Smaller AIC values
indicate a better fit to the data.

Overall, the VPP model fit the data best on the basis of AIC
values. Table 3 shows the AIC value for each of the models.
Having established that the VPP model provided the best fit to
the data, we examined correlations between the best-fitting
parameters from the model and self-reported overall depres-
sion scores and EBR. This uncovered a significant positive
relationship between depression and the VPP model’s loss
aversion parameter (λ), r=.21, p=.01. Thus, individuals with
heightened depressive symptoms showed enhanced loss aver-
sion behavior. IGT performance was also positively correlated
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Fig. 5 Simple regression slopes for the effect of CES-D scores (centered
at the mean) on IGT performance at the mean for EBR (p=.02), one
standard deviation above the mean for EBR (p<.01), and one standard
deviation below the mean for EBR (p>.10)

4 We also conducted correlations and a hierarchical regression for [(B+D)
– (A+C)], to examine sensitivity to loss frequency. Few selections from
Decks B+D compared to Decks A+C would indicate a preference for
infrequent losses, regardless of the magnitude. Although the correlation
between CES-D scores and the outcome variable was significant, r=−.23,
p=.02, the relationship between EBR and the outcome variable (p=.67)
was nonsignificant. Additionally, in the three-step hierarchical regression
with gender as a covariate, the CES-D and EBR single-order terms and
the CES-D×EBR interaction term also did not reveal any significant main
effects or interactions, p=.76. Therefore, we cannot attribute the results to
differences in loss frequency alone.

Table 2 Correlations between eye blink rate (EBR), depression scores
(CES-D), and Iowa Gambling Task deck selections

Deck A Deck B Deck C Deck D

EBR –.17 –.09 .07 .14

CES-D .02 –.28* .26* .08

* Significance at the p<.01 level
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with the loss aversion parameter (λ), r=.37, p<.01, suggesting
that loss-aversive behavior leads to better performance on the
IGT. IGT performance was also negatively related to the learn-
ing rate (ϕ) parameter, r=−.29, p< .01, and the shape value
function (α), r=−.40, p<.01. Interestingly, EBR was posi-
tively related to the gain increment parameter (εpos) of the
perseveration term, r=.25, p=.01, and negatively related to
the decay parameter (k), r=−.20, p=.02. These results dem-
onstrate that higher blink rates (i.e., higher D2 receptor densi-
ty) were associated with a tendency to persevere with an op-
tion that provided net gains, thereby avoiding the options with
net losses, and to discount expected values to a lesser extent
than individuals with lower striatal dopamine D2 receptor
density.

Discussion

Overall, depressive symptomatology was associated with en-
hanced decision-making performance on the Iowa Gambling
Task. This finding is consistent with previous research by
Smoski and colleagues (2008), whose work demonstrated per-
formance advantages on the IGT in clinically depressed
adults. Furthermore, on the basis of our correlational results,
we did not observe a direct relationship between EBR and
depressive symptoms. Instead, our results demonstrate that
the interactive relationship between increased depressive
symptoms and EBR influences decision-making. Thus, we
found that the interaction between depressive symptoms and
elevated D2 receptor density, as indexed by EBR, influences
decision-making, but striatal dopamine D2 receptor density
alone is not predictive of depressive symptoms. This contrasts
with previous results suggesting that depression may be asso-
ciated with reduced EBR (Berrios & Canagasabey, 1990;
Ebert et al., 1996). However, our sample varied from those
in previous studies, which may have contributed to the ob-
served differences in results. First, the sample in the Ebert and
colleagues study was composed of a small, male-only sample
of participants. Several studies (Dreisbach et al., 2005; C. S.
R. Li, 2006;Müller et al., 2007; Mulvihill et al., 1997), as well
as the present investigation, have demonstrated that females

have higher EBRs than males, on average. On the basis of
these gender differences in EBR and, presumably, the under-
lying neurocircuitry, the results of the present investigation
provide reliable findings with a large gender-representative
sample that sheds light on the relationship between EBR and
a broad range of depressive symptoms in both males and fe-
males. Moreover, because we observed a marginally signifi-
cant correlation between high EBR and advantageous deci-
sion-making, we cannot definitively draw conclusions about
the association between striatal dopamine D2 receptor avail-
ability and IGT performance. However, given the observed
positive relationship, our results lend some support to previ-
ous PET work showing that increased striatal dopamine re-
lease was correlated with advantageous IGT selections
(Linnet et al., 2011). Importantly, the results of this study
indicate that dopamine modifies the relationship between de-
pressive symptoms and decision-making, whereby individ-
uals who report more depressive symptoms and have higher
striatal dopamine D2 receptor density choose more advanta-
geous deck selections on the IGT, resulting in better decision-
making performance.

A more detailed examination of behavioral tendencies on
the IGT from computational modeling analyses revealed that
individuals with more depressive symptoms exhibited more
loss-aversive behavior. These results support research show-
ing that depressed individuals are more sensitive to losses and
excel on tasks that depend on loss minimization (Beevers
et al., 2013; Berenbaum & Oltmanns, 1992; Carver et al.,
2008; Pizzagalli et al., 2008; Taylor Tavares et al., 2008).
Additionally, individuals with high EBRs tended to persevere
in choosing options that offered net gains. In line with previ-
ous research demonstrating that striatal D2 receptors regulate
learning from negative feedback, the elevated D2 receptor
density in depressed individuals may allow them to effectively
keep track of options that offer net losses and avoid those
options, and thus perform better than individuals with lower
dopamine D2 receptor density.

An analysis of IGT performance by individual deck selec-
tions showed that depressive symptoms were related to de-
creased selection of Deck B and increased selection of Deck
C, which contrasts with previous work showing that depressed
individuals select Deck A more than controls, although this
previous study comprised individuals with anMDD diagnosis
(Cella et al., 2010). Moreover, we found that, specifically,
striatal dopamine influenced the selection of Decks A (high-
magnitude reward, frequent losses) and C (low-magnitude
reward, frequent losses) among individuals with more depres-
sive symptoms. Both Decks A and C gave frequent losses, but
DeckA offered high-magnitude gains and losses and yielded a
net loss over several trials, whereas Deck C provided low-
magnitude gains and losses and offered a net gain.
Therefore, although depressive symptoms may lead individ-
uals to attend to losses, our results suggest that increased

Table 3 Average Akaike information criterion (AIC) value for each
model

AIC

PVL delta 256.81 (34.73)

PVL decay 248.99 (38.26)

VPP model 242.27 (38.86)

WSLS model 251.54 (35.33)

Baseline model 266.41 (23.72)

Standard deviations are listed in parentheses.
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striatal dopamine D2 receptor availability in depressed indi-
viduals may also increase learning from loss/punishment fre-
quency, which in turn may enhance identification of the op-
tions with high-frequency loss options that offer net gains.
This corresponds with our results showing that individuals
with elevated D2 receptor availability and depressive symp-
toms chose Deck C more often and Deck A less frequently.
From the computational modeling and individual deck analy-
ses, we demonstrated that individuals with depressive symp-
toms and higher D2 receptor density are better able to learn
from frequent losses, thus avoiding options with net losses on
the IGT and choosing the advantageous options more often.

In contrast, the interaction between striatal dopamine, as
indexed by EBR, and depressive symptoms did not signifi-
cantly impact Deck B and D selections. The key distinctions
between Decks A and C and Decks B and Dwere the frequen-
cy and magnitude of losses. Decks A and C offered low-
magnitude but frequent losses, whereas Decks B and D
yielded high-magnitude, infrequent losses. Given that individ-
uals with high EBR and depressive symptoms chose Deck C
more and Deck A less often, we can conclude that increased
attention to the expected values of options with high-
frequency losses characterized their decision-making strate-
gies. Moreover, because we observed no differences in selec-
tions of Decks B and D, the options with large, infrequent
losses, it appears that striatal dopamine does not necessarily
modulate sensitivity to high-magnitude rare losses in individ-
uals with moderate depressed symptoms. This conclusion
varies from those of previous work suggesting that lower
spontaneous EBR is sensitive to learning from negative out-
comes (Slagter et al., 2015). Several important distinctions in
the procedures of Slagter et al.’s previous study and the pres-
ent research may account for these differences in results. First,
Slagter and colleagues used a probabilistic RL task that of-
fered “correct” or “incorrect” feedback, whereas the task in the
present study entailed positive and negative values that varied
in the magnitudes and frequencies of gains and losses and
provided fixed feedback. Thus, these studies varied in the
formats of positive and negative feedback as well as in task
complexity. We conclude that spontaneous EBR is sensitive to
learning from the frequency of negative outcomes, rather than
to differences in loss magnitude, and that elevated EBR in
depressed individuals leads to better learning of expected
values from high-frequency negative feedback. We note that
our observed association between spontaneous EBR and ad-
vantageous IGT selections was marginally significant, and the
central findings of this study are based on the interaction be-
tween EBR and depressive symptoms. Future work should
aim at investigating differences in D2 receptor functioning in
depressed individuals.

Although our findings are in line with those from several
previous studies, they diverge from others showing that de-
pression is associated with disadvantageous IGT performance

(Cella et al., 2010; Han et al., 2012; Must et al., 2006).
Distinctions between our findings and this previous work
may lie in the populations examined as well as in the measures
used to assess them.

Our sample included a group of college-aged students, but
previous work examining the influence of depression on IGT
performance had focused on middle-aged adults (Mage=35.45
in Cella et al., 2010; Mage=42.50 in Must et al., 2006; age
range=22–55 in Smoski et al., 2008) and adolescents (Han
et al., 2012). To our knowledge, it appears that the young adult
age group has largely been overlooked, which may contribute
to the disparities between our and other studies’ findings. It is
possible that age may moderate the relationship between de-
pression and IGT performance, and future research should aim
at examining this possibility.

Limitations

Although the results of our study provide evidence that striatal
dopamine D2 receptor density moderates the relationship be-
tween depressive symptoms and decisions, we note that some
caveats within the study may limit our findings and should be
addressed in future research. First, it is important to note that
several individuals reported levels of depression that were
within clinical range (≥16). Because clinical diagnostic histo-
ries of depression or other mental illnesses were not recorded,
it is possible that some individuals in our sample were being
treated for depression or other disorders. Therefore, future
studies should control for prior clinical diagnoses and the
use of psychotropic drugs, because these factors may influ-
ence dopaminergic functioning and alter spontaneous EBR.
Additionally, we did not control for sleep deprivation or recent
use of substances (i.e., alcohol or drugs) or stimulants (i.e.,
caffeine, nicotine), which could affect blink rates and might
limit the implications of our results. Further work using EOG
to examine depression and striatal dopamine should control
for sleep and substance use. Finally, it is important to note that
the depressive measure in our study considered a spectrum of
depressive symptoms that had occurred in the past 7 days.
Therefore, the findings of this study should be generalized to
individuals experiencing recent depressive symptoms, rather
than individuals who have been clinically diagnosed with
MDD.

Conclusion

On the basis of the findings of this study, we concluded that
examining how striatal dopamine interacts with such clinical
disorders as depression is critical to understanding behavior in
important cognitive tasks such as decision-making.
Individuals often make choices that have either positive or
negative consequences. For example, pursuing a desired
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career, creating business plans, and investing all depend on
making decisions under uncertainty that can lead to either
success or failure in the short and the long term. Although
depressed individuals characteristically have larger disparities
between their goals and expected outcomes (Ahrens, 1987),
elevated striatal dopamine D2 receptor density may allow de-
pressed individuals to appropriately respond to decision feed-
back. Heightened D2 receptor density may allow for better
responsiveness to feedback by updating goal representations,
and thus enhancing decision-making. Thus, striatal dopamine
may enhance motivation and the response to feedback in de-
pressed individuals, resulting in a decision-making style that
is characterized by identification and avoidance of options that
lead to net losses. Gaining a better understanding of how neu-
robiological differences can interact with clinical disorders to
affect cognition and behavior may ultimately advance the ef-
ficacy of the treatments that are available.

Author note This work was supported by NIA Grant Number
AG043425 to D.A.W.
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