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Abstract Although most decision research concerns choice
between simultaneously presented options, in many situations
options are encountered serially, and the decision is whether to
exploit an option or search for a better one. Such problems
have a rich history in animal foraging, but we know little
about the psychological processes involved. In particular, it
is unknown whether learning in these problems is supported
by the well-studied neurocomputational mechanisms involved
in more conventional tasks. We investigated how humans
learn in a foraging task, which requires deciding whether to
harvest a depleting resource or switch to a replenished one.
The optimal choice (given by the marginal value theorem;
MVT) requires comparing the immediate return from harvest-
ing to the opportunity cost of time, which is given by the long-
run average reward. In two experiments, we varied opportu-
nity cost across blocks, and subjects adjusted their behavior to
blockwise changes in environmental characteristics. We ex-
amined how subjects learned their choice strategies by com-
paring choice adjustments to a learning rule suggested by the
MVT (in which the opportunity cost threshold is estimated as
an average over previous rewards) and to the predominant
incremental-learning theory in neuroscience, temporal-differ-
ence learning (TD). Trial-by-trial decisions were explained
better by the MVT threshold-learning rule. These findings
expand on the foraging literature, which has focused on
steady-state behavior, by elucidating a computational

mechanism for learning in switching tasks that is distinct from
those used in traditional tasks, and suggest connections to
research on average reward rates in other domains of
neuroscience.
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Extensive research in neuroscience, psychology, and eco-
nomics has concerned choice between a number of simul-
taneously presented alternatives, as in economic lotteries,
Bbandit^ problems, and choice between concurrent sched-
ules in operant conditioning (Barraclough, Conroy, &
Lee, 2004; Baum, 1974; Behrens, Woolrich, Walton, &
Rushworth, 2007; Frank, Seeberger, & O’Reilly, 2004;
Hampton, Bossaerts, & O’Doherty, 2006; Hare, Schultz,
Camerer, O’Doherty, & Rangel, 2011; Herrnstein, 1961,
1991; Krajbich, Armel, & Rangel, 2010; Sugrue, Corrado,
& Newsome, 2004; Tom, Fox, Trepel, & Poldrack, 2007).
In such problems, attention has centered on a hypothe-
sized neural mechanism for learning an estimate of the
values of different opt ions (Schultz , Dayan, &
Montague, 1997). More recently, there has been increased
interest in neuroscience in a different class of decision
problems, in which alternatives are not compared simul-
taneously but are instead considered serially (Cain, Vul,
Clark, & Mitroff, 2012; Hayden, Pearson, & Platt, 2011;
Hutchinson, Wilke, & Todd, 2008; Jacobs & Hackenberg,
1996; Kolling, Behrens, Mars, & Rushworth, 2012;
Wikenheiser, Stephens, & Redish, 2013). The relevant
decision in this class of problems is whether to engage
with a current option or search for a better one. Such
switching-or-stopping problems arise in many real-world
settings, such as employment (whether to accept a job
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offer or candidate), Internet search, mate selection, and
foraging, and have a rich theoretical and experimental
history in ethology, ecology, and economics (Charnov,
1976; Freidin & Kacelnik, 2011; Kacelnik, 1984;
McCall, 1970; McNickle & Cahill, 2009; Smith &
Winterhalder, 1992; Stephens & Krebs, 1986).

Decisions of this sort pose a dilemma for the widely studied
neurocomputational mechanisms of choice, which have large-
ly centered on comparing estimated values across the avail-
able alternatives (Rangel, Camerer, & Montague, 2008;
Rustichini, 2009), as well as for the related psychological
mechanisms of matching and melioration in operant choice
(Baum, 1974; Herrnstein, 1961, 1991), which also require
balancing time among multiple alternatives. If the alternatives
are not directly known at choice time, to what alternative value
should the current option be compared when decidingwhether
to accept it or when to leave it? And how is this more nebulous
expected value or aspiration level learned, adjusted, or opti-
mized from previous experience? Predominant theories of
choice in the ethological foraging literature have suggested
quite different answers to this learning question (Bernstein,
Kacelnik, & Krebs, 1988; Charnov, 1976; McNamara &
Houston, 1985; Stephens & Krebs, 1986) than would be pro-
vided by standard neurocomputational theories of learning
(Sutton, 1988; Sutton & Barto, 1998).

The ethology literature has considered a class of stylized
switching tasks modeling foraging problems, in which an an-
imal encounters a series of depleting Bpatches^ of resources
and must decide whether to spend time exploiting the current
patch or instead allocate that time toward seeking a new,
replenished one. In such tasks, it has been proved (the mar-
ginal value theorem [MVT]; Charnov, 1976) that the reward-
rate-maximizing choice of whether to stay or search at each
step simply requires comparing the current option’s immediate
reward to a threshold given by the opportunity cost of the time
spent engaging with it. The opportunity cost of time is given
by the long-run average reward per timestep—a measure of
the overall environmental richness that is foregone by harvest-
ing. Whenever you expect to earn less than this quantity, you
would be better off doing something else. The MVT thus
poses an answer to the question of how to value the nebulous
alternative of searching: equate it with the overall average
reward rate.

Although the MVT concerns a steady-state choice pol-
icy, at the trial-by-trial level it suggests an extremely sim-
ple learning rule for deriving that policy by trial and error:
Estimate the long-run reward rate by a recency-weighted
average of received rewards over time, and use this quan-
tity as a dynamic aspiration level against which to accept
or reject the current option (Charnov, 1976; Krebs &
Inman, 1992; McNamara & Houston, 1985; Ollason,
1980; Stephens & Krebs, 1986). Variants of this simple
model have been suggested in the ethological foraging

literature, which has shown that many animals, such
as bees and starlings, use dynamically adjusting threshold
estimates to inform their search decisions (Cuthill,
Kacelnik, Krebs, Haccou, & Iwasa, 1990; Hodges, 1985;
Krebs & Inman, 1992; McNamara & Houston, 1985;
Ollason, 1980). Although, as we discuss below, this mod-
el is quite distinct from common theories of reinforcement
learning in the brain, it suggests close connections with a
number of other disjoint phenomena in neuroscience that
also turn on the average reward as the opportunity cost of
time, including response vigor (Beierholm et al., 2013;
Guitart-Masip, Beierholm, Dolan, Duzel, & Dayan, 2011;
Niv, Daw, & Dayan, 2006; Niv, Daw, Joel, & Dayan, 2007)
and temporal discounting (Cools, Nakamura, & Daw, 2011;
Daw & Touretzky, 2002; Kacelnik, 1997). These connections
relate the simple average reward rate learning in foraging to
the suggestion that this rate may be tracked and signaled by
tonic levels of the neuromodulator dopamine (Niv et al., 2006;
Niv et al., 2007).

An alternative hypothetical approach to learning in the for-
aging problem is to ignore its special structural features and
instead treat the problem of learning the value of searching for
a new option as being equivalent to any other case of action-
value learning. This requires extending the notion of an ac-
tion’s value to encompass the (nonimmediate) value of seek-
ing new, sequentially encountered options. Accordingly,
much research in neuroscience has focused on the temporal-
difference (TD) learning algorithm, an incremental update rule
that learns, via a series of recursive backups Bchaining^ re-
wards to earlier predictors, to estimate the cumulative future
reward associated with different actions in different circum-
stances (Sutton, 1988; Sutton & Barto, 1998).

There is considerable neural and behavioral support for TD
learning in humans and other animals, notably in recordings
from midbrain dopaminergic neurons, whose phasic re-
sponses quantitatively match the prediction error signal used
in TD learning (Houk, Adams, & Barto, 1995; Montague,
Dayan, & Sejnowski, 1996; Schultz et al., 1997). A key fea-
ture of the TD rule is that it assigns values to the different
options; however, unlike in the classic operant-conditioning
theories, this value is defined as the cumulative future return
following a choice. In this way, these models extend choice
among options to sequential decision tasks, in which current
choices affect future choices, and the optimal solution requires
considering the interdependent consequences of a series of
decisions on the cumulative reward ultimately achieved.
Importantly for the foraging task—since the value of
switching is the deferred consequences of harvesting at sub-
sequent patches—this feature allows for treating the nebulous
expected value of switching to an unknown option in the same
way that one learns the value of known options. TD learning,
applied to these problems, incrementally updates estimates of
the cumulative expected future reward associated with each

838 Cogn Affect Behav Neurosci (2015) 15:837–853



local stay or switch option and compares these estimates to
choose an action.

In this article, we investigate these hypothesized learn-
ing rules for serial decision problems by examining hu-
man behavior in two sequential patch-foraging experi-
ments. By varying the characteristics of the reward envi-
ronments (and thus the opportunity cost of time) across
blocks, we were able to compare these different accounts
of how organisms learn in such tasks. We started by con-
sidering the asymptotic strategies. These two learning ap-
proaches arrive at the same optimal policy (assuming
equivalent choices about parameters such as time
discounting or risk sensitivity), and thus make equivalent
predictions about asymptotic switching behavior in the
different environments. These predictions have been test-
ed extensively in animals (Charnov, 1976; Freidin &
Kacelnik, 2011; Kacelnik, 1984; McNickle & Cahill,
2009; Stephens & Krebs, 1986), and more rarely in
humans (Hutchinson et al., 2008; Jacobs & Hackenberg,
1996; Kolling et al., 2012). Next we examined the choice
adjustments visible in the trial-by-trial dynamics. Because
these approaches learn different decision variables (aver-
age one-step rewards vs. expected cumulative rewards) by
different learning rules, they predict different path dynam-
ics to reach the same asymptotic strategy.

For instance, according to the MVT strategy, an unusually
large reward (e.g., a lucky harvest) increases the estimated
average reward rate, and thus should directly and immediately
raise the leaving threshold, favoring exit. In contrast, TD
learns about the values of actions when they are chosen.
Here, the long-run value of exiting is estimated indirectly,
via chaining. When exit is chosen, the value of exiting is
updated according to the expected value of the new tree that
one encounters; this value was, in turn, learned from the re-
wards received from previous stay decisions. The effect of an
individual lucky harvest, according to this theory, thus first
affects the value of Bstay^—increasing the chance of staying
the next time that the same tree state is encountered—and only
later, through a series of further updates, propagates to in-
crease the value of exiting. Differences of this sort capture
the two distinct strategies for how the models search for the
optimal policy—by estimating the local cost of time versus the
long-run value of switching—and allowed us to compare the
two learning models (and some plausible variants) in terms of
how well they fit the trial-by-trial fluctuations in choice
behavior.

The results suggest that learning in patch-foraging prob-
lems implicates a distinct computational mechanism from
those that have been successful in more traditional choice
problems. This additional mechanism may be broadly appli-
cable to many decisions that can be framed as switching-or-
stopping problems and suggests links between choice and
other behavioral phenomena, such as response vigor.

Method

Subjects

A total of 52 healthy subjects (age 19–35; 33 female, 19 male)
participated in the study: 11 in Experiment 1A, 11 in
Experiment 1B, and 30 in Experiment 2. Subjects were paid
on the basis of their performance in the task ($15–$22). The
study was approved by New York University’s Committee on
Activities Involving Human Subjects.

A small number of the subjects showed a qualitatively dif-
ferent response strategy (nearly always choosing the Bharvest^
option, even down to zero apples) and were excluded from all
analyses. Specifically, we excluded subjects who had a mean
number of harvests per tree that fell more than 2.3 standard
deviations (99% quantile) above the group mean; this includ-
ed one subject from Experiment 1B and three subjects from
Experiment 2. Although these subjects were excluded out of
caution, their inclusion or exclusion did not appreciably affect
the learning analyses depicted in Fig. 3 below. One subject
was additionally excluded from Experiment 2, due to a prob-
lem with the instructions. Thus, all results reported here con-
cern 11, 10, and 26 subjects from Experiments 1A, 1B, and 2,
respectively.

Experimental design and task

Subjects performed a virtual patch-foraging task: a discrete-trial
adaptation of a class of tasks from the ecology literature
(Charnov, 1976; Cuthill et al., 1990; Hayden et al., 2011;
Stephens & Krebs, 1986). On each trial, subjects were present-
ed with a tree and had to decide whether to harvest it for apples
or go to a new tree (Fig. 1). Subjects indicated their choice by
one of two keypresses when prompted by a response cue. If
they decided to harvest the tree, they incurred a short harvest
time delay, during which the tree shook and the harvested ap-
ples were displayed (as an integer number of apple icons plus a
fractional apple icon for the remainder), followed by a response
cue. As the subject continued to harvest apples at the same tree,
the apples returned were exponentially depleted.

If the subjects chose to go to a new, replenished tree, they
incurred a travel time delay, during which the old tree faded
and moved off the screen while a new tree moved on to the
screen, followed by a response cue. Trees were never
revisited; each new tree had never been harvested, and its
starting quality was correlated with subsequent outcomes
(and thus signaled the quality of the overall tree) in
Experiment 2, and uncorrelated in Experiment 1. The total
time in the game was fixed, and each choice’s reaction time
was counted toward the ensuing harvest or travel delay.
(Subjects who responded too slowly were penalized by a
timeout lasting the length of a single harvest trial.) Thus, sub-
jects visited a different number of trees depending on their
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harvest decisions, but apart from timeouts (which occurred on
a negligible 1.7% of trials), they were able to influence the
reward rate only through their harvest or leave choices, not
their reaction times. This design ensured that the optimal
choice policy was invariant to the speed of responding.

Subjects experienced four foraging environments in a
counterbalanced block design. The decision-relevant parame-
ters that defined an environment were the harvest time, the
travel time, the rate at which apples were depleted, and the
tree quality distribution. By varying travel time and depletion
rate across blocks, we produced environments that differed in
terms of richness, with some having a higher achievable av-
erage reward rate than others.

The environment changed every 14 min, and this was sig-
naled by a change in background color and a short message.
Subjects were not instructed about the type of environment
they were entering or what aspects of the environment had
changed. They were also not told the form or rate of the de-
pletion or the exact duration of a foraging environment, but
they were informed that they would have fixed and equal
times in all four environments and that the experiment would
last approximately 1 h, that trees could never be revisited, that
new trees had never been harvested and were a priori identical,
and that harvesting a tree would tend to return fewer apples
over time. They were told that they would be paid a half cent
for every apple collected and that they should try to collect as
many apples as possible.

Each foraging environment was defined by the average
initial tree richness S0, the average depletion rate per harvest
κ, the travel time d, and the harvest time h. We denote the state
(current expected harvest) of a tree at trial i as si.

In Experiments 1A and 1B, each travel decision led to a
new tree that was initialized to the same value, si ¼ S0. Each
harvest decision depleted the tree’s state by a fixed

multiplicative decay κ, such that siþ1 ¼ κsi. The reward ri
returned for harvesting a tree with state si was distributed as
N si; si⋅σrð Þ. Across environments, the proportional variance
of the rewards was chosen such that the probability of the next
observed reward falling more than one depletion rate from the
current reward was 20% ½P ri < κsið Þ ¼ :2]. We varied travel
time d or depletion rate κ across blocks in Experiments 1A
and 1B, respectively, to create high- and low-average-reward-
rate foraging environments. Subjects encountered both envi-
ronments twice in alternation, with counterbalanced orders
ABAB or BABA.

The noise process in Experiment 2 was changed in order to
decorrelate a counting-based policy rule from one explicitly
based on observed rewards. In this setup, new trees were ini-
tialized with a state of variable quality, sieN S0;σsð Þ, and the

decay factor applied after each harvest was stochastically
drawn, κieN κ;σκð Þ. This created an effective distribution

of different-quality trees with different possible reward paths
through the trees. The reward for each harvest was a noiseless
reflection of the state of the tree, ri ¼ si. We crossed two
levels of depletion rate with two levels of travel time, resulting
in four environment types. The subjects encountered each
environment type once, and the orders were counterbalanced
in order to achieve approximately equal numbers of subjects
encountering short or long travel delays and steep and shallow
depletion rates in the first block.

The parameters for the experiments are shown in Table 1.

The marginal value theorem and optimal behavior

Charnov (1976) proved that the long-run reward-rate optimiz-
ing policy for this class of tasks is given by a simple threshold
rule. In the context of our discrete-trial version of the task, the

Fig. 1 Task display. Subjects foraged for apples in four 14-min virtual
patch-foraging environments. They were presented with a tree and had to
decide whether to harvest it for apples and incur a short harvest delay, or
move to a new tree and incur a longer travel delay. Harvests at a tree
earned apples, albeit at an exponentially decelerating rate. New trees were

drawn from a Gaussian distribution, while the environmental richness or
opportunity cost of time was varied across blocks by changing the travel
time and/or the apple depletion rate. The quality of the tree, depletion rate,
and richness of the environment were a priori unknown to the subject (see
the Method section for a detailed explanation)
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optimal policy would be to exit a tree when the expected
reward from one more harvest, κsi, dropped below the oppor-
tunity cost of the time that would be spent harvesting it. The
opportunity cost of harvesting is the time it takes to harvest, h,
times the long-run average reward rate, ρ. Note that in both
experiments, the state si of a tree was observable: In
Experiments 1A and 1B it depended only on the number of
times the current tree had been harvested (for a tree harvested
n times, si ¼ κn�1S0), and in Experiment 2 it was equal to the
received reward (si ¼ ri).

A sketch of the MVT proof for our setting would be to
consider the differential (average reward) Bellman equation
for the task (Puterman, 2009). The future value of exiting,
Q∗ si; exitð Þ ¼ Q∗ exitð Þ, is independent of the state; the value
of harvesting is

Q* si; harvestð Þ ¼ −ρh

þ Esiþ1jsi riþ1 þmaxQ*

aiþ1

siþ1; aiþ1ð Þ
" #

;

where siþ1 is the state produced by harvesting in state si. One
should exit whenQ∗ si; harvestð Þ < Q∗ exitð Þ. Substituting the
value of Q∗ si; harvestð Þ into this inequality and noting that if
exit is optimal at i (i.e., if the inequality is satisfied), then the
action aiþ1 that maximizes the continuation value Q∗ at the
next state would also be exit (because trees decay monotoni-
cally1), results in the following exit rule:

−ρhþ Esiþ1jsi riþ1½ � þ Q* exitð Þ < Q* exitð Þ;

which can be simplified to Esiþ1jsi riþ1½ � < ρh, where
Esiþ1jsi riþ1½ � ¼ κsi.

Dependent variable and threshold estimates

Gross, tree-level threshold estimates In Experiments 1A
and 1B, the trees’ state was discretized and the optimal deci-
sion rule could be expressed equivalently as a threshold on the
integral number of harvests or on the (real-valued but still
quantized) expected reward. To examine behavior and its op-
timality in units of reward, we estimated a subject’s leaving
threshold per block as the across-tree average number of ex-
pected apples at exit—that is, κn�1S0 —for a tree exited after
n harvests. The optimal threshold to which we compared these
blockwise estimates was given by the expected number of
apples received after n∗ harvests, where n∗ is the number of
harvests that would optimize the total average reward rate.

In Experiment 2, the trees’ state was not discretized, so we
estimated the subject’s exit threshold as the average of the last
two rewards ri and ri�1 received before an exit decision. These
rewards represent an upper and a lower bound on the (contin-
uously valued) threshold, respectively, since exiting at i implies
that κri is lower than the subject’s threshold, and not exiting in
the preceding decision implies that κri�1 is greater. The corre-
sponding optimal threshold is ρh=κ, since Ei riþ1½ � ¼ κsi.

For Fig. 2c and f in the Results (the scatterplots), to visu-
alize compliance with the MVT threshold condition κsi ¼ ρh,
we plotted for each subject and block the total number of
apples obtained in the block divided by the total length of
the block in periods h (ρh), against the expected next reward
at exit (κ times si, where the threshold si was taken as the
average of the rewards ri�1 and ri preceding each exit, further
averaged over all trees in the block, since the MVT was
expressed for both experiments in terms of the continuously
valued threshold).

Trial-by-trial choices We can also model the trial-by-trial
decisions using a logistic regression. In particular, we assumed

1 This was not strictly true in Experiment 2, in which there was a small
chance that κi > 1; however, this did not appreciably impact the optimal
policy.

Table 1 Parameter values defining the different environment types in Experiments 1A, 1B, and 2

Experimental Parameters Experiment 1A: Travel Manipulated Experiment 1B: Depletion Manipulated

Long Short Steep Shallow

h (s) 4.5 4.5 4.5 4.5

d (s) 13.5 4.5 9 9

κ, σκ .85, 0 .85, 0 .68, 0 .89, 0

S0, σS 10, 0 10, 0 10, 0 10, 0

σr .18 .18 .37 .13

Experiment 2: Travel × Depletion

Long–Steep Long–Shallow Short–Steep Short–Shallow

h (s) 3 3 3 3

d (s) 9 9 6 6

κ, σκ .88, .07 .94, .07 .88, .07 .94, .07

S0, σS 10, 1 10, 1 10, 1 10, 1

σr 0 0 0 0
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that subjects made noisy harvest-or-exit choices ai according
to a logistic choice rule of the form

P ai ¼ stayð Þ ¼ 1

1þ exp − ck þ β KkSi½ �ð Þð Þ
for some block-specific threshold (intercept) ck , trial- and
block-specific explanatory variable κksi, and logistic weight
(akin to a softmax inverse temperature) β. For a given envi-
ronment with an average reward rate ρk , the MVT predicts
that ck ¼ �βρkh, resulting in a stochastic (logistic decision
noise) version of the optimal policy. We estimated the param-
eters of this model (the thresholds ck and temperature β) for
each subject. The dependent variable was the binary choice ai
on each trial, and the explanatory variables were the reward
expected from harvesting on each trial, computed using the
block-specific depletion rate, κksi, and four block-specific in-
dicators corresponding to ck .

This model defines a likelihood function over the sequence
of choices, allowing us to use Bayesian model comparison to
contrast different explanatory variables corresponding to dif-
ferent rules for estimating the state si of the tree. In particular,
to compare counting- and reward-based strategies in
Experiment 2, we tested whether the choices were better fit
by assuming si ¼ κn�1

k S0 (the number of harvests, expressed
in units of reward) or si ¼ ri (the most recently received re-
ward, which was the actual state of the tree in Exp. 2).We used

the Bayesian information criterion (BIC) to estimate the mar-
ginal likelihood of each model given the data and submitted
these values to the spm_BMS function from SPM version 8 to
compute exceedance probabilities (Stephan, Penny,
Daunizeau, Moran, & Friston, 2009).

Learning

MVT learning model The optimal policy from the MVT is
to harvest whenever the immediate expected reward is greater
than the average reward: κsi≥ρh. Note that the appearance of
the fixed harvest time h and the expected depletion rate κ in
this equation are artifacts of the discrete-trial/discrete-time
structure of our task; they do not appear in the MVT for a
more classic continuous-time foraging task, like fishing, in
which the agent can exit a patch at any instant. Thus, to exe-
cute this policy exactly, the subject must have estimates of
both quantities. We assumed that the fixed harvest time h
(which was easily observed) was known, or equivalently that
subjects learned ρ in units of reward per harvest period, and
that subjects estimated κ with a simple within-block running
average of experienced depletion rates over adjacent harvests.

TheMVTmotivates a simple threshold-learningmodel that
requires specifying a learning rule for ρ and deciding whether
to harvest by comparing the two sides of the MVT equation,
κsi and ρh (Table 2). We implemented this comparison
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Fig. 2 Foraging behavior: Behavioral results compared to the optimal
(ideal observer) performance in the task. (Top) Experiment 1A (travel
time varied: L = long, S = short) and 1B (depletion rate varied: t = steep,
h = shallow). (Bottom) Experiment 2 (Lh = long–shallow, Lt = long–
steep, Sh = short–shallow, St = short–steep). (a, d) Example subject tree-
by-tree exit points over time in each experiment. Colors indicate different
environments, and gray lines indicate the optimal exit thresholds. (b, e)
Group performance by blocks. The heights of the gray bars indicate
optimal thresholds; open circles connected by gray lines are individual-

subject mean exit thresholds and adjustments across environments; and
filled diamonds are mean exit thresholds, with 95% confidence intervals.
(c, f) Colored curves show the achievable average rewards per period for
any given threshold policy in the different environments. Pluses are indi-
vidual subjects’ mean exit thresholds, and dashed lines indicate the mar-
ginal value theorem rule—points at which the average reward rate is
equal to the expected reward; these lines intersect the colored curves at
the optimal exit thresholds
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stochastically using a logistic (softmax) rule on the difference
κsi � ρh, with inverse temperature β and intercept c. The
decision maker’s trial-by-trial estimate of ρ was constructed
by a standard delta rule with learning rate α, taking into ac-
count the time τ i ¼ h or d of each choice step:

ρi ¼ 1−að Þτ i ri
τ i

þ 1− 1−að Þτ ið Þρi−1 :

At the beginning of the experiment, the depletion rate was
initialized to 1 and the average reward rate ρinit to the average
across the experiments of the reward rates attained by an ideal
observer. Fitting the initial condition as an additional free pa-
rameter, in both the MVTand TDmodels, did not appreciably
affect the results; these results are not shown. In subsequent
environments, the initial average reward rate estimate was
taken as the last ρ estimate in the previous environment.

TD learning model The TD algorithm learns the expected
future discounted reward of continuing at each state Q
s; harvestð Þ and a value of exiting Q s; exitð Þ ¼ Q exitð Þ that
is not state-specific (Table 3). (Note that maintaining separate,
state-specific values for exiting would only slow the learning
of the task and accentuate the underperformance of TD.
Furthermore, this assumption seems natural since subjects
were told they could exit a tree on any trial and that this would
lead to a new, randomly drawn tree.) The choice is taken to be
logistic (softmax) in the difference between these values, with
inverse temperature β and intercept c. The action values are
incrementally updated by temporal-difference learning.

This model has four parameters—the same three as MVT,
and an additional discount factor γ, which ensures that the
infinite horizon cumulative future rewards are finite. For states
si, we used the actual state of the tree as defined by the exper-
iment specifications. Thus, the state si was discrete in
Experiment 1 and was given by the number n of previous
harvests at the current tree, whereas the state in Experiment 2
was the most recently observed reward ri, a continuous

variable. In order to implement the update rule in this case,
we approximated the value function by a linear combination
of functions that were constant over predefined bins. To match
the discretization of the state to the true, exponentially depleting
dynamics of the trees, the bins were logarithmically spaced and
the width was chosen so that on average, each subsequent
harvest would fall in a subsequent bin. More precisely, if b jand
b jþ1 are the lower and upper bounds of the j th bin, respective-
ly, and κ is the average depletion across the environments, the
bins were spaced according to log bjþ1

� �� log b j

� � ¼ �logκ.
At the beginning of the experiment, the starting values for Q
s; harvestð Þ and Q exitð Þ were initialized with a constant for all
s, equal to the discounted sum of the rewards associated with
earning ρinit on average: ρinit

1�γ. This starts the algorithm in the

approximate range of the correct Q values, given a discount
factor of γ and the same initial guess for the long-run reward
rate as the MVT learning algorithm. In subsequent environ-
ments, the Q values are initialized to the Q values at the end
of the previous block.

Note that both models were given explicit knowledge of
the delays h; tð Þ.

We fit the free parameters to each subject’s choices sepa-
rately using maximum likelihood, and used these likelihoods
to compute per-subject BIC scores as a measure of model fit.
We used spm_BMS to compare the models.

Variants of TD In addition to the standard TD learning algo-
rithm, we also compared the performance of two TD variants:
TD λð Þ, which improves the efficiency of the algorithm by
allowing faster back-propagation, and R-learning, an
undiscounted, average-reward reinforcement learning model
(Sutton, 1998; Schwartz, 1993). TD λð Þ allows learning to
immediately back-propagate not just one step, but through
many preceding states by the introduction of an exponentially
decaying eligibility trace (Table 4). The decay rate of the eli-
gibility trace is governed by an additional free parameter λ,
where λ ¼ 0 is the one-step backup of the standard TD model
presented above.

R-learning aims to optimize the average reward per time
step rather than the cumulative discounted reward, and so
asymptotically implements the same strategy as MVT. It pro-
duces this behavior in a different manner, however, because it

Table 2 Marginal value theorem learning update rule

Parameters: α, c, β

P(ai = harvest) = 1/{1 + exp[–c – β(κksi– ρih)]}

δi ← ri/τi – ρi

ρi+1 ← ρiþ 1− 1−αð Þτ i½ � ⋅ δi

Table 3 Temporal-difference (TD) learning update rule

Parameters: α, γ, c, β

P(ai = harvest) = 1/(1 + exp{–c – β[Qi(si, harvest) – Qi(exit)]})

Di ~ Bernoulli[P(ai)]

δi ← ri+ γτ i [Di • Qi(si) + (1 – Di) • Qi(exit)] – Qi(si–1, ai–1)

Qi(si–1, ai–1) ← Qi+1(si–1, ai–1) + α • δi

Table 4 TD(λ) update rule

Parameters: α1, λ, γ, c, β

P(ai = harvest) = 1/(1 + exp{–c – β[Qi(si, harvest) – Qi(exit)]})

Di ~ Bernoulli [P(ai)]

δi ← ri+ γτ i [Di • Qi(si) + (1 – Di) • Qi(exit)] – Qi(si–1, ai–1)

Ei(si, ai) ← 1

∀s, a Ei+1(s,a) ← Ei(s,a) + λ • γτ i Ei(s,a)

∀s, a Qi+1(s,a) ← Qi(s,a) + α1 • Ei(s,a) • δi
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uses a TD algorithm to learn a different notion of the state–
action value appropriate to this goal: the expected
undiscounted cumulative average-adjusted reward. In this
model, rewards are measured relative to the long-run average
reward per timestep, a stateless quantity that is separately
learned according to an additional learning rate parameter
α2. The full R-learning algorithm is presented in Table 5.

In both of these variants, the state-space and initialization
were the same as in standard TD. In R-learning, the average
reward term was initialized as in MVT learning.

Overharvesting

The intercept in the learning models above can capture a fixed
policy bias: early or late exiting relative to the optimal exit
threshold. However, plausible factors that might underlie the
observed tendency toward overharvesting could include tem-
poral discounting and decreasing marginal utility for money
(one way of parameterizing risk-sensitive preferences).
Decreasing marginal utility (sublinear increases in the value
of each additional unit of money that produce risk-averse
choices in gambling tasks; Bernoulli, 1954) results in in-
creased harvesting relative to a linear utility, since the larger
rewards at a replenished tree are worth proportionally less. To
test whether decreasing marginal utility captured this tenden-
cy, we fitted the MVT model with a power-function utility on
rewards ½U rið Þ ¼ rηi ], which affected both the expected next
reward and the average reward rate, and looked at the effect
this had on the intercept term estimate using an across-subjects
t test. To examine discounting, we were constrained to the TD
algorithm, since there is no discounted equivalent of the MVT
model. We again ran an across-subjects t test on the intercept
estimate to test whether the deviations from optimal were fully
captured by the discount parameter.

Results

Across two experiments, we presented human subjects (n =
47) with foraging environments that varied in richness, as
measured by the maximally achievable average reward rate,
across a series of blocks (see Fig. 1 and the Methods section).
At each step of the task, subjects were presented with apples

earned from the last harvest at the current tree and had to
decide whether to continue harvesting or switch to a new,
randomly drawn tree. Harvesting caused trees to deplete—
each successive harvest earned fewer apples, on average—
but traveling to a new, replenished tree cost additional time.
Apples were converted to money at the end of the experiment.

Environmental richness was manipulated by changing the
travel delay between trees (Exp. 1A), the tree depletion rate
(Exp. 1B), or both factors simultaneously (Exp. 2). All else
held constant, a longer travel delay or a steeper depletion rate
reduces the rate at which apples can be earned. This reduces
the opportunity cost of time spent harvesting and leads an
ideal forager to harvest a tree down to a lower number of
apples. Accordingly, the MVT states that the optimal policy
for this class of tasks is to abandon a tree when the expected
marginal intake from one more harvest falls below the overall
average reward rate of the environment (see the Methods
section; Charnov, 1976; Stephens & Krebs, 1986). The char-
acteristics and richness of the environment were a priori un-
known by the subject and had to be learned through
experience.

Experiment 1

Each subject completed four 14-min task blocks that alternat-
ed between high and low travel delay (Exp. 1A, n = 11) or
depletion rate (Exp. 1B, n = 10), in counterbalanced order. The
number of apples earned for each harvest was drawn random-
ly around an underlying average, which decayed exponential-
ly with harvests in a manner that was deterministic and iden-
tical across trees. Thus, the expected reward for a harvest was
a function of the number of times the tree had already been
harvested. Subjects made an average of 611 harvest-or-exit
decisions and visited an average of 103 trees.

First, we asked whether subjects’ overall strategies were
modulated by environmental richness in the manner predicted
by the optimal analysis. The optimal rule compares the ex-
pected reward for a harvest to a threshold; in Experiments 1A
and 1B, the expected reward from harvesting was a function
of the number of times the current tree had been harvested.
Therefore, as an indicator of subjects’ exit thresholds, we con-
sidered the number of times that each tree had been harvested
and expressed this quantity in units of the equivalent expected
apple reward at the final harvest (Fig. 2b). Comparing the
empirical thresholds to the values predicted under optimal
switching, we found a tendency across all conditions to har-
vest longer (i.e., to exhibit a lower exit threshold) than was
optimal, but this trend was only significant in the long-travel-
time condition (t9 ¼ �2:3; p ¼ :045; all other environments,
p > :1). Next, comparing thresholds within subjects and
across blocks to examine whether, notwithstanding any
over- or underharvesting, subjects adjusted to changing re-
ward rates in the optimally predicted direction, we found that

Table 5 R-learning update rule

Parameters: α1, α2, γ, c, β

P(ai = harvest) = 1/(1 + exp{–c – β[Qi(si, harvest) – Qi(exit)]})

Di ~ Bernoulli[P(ai)]

δi ← ri– ρi • τi + Di • Qi(si, havest) + (1 – Di) • Qi(exit) – Qi(si–1, ai–1)

Qi(si–1, ai–1) ← Qi+1(si–1, ai–1) + α1 • δi
ρi+1 ← ρi + α2 • δi
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subjects indeed harvested to lower thresholds in lower-
quality environments (paired t tests across subjects:
t10 ¼ 5:7; p < :001, for travel delay; t9 ¼ 5:1; p < :001,
for depletion), with almost every subject adjusting in the pre-
dicted direction. These results suggest that subjects behaved in
a way qualitatively consistent with the MVT, though poten-
tially with a slight bias to overstay.

Another way to visualize compliance with the optimal pol-
icy is to consider overall earnings. The points in Fig. 2c. show
the obtained average reward for each subject and environment
pair plotted against the empirical average exit thresholds. The
dotted line shows the MVT prediction (where the threshold
equals the average earnings), and the step functions show the
achievable average rewards per period as a function of differ-
ent possible fixed exit thresholds in each environment.
Subjects clustered around the MVT threshold, but with a ten-
dency to lie to the left (reflecting overharvesting) and below
the reward expected if the mean exit strategy had been exe-
cuted consistently (implying variation in the strategy over the
block, which is apparent in the individual-subject data shown
in Fig. 2a). Accordingly, subjects earned on average $17.9 ±
$1.4 (mean ± SD), which represents a 10% loss on optimal
earnings. In addition to comparing earnings to an upper bound
given by the optimal strategy, it can be useful to situate them
relative to a lower benchmark, given by random stay-or-exit
responding according to a coin flip at each decision. To be
conservative, we defined this Brandom^ policy generously by
optimizing the weight on the coin to maximize earnings in
each environment. The best constant-hazard-rate policy devi-
ated from optimal by –33%.

Learning and trial-by-trial choices

Next, rather than considering overall blockwise measures of
thresholds and earnings, we examined trial-by-trial choices
using models to explain the series of stay-or-exit decisions
in terms of time series of candidate decision variables. Since
subjects were not explicitly informed about the parameters of
the environments, their ability to systematically adjust their
exit thresholds between environments must reflect learning.
Choice adjustments due to learning might also help explain
the substantial within-block dynamics of the exit strategies (as
in the individual raw data shown in Fig. 2a). We compared the
fits of two qualitatively different candidate models.

The first was a learning rule that has been suggested in the
foraging literature and is based directly on the MVT policy: a
stateless model in which subjects simply estimate the long-run
average reward per timestep by taking a recency-weighted av-
erage over observed rewards. An exit decision occurs when the
expected reward for harvesting drops below this opportunity
cost estimate (Krebs & Inman, 1992; McNamara & Houston,
1985). An alternative model, theQ-learning algorithm, instead
learns a state–action value function, which represents the

cumulative future expected value of harvesting or leaving a tree
at each state (where the state is given by the number of previous
harvests on a tree). These action values are compared in each
state to reach a decision (Watkins, 1989).

Although TDmethods like Q learning are more general and
learn the full value function, which is required for optimal
performance in many sequential decision tasks, MVT learns
a summary variable that is sufficient for optimal choice in this
class of tasks (see the Method section). Learning these differ-
ent decision variables results in different trial-by-trial choice
adjustments. Generally, the two algorithms differ in how indi-
vidual experiences affect future choices over the entire state
space of the task.Whereas theMVTupdates a single threshold
(and the behavioral policy) at each observation, TD maintains
a set of state–action values specifying the appropriate behav-
ior for each step in the tree. These values are more difficult to
learn, both because there are many of them and because they
represent a prediction about long-run cumulative future re-
ward, which is updated only locally via a process of chaining
or Bbootstrapping^ received rewards and value estimates
across a series of successively encountered states (Sutton,
1988; Sutton & Barto, 1998).

Because both models specify different, complex trial-by-
trial relationships between received rewards and subsequent
choices, we used model comparison to determine which pro-
vided a better fit to the data. We computed the two learning
models’ fits to each subject’s choice data using the BIC, hav-
ing optimized the free parameters using maximum likelihood,
and then compared the fits at the population level using
Stephan et al.’s (2009) group model comparison technique.
This model comparison method allows for the possibility that
the true model varies across subjects and estimates the propor-
tion of subjects in the population expressing either model.
This analysis showed overwhelming evidence in favor of the
simpler MVT learning rule (Fig. 3, left; with an expected
frequency of .83 and an exceedance probability, or posterior
probability, that it was the more commonmodel of .999). Note
that the MVT model optimizes undiscounted reward rate,
whereas TD optimizes cumulative exponentially discounted
reward with a free discount rate. However, the model fit dif-
ference was not simply due to the penalty for the inclusion of
the additional discount rate parameter in TD, since the BIC
penalty for a single parameter is small with respect to the
differences in model fit. Neglecting the penalty for the extra
parameter still produced an exceedance probability of .999.
The model differences remained significant even when the
likelihood was computed without the initial 20% of observa-
tions, suggesting that the differences were not due to starting
values (exceedence probability of .999), and when removing
the first half of each block (exceedence probability of .993),
suggesting that MVT does better not only at the environment
transitions, but also at explaining the within-environment
dynamics.
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In order to assess the robustness of our results, we also
compared the MVT threshold learning model to two other
variants of TD learning. First, motivated by the possibility that
TD’s poor performance was due to slow learning over the state
space, we considered TD(λ), a generalization of the standard
TD model that allows for faster, nonlocal back-propagation of
information across multiple states. Second, we considered R-
learning (Schwartz, 1993), an average-reward reinforcement-
learning algorithm that updates state–action values relative to
a stateless average-reward term that is updated at every step.
We reasoned that R-learning might perform more similarly to
the MVT rule, because it optimizes the same objective as
MVT and does so, in part, by learning an additional average-
reward rate term similar to the MVT’s decision variable.
These analyses again showed overwhelming evidence in favor
of the simpler MVT learning rule as compared to TD(λ) (ex-
pected frequency of .78 and exceedence probability of .997)
and R-learning (expected frequency of .87 and exceedence
probability of .999), suggesting that the simple, stateless,
threshold-learning rule outperforms a broad class of TD
models in this task.

Overharvesting

The above learning models each contain an intercept parame-
ter that encodes any constant bias toward or away from har-
vesting, in addition to the effect of the learned decision vari-
ables. A tendency toward overharvesting, which was notice-
able but for the most part nonsignificant in the cruder
blockwise analyses above, should be visible here as a negative
estimate for the intercept term in the MVT learning model.
Indeed, the estimated intercept was significantly negative in
the MVT model (t20 ¼ �4:87; p < :001, across subjects for
MVT), demonstrating a bias toward overharvesting.

Several factors might jointly contribute to this
overharvesting tendency. First, any persistent behavioral

variability or deviations from consistently executing the opti-
mal policy would reduce the obtained average reward and
imply a lower steady-state opportunity cost of time and exit
threshold. In other words, the extent to which a subject’s ac-
tual long-run earnings fall below the rewards expected for
consistently executing a strategy (the stepped functions in
Fig. 2c) implies variability around her average strategy. Her
best response to the resulting effective reward environment
would be to aim to harvest longer than would otherwise be
optimal (dotted line). Two such sources of variability are al-
ready accounted for in the learning model estimated above:
trial-to-trial threshold variation (due to learning) and addition-
al decision stochasticity (captured by the logistic choice rule).
The finding that the intercept is still significantly negative
demonstrates residual overharvesting, even after taking these
sources of variability into account.

TheMVT-predicted policymaximizes reward rate, but sub-
jects may differ from this objective in their preferences over
delay (time discount factor, as assumed in TD) or amount (a
nonlinear marginal utility of money, a standard way to param-
eterize risk-sensitive preferences; Bernoulli, 1954), which
would also contribute to overharvesting. For a subject with
decreasing marginal utility (i.e., one for whom $10 was worth
less than twice $5, which in expected utility is functionally
equivalent to risk aversion), exiting later would be predicted
because the marginal value of a replenished tree would be
reduced. The reverse pattern would be predicted for subjects
with increasing marginal utility (i.e., risk-seeking prefer-
ences). We reestimated the MVT model with an additional
risk sensitivity parameter (i.e., curvature in the function map-
ping money to utility). With this parameter, the intercept was
no longer significant (t20 ¼ �1:33; p ¼ :2, across subjects),
suggesting that overharvesting was substantially accounted
for by risk aversion.

Additionally, a decision-maker who discounts future re-
wards would exit a patch later, because the value of leaving

MVT better

TD better

Fig. 3 Model comparison: Approximate log Bayes factors (difference in Bayesian information criterion scores) favoringmarginal value theorem (MVT)
versus temporal-difference (TD) learning models, shown for each subject separately for Experiments 1A and 1B (left) and 2 (right)
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would be discounted by the travel delay, predicting discount-
dependent overharvesting. Indeed, the TD model optimized
cumulative exponentially discounted reward and included a
free parameter controlling the sharpness of discounting. The
intercept in the TD model was not significantly different from
zero (t20 ¼ �1:03; p ¼ :317, across subjects), indicating that
exponential discounting can, on average, also account for
overharvesting. (However, note that some individual subjects
underharvest. Underharvesting cannot be explained by con-
ventional time discounting, though it could in principle be
taken as a preference for later rewards—for example,
Bsavoring^ delays. This is empirically unusual and also com-
putationally problematic, since the infinite horizon value func-
tion then diverges. Such behavior can be explained more
straightforwardly by convex utility curvature, which is less
exotic.)

Experiment 2

A disadvantage of the design in Experiment 1 was that, be-
cause the expected reward decayed deterministically with har-
vests, the reward-thresholding strategy predicted by the MVT
was equivalent to a counting strategy: harvesting a fixed num-
ber of times. Therefore, we conducted an additional study, in
which the initial qualities of new trees and the rates of deple-
tion following each harvest were drawn randomly. These fea-
tures would require the ideal agent to monitor the obtained
rewards rather than simply to count harvests. In this version,
the obtained rewards at each step noiselessly reflected the
current state of the tree, and the expected reward from harvest-
ing could thus be constructed by depleting the last observed
reward. The optimal policy thus involved directly comparing
the obtained reward to a threshold at which a tree should be
exited, regardless of its starting quality or the number of pre-
ceding harvests.

In this experiment, we simultaneously varied both deple-
tion rate and travel time within subjects, crossing two levels of
each to create four environment types with three levels of
achievable average reward rates: one high, two medium, and
one low. Subjects made an average of 913 harvest-or-exit
decisions and visited an average of 95 trees over the
experiment.

The results of Experiment 2 echoed those of Experiment 1
and verified that the behaviors studied there extended to this
more complex setting. Exit thresholds were estimated as the
averages of rewards obtained before and at each exit in each
condition, since these rewards should bracket the true thresh-
old (Fig. 2e). These were significantly lower than optimal for
three of the four conditions (< 3:6; ps < :002; with a trend in
the long–steep block, t25 ¼ �1:7; p ¼ :09), again demon-
strating an overharvesting tendency. Despite this tendency,
most individual subjects adjusted their thresholds in the ex-
pected direction in response to blockwise changes in the

average reward rate, a consistency that was reflected in a re-
peated measures analysis of variance as main effects of
depletion, F 1; 25ð Þ ¼ 82; p < :001, and travel time, F
1; 25ð Þ ¼ 42:1; p < :001.
A quantitative analysis of the deviations from optimal

showed that subjects earned on average $18.7 ± $1.4 (mean
± SD), which represents a 9% loss relative to optimal earnings.
For comparison, the best constant-hazard-rate policy, opti-
mized to each environment, deviated from optimal earnings
by –25%. When earnings were plotted against thresholds,
strategies again clustered around the MVT’s predictions
(Fig. 2f), albeit with a tendency to fall to the left of the line,
indicating overharvesting.

Trial-by-trial choices

Unlike Experiment 1, this experiment allowed us to distin-
guish between an exit policy based on thresholding observed
rewards, as the MVT predicts, and a simple count of the num-
ber of times that a tree had been harvested. We investigated
this question by fitting two logistic regression models to sub-
jects’ trial-by-trial stay-or-exit decisions, differing only in
whether the main explanatory variable was the preceding re-
ward or the preceding number of harvests. The analysis
showed strong evidence in favor of the optimal reward-
based strategy (Stephan et al.’s, 2009, Bayesian model selec-
tion: expected frequency .93, exceedance probability .999).

Learning

Finally, individual behavioral traces again demonstrate rapid
threshold adjustments between and within environments
(Fig. 2d). We compared the TD and MVT incremental-
learning model fits to the trial-by-trial decisions and found
evidence in favor of the simpler MVT learning rule (Fig. 3,
right; expected frequency .85, exceedance probability .999).
Robustness checks showed that the MVT model was still fa-
vored, even without including the initial 20% of observations,
suggesting that the differences were not due to starting values
(exceedence probability of .823), and when removing the first
half of each block, suggesting that MVT does better not only
at the environment transitions, but also at explaining the
within-environment dynamics (exceedence probability of
.999).

A comparison betweenMVTand the two TD variants men-
tioned above suggests that this simple threshold-learning
model better describes decisions in this type of task than a
broad class of reinforcement-learning models. A Bayesian
model comparison showed an expected frequency of .93 and
an exceedence probability of .999 in favor of MVT over R-
learning, and an expected frequency of .73 and exceedence
probability of .9941 when compared to TD(λ).
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Overharvesting

The results of Experiment 2 again revealed a tendency to
overharvest relative to the reward-maximizing policy. This
was reflected in the MVT learning model fits, which included
a negative intercept estimate (bias toward harvesting) that was
significant across subjects (t20 ¼ �7:48; p < :001). This re-
sult again suggests that the tendency toward overharvesting
was not fully captured by decision noise or threshold variation
(due to learning).We again investigated whether this tendency
could be explained by delay discounting or decreasing mar-
ginal utility (e.g., risk sensitivity) by looking at the effects of
these additional preference parameters in TD andMVT, respec-
tively. As in Experiment 1, the TD model incorporated a free
time-discounting parameter, but in this case still had a signifi-
cantly negative intercept, suggesting that time discounting can-
not by itself explain the result (t20 ¼ �4:47; p < :001, across
subjects). However, when we added an additional parameter
controlling risk sensitivity (value curvature) to theMVTmodel,
the mean intercept was close to zero and no longer significant
across subjects (t20 ¼ �1:71; p ¼ :10), suggesting that
overharvesting may be substantially accounted for by risk
sensitivity.

Discussion

Following on a long tradition of work in neuroscience and
psychology about decision making in tasks in which multiple
options are presented simultaneously, there has been a recent
interest in a different class of tasks, largely inspired by the
ethological foraging literature: switching-or-stopping tasks,
in which options are presented serially and the choice is
whether to accept the current option or search for a better
one (Cain et al., 2012; Hayden et al., 2011; Hutchinson
et al., 2008; Jacobs & Hackenberg, 1996; Kolling et al.,
2012; Wikenheiser et al., 2013). Although most previous
work in this class of foraging task has considered steady-
state choices, these tasks pose a particularly interesting prob-
lem for learning, which we consider here: how to learn the
(deferred and implicit) value of the alternative option.

Consistent with a body of ethological work in animals
(Charnov, 1976; Freidin & Kacelnik, 2011; Hayden et al.,
2011; Kacelnik, 1984; McNickle & Cahill, 2009; Stephens
& Krebs, 1986) and a smaller literature in humans
(Hutchinson et al., 2008; Jacobs & Hackenberg, 1996;
Kolling et al., 2012; McCall, 1970; Smith & Winterhalder,
1992), we showed across two experiments that humans con-
sistently adjust their foraging choices to manipulations of the
richness of the environment in the directions predicted by the
optimal analysis. However, both experiments revealed a ten-
dency to harvest a patch longer than would be optimal for
maximizing reward rate, which is consistent with previous

findings in patch-foraging experiments (Hutchinson et al.,
2008). In our data, this apparent suboptimality disappeared if
we assumed that subjects optimized a currency with a nonlin-
ear marginal utility for money (e.g., risk sensitivity). Thus, the
choices are consistent with the MVT, when stated in terms of
utility, rather than the raw monetary amount. A less satisfac-
tory explanation for overharvesting (e.g., because it failed to
fully account for the overharvesting in Exp. 2) is that subjects
discounted delayed rewards. Had we needed to appeal to time
discounting, this would have been harder to reconcile with the
MVT, which concerns the undiscounted reward rate. A more
direct test of either explanation would require assessing risk
sensitivity (or time discounting) independently, in order to
investigate whether those estimates predict a subject’s
overharvesting. It is also possible that many factors may con-
tribute jointly to this tendency.

With respect to learning, subjects’ trial-by-trial choice ad-
justments are consistent with a simple learning rule in which
they track the average reward per timestep and use it as a
threshold or aspiration level against which to compare their
immediate gains (Krebs & Inman, 1992; McNamara &
Houston, 1985). This learning rule is notably different from
the reinforcement-learning rules more often studied in neuro-
science, which solve sequential decision tasks by estimating
cumulative long-term rewards (Houk et al., 1995; Montague
et al., 1996; Schultz et al., 1997).

In analyzing learning, we relied on formal model compar-
ison to examine which of the two learning accounts better
explained the observed relationship between outcomes and
choices. This was necessitated because the correlated structure
of rewards over time in the task—especially in Experiment
2—made it difficult to find a simple, local feature of the re-
ward–choice relationship (such as the relationship between
individual rewards and subsequent exits) that would unambig-
uously capture the qualitative difference between the models.
Thus, we compared how well each model explained the full
joint probability of all the choices, conditional on all the re-
wards. However, the disadvantages of this approach,
interpretationally, are that it is relatively opaque to what fea-
tures of the data drive the difference in model fit and that the
conclusion is also specific to the particular models tested. The
possibility therefore exists that some variant model not ex-
plored, and in particular some version of TD, might outper-
form the models considered here. We addressed this problem
by considering what we take to be a canonical representative
of the set of TD models, further improved with task-specific
knowledge (e.g., a stateless value of exiting), and by addition-
ally considering other TD variants, which together represent a
reasonably large class of TD models. The magnitudes of the
differences in fit and their robustness to these algorithmic
variations suggest that MVT learning is a better model of
subjects’ trial-by-trial decisions than are a broad range of plau-
sible TD models.
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One important dimension along which there are many pos-
sible variants of TD learning is how the algorithm construes
the space of possible states of the task. This was less of an
issue in Experiment 1, in which the objective state space of the
task was small, discrete, and well-defined and did not require
any generalizing function approximator. Two other TD vari-
ants that we considered were TD(λ), which increases the effi-
ciency of the algorithm by introducing eligibility traces that
allow for faster back-propagation of information across states
(making the particular representation of states less important),
and R-learning, a TD algorithm that learns state–action values
relative to an average-reward term equivalent to that used in
the MVT. Since this model maximizes the same currency as
MVT learning, it rules out the possibility that the difference in
fits betweenMVTand the other TD variants was driven by the
slightly different objective (cumulative discounted reward)
optimized by the latter.

Another difference between the models is that the MVT
rule, as we have simulated it, relies on learning the depletion
rate of the trees, and (unlike TD) is given the knowledge that
this process takes an exponential form.2 Although it is difficult
to see how to imbue TD with equivalent knowledge (since its
action values are derived in a complex way from the one-step
rewards and continuation values), we believe that this disad-
vantage does not explain away the difference in fits between
the models. In particular, although we included this factor in
the MVT for consistency with the ideal observer (where this
term occurs as an algebraic infelicity, owing to the discrete
trial setup of our task), leaving it out altogether (i.e., omitting
κ) from the modeledMVTchoice rule, and thus removing any
built-in knowledge about the form of the depletion, results
only in a slight decision bias relative to optimality and does
not change the dynamics of the algorithm. Accordingly, re-
peating the model comparison analyses omitting the depletion
rate term from the decision rule would not appreciably change
the model comparison (these results are not presented).

Our results suggest an important role for the average re-
ward rate in guiding choice in serial switching-or-stopping
tasks. These results tie decision-making in this class of tasks
to a diverse set of behavioral phenomena and neural mecha-
nisms that have been previously associated with average re-
ward rates. Notably, the average reward rate has arisen in the
analysis of a number of other seemingly disparate behaviors,
including behavioral vigor, risk sensitivity, labor–leisure
trade-offs, self-control, and time discounting (Cools et al.,
2011; Daw & Touretzky, 2002; Gallistel & Gibbon, 2000;
Guitart-Masip et al., 2011; Kacelnik, 1997; Keramati,
Dezfouli, & Piray, 2011; Kurzban, Duckworth, Kable, &
Myers, 2012; Niv et al., 2006; Niv et al., 2007; Niyogi et al.,

2014). The notion of the average reward rate as the opportu-
nity cost of time links these seemingly disparate domains: It
indicates, for instance, the potential reward foregone by be-
having less vigorously, by waiting for a delayed reward in a
discounting task, or, in the case of foraging, by spending more
time with the current option rather than searching for a better
one (Niv et al., 2006; Niv et al., 2007). A very similar com-
parison—of current rewards to the long-run average—has also
been suggested to govern the explore–exploit trade-off
(Aston-Jones & Cohen, 2005; Gilzenrat, Nieuwenhuis,
Jepma, & Cohen, 2010). Indeed, in the case of vigor, it has
been shown that trial-by-trial fluctuations in behavioral vigor,
as assessed by reaction times, are consistent with modulation
by an ongoing estimation of the average reward rate
(Beierholm et al., 2013; Guitart-Masip et al., 2011). The pres-
ent results extend this rate-sensitive adjustment from modula-
tions of arousal to discrete foraging decisions.

That such diverse phenomena implicate the same decision
variable invites the possibility that they might share neural
mechanisms. In particular, whereas TD learning about cumu-
lative future action values is widely linked to phasic dopamine
signaling (Houk et al., 1995; Montague et al., 1996; Schultz
et al., 1997), it has been argued that longer-timescale (Btonic^)
extracellular dopamine levels might be a neural substrate for
tracking average rewards and for controlling the behaviors
that depend on them (Beierholm et al., 2013; Cools, 2008;
Niv et al., 2006; Niv et al., 2007). Accordingly, dopamine is
well known to affect response vigor and time discounting, and
we hypothesize that it may play a similar role in the present
task (Beierholm et al., 2013; Robbins & Everitt, 2007;
Salamone, 1988). However, whereas dopaminergic involve-
ment in response vigor appears to focus on the nucleus ac-
cumbens (Lex & Hauber, 2008; Salamone, 1988), foraging
decisions, switching to nondefault courses of action,
average-reward tracking, cognitive control, and decisions in-
volving costs all appear to involve another important dopami-
nergic target, the anterior cingulate cortex (ACC; Boorman,
Rushworth, & Behrens, 2013; Curtis & Lee, 2010; Gan,
Walton, & Phillips, 2009; Hayden et al., 2011; Kolling et al.,
2012; Kurzban et al., 2012; Seo, Barraclough, & Lee, 2007;
Shenhav, Botvinick, & Cohen, 2013; Walton et al., 2009).
Neurons in the ACC track reward history with a range of time
constants (Bernacchia, Seo, Lee, & Wang, 2011; Seo et al.,
2007), and the slower of these may also serve as a signal for
the average reward rate. Finally, the cingulate’s projections to
another neuromodulatory nucleus, the locus coeruleus–nor-
epinephrine system, have been implicated in average-reward
effects that govern explore–exploit trade-offs (Aston-Jones &
Cohen, 2005).

A different choice mechanism that has been argued to be at
least partly distinct from the dopaminergic/TD system is
Bmodel-based^ learning. Such a system learns a cognitive
map or model of the structure of the task and then evaluates

2 Note that this knowledge does not enter the estimation of the average-
reward threshold, but only the decision rule or subjective value difference,
where it multiplies the observed reward.
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options by explicit simulation or dynamic programming
(Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Daw,
Niv, & Dayan, 2005; Doya, 1999). Although model-based
learning in the present task—that is, incrementally estimating
the state transitions and rewards and solving the Bellman
equation at each step for the cumulative expected values of
harvesting and exiting—would likely result in behavior quite
similar to the MVT learning rule, this seems an implausible
account of choice behavior in the present study. Humans have
been shown to use model-based evaluation in problems with
very small state spaces (most often for sequences of only two
actions; Daw et al., 2011), whereas quantitatively computing
the optimal exit threshold by dynamic programming would
require a very deep and precise search. TD and the MVT rule
represent two different and more plausible Bmodel-free^ ways
to short-circuit this computation, by learning decision vari-
ables directly while foregoing the global model.

Indeed, it has recently been proposed that, perhaps in ad-
dition to the model-free/model-based distinction, the brain
contains psychologically and anatomically distinct mecha-
nisms for solving (bandit-type) simultaneous choice tasks ver-
sus (patch-foraging type) serial stopping-or-switching tasks
(Kolling et al., 2012; Rushworth, Kolling, Sallet, & Mars,
2012), as with our TD versus MVT models. On the basis of
the imaging and physiological evidence discussed above, the
ACC seems a likely substrate for foraging, whereas a long line
of research has implicated nearby ventromedial prefrontal cor-
tex in more-symmetric economic choices, such as bandit tasks
(e.g., Behrens et al., 2007; Hare et al., 2011; O’Doherthy,
2011). The two sorts of choices have been most directly
contrasted in a recent fMRI study (Kolling et al., 2012),
supporting this anatomical dissociation, although another
study using the task has argued for a different intepretation
of the ACC response (Shenhav, Straccia, Cohen, & Botvinick,
2014). The present study, in the context of previous
reinforcement-learning work, suggests a computational
counterpart to such a distinction. In particular, learning
in bandit tasks has been well described by TD and related
delta-rule learning models (Barraclough et al., 2004; Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006; Ito & Doya,
2009; Li & Daw, 2011; Sugrue et al., 2004). Our finding
that learning in a serial switching problem is instead more
consistent with a structurally different threshold-learning
rule is consistent with the idea that these two sorts of
choices employ distinct computational mechanisms and
helps to flesh out the function of this proposed additional
mode of choice.

This computational distinction sets the stage for future
work directly comparing both approaches against a range of
tasks, so as to understand under what circumstances the brain
favors each approach. It has been suggested that organisms
may approach many problems like foraging tasks, including
even classic symmetric or simultaneous ones like economic

lotteries and bandit tasks (Brandstätter, Gigerenzer, &
Hertwig, 2006; Hills & Hertwig, 2010; Hills, Jones, & Todd,
2012; Kacelnik, Vasconcelos, Monteiro, & Aw, 2010). One
might hypothesize a rational trade-off: that the brain favors
the simpler MVT rule in tasks for which it is optimal, or nearly
so, but favors more complex decision rules in tasks in which
these would earn more effectively. The MVT threshold-
learning rule differs from TD in two respects, by essentially
neglecting two sorts of information that are inessential to
patch-foraging and analogously structured tasks. The first dif-
ference is that foraging models neglect the value of any other
alternatives in a simultaneous choice set, since they assume
that options are evaluated sequentially. Subjects must accept
or reject each option by comparing it to some global aspiration
level (the average reward), which can account for alternatives
only in the aggregate via their long-run statistics. This ap-
proach could be applied to arbitrary problems, such as bandit
tasks, by assuming that even when options are proffered si-
multaneously, subjects evaluate them serially, taking some
option as a Bdefault.^ Regardless of how the default is set, this
should produce a sort of satisficing relative to a maximizing
model (like TD) that evaluates each option and chooses
among them, since subjects would select a Bgood enough^
default even when a better option was available. This ineffi-
ciency should be especially pronounced—and, perhaps, TD
methods most favored—when the choice set is changed from
trial to trial (e.g., Behrens et al., 2007).

The second difference has to do with sequential credit as-
signment. An MVT rule, unlike TD, neglects the longer-run
consequences of engaging with an option by myopically con-
sidering only its instantaneous or next-step reward rate. For
patch-leaving, such myopic evaluation results in the optimal
long-run choice rule as long as patches degrade monotonical-
ly. (The same rule is optimal in models of serial prey selec-
tion—e.g., Krebs, Erichsen, Webber, & Charnov, 1977—be-
cause encounters are independent and the gain for processing
each prey is a single event.) However, in a modified foraging-
like task in which options can improve—for instance, decid-
ing whether to sell a stock whose dividend might decrease and
increase cyclically, or to fire an employee whose productivity
could be improved with training—then the MVT would un-
dervalue staying. The myopia of foraging rules has also been
noted in time-discounting problems (e.g., Stephens, Kerr, &
Fernandez-Juricic, 2004). Finally, long-run credit assignment
is important to many differently structured multistep choice
tasks, such as spatial navigation or multiplayer games. For
instance, in a two-choice Markov decision task, which we
have elsewhere argued is learned by a combination of TD
and model-based reinforcement learning (Daw et al., 2011),
the MVT rule would be at chance in selecting a first-stage
move, since it earns no immediate reward and is only distin-
guished by the reward earned following an additional state
transition and choice. Different tasks will vary in the degrees
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to which myopic credit assignment results in inefficient
returns.

Overall, although the class of switching tasks for which the
MVT solution is optimal is small, the idea of staying or
switching by comparing short-run returns to the expected
long-run average is a plausible, albeit suboptimal, heuristic
across many domains. MVT may be an overall favorable al-
gorithm across a broader range of tasks because the resources
saved in simplified computation may outweigh the reward
losses. Thus, the choice and learning mechanisms isolated in
simple patch-foraging problems may shed light on broadly
applicable systems, different from but complementary to those
that have seen more attention so far.
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