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Abstract Simple models and algorithms based on restric-
tive assumptions are often used in the field of neuroimaging
for studies involving functional magnetic resonance imag-
ing, voxel based morphometry, and diffusion tensor imag-
ing. Nonparametric statistical methods or flexible Bayesian
models can be applied rather easily to yield more trustwor-
thy results. The spatial normalization step required for
multisubject studies can also be improved by taking advan-
tage of more robust algorithms for image registration. A
common drawback of algorithms based on weaker assump-
tions, however, is the increase in computational complexity.
In this short overview, we will therefore present some ex-
amples of how inexpensive PC graphics hardware, normally
used for demanding computer games, can be used to enable
practical use of more realistic models and accurate algo-
rithms, such that the outcome of neuroimaging studies really
can be trusted.

Keywords Non-parametric statistics . Neuroimaging .

Bayesian statistics . Graphics processing units . Spatial
normalization . fMRI . VBM . DTI

Introduction

Analysis of neuroimaging data is often computationally
demanding. For studies involving functional magnetic
resonance imaging (fMRI), voxel-based morphometry
(VBM), and diffusion tensor imaging (DTI), it is com-
mon to collect data from at least 15 subjects (Friston,
Holmes & Worsley, 1999). The size of a single fMRI
data set is usually of the order of 64×64×30×200 ele-
ments (200 volumes with 30 slices, each containing
64×64 pixels), and high-resolution volumes for VBM
often consist of 256×256×128 voxels. While increasing
statistical power, the large amount of data prevents the
use of advanced statistical models, since the calculations
required can easily take several weeks. This is especially
true for extremely large data sets—for example, the free-
ly available rest data sets in the 1,000 functional
connectomes project (Biswal et al., 2010) requiring about
85 GB of storage. With stronger magnetic fields and
more advanced sampling techniques for MRI, the spatial
and temporal resolution of neuroimaging data will also
improve in the near future (Feinberg & Yacoub, 2012),
further increasing the computational load.

In this short introductory overview, we will therefore
show some examples of how affordable PC graphics hard-
ware, more commonly known as graphics processing units
(GPUs), enables the use of more realistic analysis tools. The
possibility of performing general computations on GPUs
has made it possible to, for example, replace traditional
parametric methods with nonparametric alternatives, which
would otherwise be prohibitively computationally demand-
ing. Nonparametric methods, such as a Monte Carlo permu-
tation test (Dwass, 1957), make fewer assumptions than do
parametric ones and are, therefore, applicable over a wider
range of data structures. Kimberg, Coslett and Schwartz
(2007) summarized the core of our review: “We can adopt
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the perspective that, for many purposes, parametric statistics
are a compromise that we have been forced to live with
solely due to the cost of computing. That cost has been
dropping steadily for the past 50 years, and is no longer a
meaningful impediment for most purposes.”

Another route for escaping the shackles of simple para-
metric models is by using newly developed, flexible
semiparametric models from statistics and machine learning.
Although often parametric, such models make far fewer
restrictive functional and distributional assumptions and,
therefore, span a wide array of potential data structures. In
this respect, they are similar to nonparametric methods, and
we shall refer to both classes of methods as good alterna-
tives to (simple) parametric models. It is common practice to
use a Bayesian prior distribution to efficiently regulate these
otherwise highly overparametrized models. Bayesian algo-
rithms can be highly computationally demanding, and our
review argues that there is a huge potential for using GPUs
to speed up Bayesian computations on neuroimaging data.

The review will focus on statistical analysis of fMRI data
but will also consider VBM, DTI, and the spatial normali-
zation step required for multisubject studies.

What is a GPU?

A GPU is the computational component of a graphics card
used in ordinary computers. The Nvidia GTX 690 graphics
card, shown in Fig. 1, contains two GPUs, each consisting
of 1,536 processor cores (units that execute program in-
structions). The physical location of the CPU and two
graphics cards in an ordinary PC is shown in Fig. 2. The
GPU's large number of cores can be compared with 4
processor cores for a central processing unit (CPU), which
normally is used to perform calculations. A GPU core
cannot, however, be directly compared with a CPU core.
A CPU core is, in general, more powerful due to a higher
clock frequency and a much larger cache memory (which
stores data just read from the ordinary memory). GPUs can
be very fast for a limited number of instructions, while
CPUs can handle a much wider range of applications. The
CPU is also better at running code with many if-statements,
since it has support for so-called branch prediction.

Graphics cards were originally designed for computer
graphics and visualization. Due to the constant demand for
better realism in computer games, the computational perfor-
mance of a GPU has, during the last 2 decades, increased
much more quickly than that of a CPU. The theoretical
computational performance can today differ by a factor of
ten in favor of the GPU. Graphics cards are also inexpen-
sive, since ordinary consumers must be able to afford them.
The Nvidia GTX 690 is one of the most expensive cards and
costs about $1,000.

Why use a GPU?

Themainmotivation for using a GPU is that one can save time
or apply an advanced algorithm, instead of a simple one. In
medical imaging, GPUs have been used for a wide range of
applications (Eklund, Dufort, Forsberg & LaConte, 2012b).
Some examples are to speed up reconstruction of data from
magnetic resonance (MR) and computed tomography (CT)
scanners and to accelerate algorithms such as image registra-
tion, image segmentation, and image denoising. Here, we will
focus on how GPUs can be used to lower the processing time
of computationally demanding algorithms and methods for
neuroimaging.

Some disadvantages of GPUs are their relatively small
amount of memory (currently 1–6 GB) and the fact that
GPU programming requires deep knowledge about the
GPU architecture. Consumer GPUs can also have somewhat
limited support for calculations with double precision (64-
bit floats), although single precision (32-bit floats) is nor-
mally sufficient for most image-processing applications. For
the latest Nvidia generation of consumer graphics cards
(named Kepler), the performance for double precision can

Fig. 1 The Nvidia GTX 690 graphics card, containing two GPUs and
a total of 3,072 processor cores

Fig. 2 The physical location of a CPU and two graphics cards in an
ordinary PC. By using two Nvidia GTX 690 graphics cards, the user
gets a PC equipped with 6,144 processor cores at the price of about
$3,000
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be as low as 1/24 of the performance for single precision.
For professional Kepler graphics cards, the performance
ratio can, instead, be 1/3. Professional graphics cards are,
however, more expensive. The Nvidia Tesla K20, for exam-
ple, currently costs about $3,500.

How can a GPU be used for arbitrary calculations?

Initially, a GPU could be programmed only through com-
puter graphics programming languages (e.g., OpenGL,
DirectX), which made it hard to use a GPU for arbitrary
operations. Despite this fact, using GPUs for general pur-
pose computing (GPGPU) has been popular for several
years (Owens et al., 2007). Through the release of the
CUDA programming language in 2007, using Nvidia GPUs
to accelerate arbitrary calculations has become much easier,
since CUDA is very similar to the widely used C program-
ming language. A large number of reports on large speedups,
as compared with optimized CPU implementations, have
since then been presented (Che, Boyer, Meng, Tarjan,
Sheaffer & Skadron, 2008; Garland et al., 2008). A draw-
back of CUDA is that it only supports Nvidia GPUs, while
the open computing language (OpenCL1) supports any hard-
ware (e.g., Intel CPUs, AMD CPUs, Nvidia GPUs, and
AMD GPUs).

Why use a GPU instead of a PC cluster?

As compared with a PC cluster, which often is used for
demanding calculations and simulations, an ordinary PC
equipped with one or several graphics cards has several
advantages. First, PC clusters are expensive, while a pow-
erful PC does not need to cost more than $2000–3000 and
can be bought “off the shelf.” Second, PC clusters can be
rather large and use a lot of energy, while GPUs are small
and power efficient. Third, it is hard for a single user to take
advantage of the full computational power of a PC cluster,
since it is normally shared by many users. On the other
hand, a PC cluster can have a much larger amount of
memory (but a single user normally cannot use more than
a fraction of it). Table 1 contains a comparison between a
PC cluster (from 2010) and a regular computer with several
GPUs (from 2012). A good PC cluster is clearly a major
investment, while a computer with several GPUs can be
bought by a single researcher.

How fast is a GPU?

A GPU uses its large number of processor cores to process
data in parallel (many calculations at the same time), while a
CPU normally performs calculations in a serial manner (one

at a time). The main difference between serial and parallel
processing is illustrated in Fig. 3. Multicore CPUs, which
today are standard, can, of course, also perform parallel
calculations, but most of the software packages used in the
field of neuroimaging do not utilize this property. AFNI2 is
one of the few software packages that has multicore support
for some functions, by using the OpenMP3 (open multipro-
cessing) library. For many applications, such as image reg-
istration, a hybrid CPU–GPU implementation yields the best
performance. The GPU can calculate a similarity measure
such as mutual information in parallel, while the CPU runs a
serial optimization algorithm.

The performance of a GPU implementation greatly de-
pends on how easy it is to run a certain algorithm in parallel.
Fortunately, neuroimaging data are often analyzed in exactly
the same way for each pixel or voxel. Many of the algo-
rithms commonly used for neuroimaging are therefore well
suited for parallel implementations, while algorithms where
the result in one voxel depends on the results in other voxels
may be harder to run in parallel.

The processing times for some necessary processing
steps in fMRI analysis, for three common software packages
(SPM,4 FSL, 5 and AFNI), an optimized CPU implementa-
tion that uses all cores and a GPU implementation (Eklund,
Andersson & Knutsson, 2012a) are stated in Table 2. The
size of the fMRI data set used is 180 volumes of the
resolution 64×64×33 voxels. The comparison has been
done with a Linux-based computer equipped with an Intel
Core i7-3770K 3.5 GHz CPU, 16 GB of memory, an OCZ
128 GB SSD drive, and a Nvidia GTX 680 graphics card
with 4 GB of video memory. This is not a fair comparison,
since the SPM software, for example, often writes

1 http://www.khronos.org/opencl/

2 http://afni.nimh.nih.gov/afni
3 http://www.openmp.org
4 http://www.fil.ion.ucl.ac.uk/spm
5 http://fsl.fmrib.ox.ac.uk/fsl

Table 1 A comparison between a GPU supercomputer, shown in
Fig. 2, and a PC cluster in terms of cost, computational performance,
amount of memory, and power consumption

Property/hardware GPU
supercomputer

PC
cluster

Cost $3,000 $400,000

Theoretical computational
performance, single precision

11.2 TFLOPS 5.0 TFLOPS

Theoretical computational
performance, double precision

0.5 TFLOPS 2.5 TFLOPS

Total amount of memory 8 GB 2.4 TB

Power consumption 1.0 kW 13.0 kW

Especially note the difference in power efficiency for calculations with
single precision; the GPU supercomputer is 29 times more power
efficient. TFLOPS stands for terra floating point operations per second
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intermediate results to file. This is possibly explained by the
fact that an fMRI data set could not be fitted into the small
memory of ordinary computers when the SPM software was
created some 20 years ago. The different software packages
and the GPU implementation also use different algorithms
for motion correction and model estimation. For example,
we use a slightly more advanced algorithm for estimation of
head motion (Eklund, Andersson & Knutsson, 2010). In-
stead of maximizing an intensity-based similarity measure,
the algorithm matches structures such as edges and lines.
The comparison, however, shows that researchers in neuro-
imaging can save a significant amount of time by using a
multicore CPU implementation that does not involve slow
write and read operations to the hard drive. The multicore
CPU implementation and the GPU implementation perform
exactly the same calculations. Even more time can thus be
saved by using one or several GPUs. It should be noted that
SPM, FSL, and AFNI are flexible tools that can perform a
wide range of analyses and that the mentioned GPU
implementations currently can handle only a small subset
of these.

This review will not consider any further details about
GPU hardware or GPU programming. The interested reader
is referred to books about GPU programming (Kirk & Hwu,
2010; Sanders & Kandrot, 2010), the CUDA programming
guide and our recent work on GPU accelerated fMRI anal-
ysis (Eklund et al., 2012a). The focus will instead be on
some types of methods and algorithms that can benefit from
higher computational performance.

Methods and algorithms

Nonparametric statistics

In the field of fMRI, the data are normally analyzed by
applying the general linear model (GLM) to each voxel time
series separately (Friston, Holmes, Worsley, Poline, Frith &
Frackowiak, 1995b). The GLM framework is based on a

number of assumptions about the errors—for example, that
they are normally distributed and independent. Noise from
MR scanners is, however, neither Gaussian nor white but
generally follows a Rician distribution (Gudbjartsson &
Patz, 1995) and a power spectrum that resembles a 1/f
function (A. M. Smith et al., 1999). To calculate p-values
that are corrected for the large number of tests in fMRI,
random field theory (RFT) is frequently used for its ele-
gance and simplicity (Worsley, Marrett, Neelin & Evans,
1992). RFT, however, requires additional assumptions to be
met. If any of the assumptions are violated, the resulting
brain activity images can have false-positive “active” voxels
or be too conservative to detect true positives. A simplistic
model of the fMRI noise can, for example, result in biased or
erroneous results, as shown in our recent work (Eklund,
Andersson, Josephson, Johannesson & Knutsson, 2012c).
RFT is also used for VBM (Ashburner & Friston, 2000) and
DTI (e.g. (Rugg-Gunn, Eriksson, Symms, Barker & Duncan,
2001)), where the objective is to detect anatomical differences
in brain structure. Recent work showed that the SPM software
can also yield a high degree of false positives for VBMwhen a
single subject is compared with a group (Scarpazza, Sartori,
De Simone & Mechelli, 2013).

To complicate things further, multivariate approaches in
neuroimaging (Habeck & Stern, 2010) can yield a higher
sensitivity than univariate ones (e.g., the GLM), by adap-
tively combining information from neighboring voxels.
Multivariate approaches are especially popular for fMRI
(Björnsdotter, Rylander & Wessberg, 2011; Friman, Borga,
Lundberg & Knutsson, 2003; Kriegeskorte, Goebel &
Bandettini, 2006; LaConte, Strother, Cherkassky, Anderson
& Hu, 2005; McIntosh, Chau & Protzner, 2004; Mitchell et
al., 2004; Nandy & Cordes, 2003; Norman, Polyn, Detre &
Haxby, 2006) but can also be used for VBM (Bergfield et
al., 2010; Kawasaki et al., 2007) and DTI (Grigis et al.,
2012). It is, however, not always possible to derive a para-
metric null distribution for these more advanced test statis-
tics, to threshold the resulting statistical maps in an objective
way.

A nonparametric test, on the other hand, is generally
based on a lower number of assumptions—for example, that
the data can be exchanged under the null hypothesis. Per-
mutation tests were rather early proposed for neuroimaging
(Brammer et al., 1997; Bullmore et al., 2001; Holmes, Blair,
Watson & Ford, 1996; Nichols & Hayasaka, 2003; Nichols
& Holmes, 2002) but are generally limited by the increase in
computational complexity. To perform all possible permu-
tations of a data set is generally not possible; a time series
with only 13 samples can, for example, be permuted in more
than 6 billion ways. Fortunately, a random subset of all the
possible permutations (e.g., 10,000) is normally sufficient to
obtain a good estimate of the null distribution. These subset
permutation tests are known as Monte Carlo permutation

Fig. 3 The figure shows the main difference between a CPU and a
GPU for processing of a small image consisting of 16 pixels. The
numbers represent in which order the pixels are processed. The CPU
processes the pixels one by one, while the GPU processes all the pixels
at the same time
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tests (Dwass, 1957) and will here be called random
permutation tests. For multivariate approaches to brain
activity detection, training and evaluation of a classifier
may be required in each permutation, which can be very
time consuming. In the work by Stelzer, Chen and Turn-
er (2013), 7 h of computation time was required for a
classification-based multivoxel approach combined with
permutation and bootstrap. Table 3 states the processing
times for 10,000 runs of GLM model estimation and
smoothing for the different implementations. Here, we
have also included processing times for a multi-GPU
implementation, which uses the four GPUs in the PC
shown in Fig. 2. Each GPU can independently perform a
portion of the random permutations. Clearly, the long pro-
cessing times of standard software packages prevent easy use
of nonparametric tests.

The main obstacle for a GPU implementation of a per-
mutation test is the irregularity of the random permutations,
which severely limits the performance. Due to this, only two
examples of GPU accelerated permutation tests have
been reported (Shterev, Jung, George & Owzar, 2010;
van Hemert & Dickerson, 2011). Fortunately, a random
permutation of several volumes—for example, an fMRI data
set or anatomical high-resolution volumes for VBM group
analysis, can be performed efficiently on a GPU, if the same
permutation is applied to a sufficiently large number of
voxels (e.g., 512). In neuroimaging, one normally wishes
to apply the same permutation to all voxels, in order to keep
the spatial correlation structure. It is thereby rather easy to
use GPUs to speedup permutation tests for neuroimaging.

By analyzing 1,484 freely available rest (null) data sets
(Eklund et al., 2012c), a random permutation test was

shown to yield more correct results than the parametric
approach used by the SPM software. The main reason is
that SPM uses a rather simple model of the GLM errors.
Performing 10,000 permutations of 85 GB of data is equiv-
alent to analyzing 850 000 GB of data. Table 4 states the
processing times for 10,000 permutations of 1,484 fMRI
data sets for the different implementations. To compare
parametric and nonparametric approaches to fMRI analysis
is clearly not possible without the help of GPUs (or a PC
cluster). A random permutation test can also, as a bonus, be
used to derive null distributions for more advanced test
statistics. In our recent work (Eklund, Andersson &
Knutsson, 2011a), we took advantage of a GPU implemen-
tation to objectively compare activity maps generated by the
GLM and canonical correlation analysis based fMRI analy-
sis (Friman et al., 2003), which is a multivariate approach.
We have also accelerated the popular searchlight algorithm
(Kriegeskorte et al., 2006), making it possible to perform
10,000 permutations including leave-one-out cross valida-
tion in 5 min instead of 7 h (Eklund, Björnsdotter, Stelzer &
LaConte, 2013).

We have here focused on fMRI, but permutation tests can
also be applied to VBM (Bullmore, Suckling, Overmeyer,
Rabe-Hesketh, Taylor & Brammer, 1999; Kimberg et al.,
2007; Silver, Montana & Nichols, 2011; Thomas, Marrett,
Saad, Ruff, Martin & Bandettini, 2009) and DTI (e.g.,
proposed by Smith et al. (2006) and used by Chung,
Pelletier, Sdika, Lu, Berman and Henry (2008) and Cubon,
Putukian, Boyer and Dettwiler (2011)) data. Other nonpara-
metric approaches include jackknifing, bootstrapping, and
cross-validation. Biswal, Taylor and Ulmer (2001) used
jackknife to estimate confidence intervals of fMRI

Table 2 Processing times for three necessary steps in fMRI analysis, for three common software packages, a multicore CPU implementation, and a
GPU implementation

Processing step/software SPM FSL AFNI Multicore CPU GPU

Motion correction 52 s 36 s 5 s 37 s 1.2 s

Smoothing 31 s 10 s 0.4 s 0.4 s 0.022 s

Model estimation 25 s 4.8 s 0.5 s 0.011 s 0.0008 s

The three common software packages use different algorithms, while the multicore CPU implementation and the GPU implementation perform
exactly the same calculations. The large speedup for the multicore CPU implementation, for smoothing and model estimation, as compared with
SPM and FSL, is mainly explained by the fact that it does not involve slow write and read operations to the hard drive. The AFNI software package
is clearly fastest of the three common packages

Table 3 Processing times for 10,000 runs of GLM model estimation and smoothing for a single fMRI data set

Processing step/software SPM FSL AFNI Multicore CPU Single GPU Multi-GPU

Smoothing 86.1 h 27.8 h 1.1 h 1.1 h 220 s 55 s

Model estimation 69.4 h 13.3 h 1.4 h 110 s 8 s 2 s

The long processing times with standard software packages prevent easy use of nonparametric tests
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parameters, while Wilke (2012) instead used jackknife to
assess the reliability and power of fMRI group analysis.
Bootstrap has been applied to fMRI (Auffermann, Ngan,
& Hu 2002; Bellec, Rosa-Neto, Lyttelton, Benali & Evans,
2010; Nandy & Cordes, 2007) and DTI (Grigis et al., 2012;
Jones & Pierpaoli, 2005; Lazar & Alexander, 2005), as well
as VBM (Zhu et al., 2007). GPUs can, of course, also be
used to speed up these other nonparametric algorithms (see,
e.g., the review by Guo, 2012).

Bayesian statistics

Bayesian approaches are rather popular for fMRI analysis
(Friston, Penny, Phillips, Kiebel, Hinton & Ashburner,
2002; Genovese, 2000; Gössi, Fahrmeir & Auer, 2001; see
the review by Woolrich, 2012, for a recent overview). A
major advantage of Bayesian methods is that they can
incorporate prior information in a probabilistic sense and
consider uncertainties in a straightforward manner. Bayesian
methods are usually the preferred choice for richly parame-
trized semiparametric models (see the Introduction). Model
selection and prediction are also much more straightforward
in a Bayesian setting. To calculate the posterior distribution
can, however, be computationally demanding if Markov
chain Monte Carlo (MCMC) methods need to be applied.
Genovese stated that a day of processing time was required
for a single data set, for a simple noise model assuming
spatial independence. In the work by Woolrich, Jenkinson,
Brady and Smith (2004), fully Bayesian analysis of a single
slice took 6 h—that is, about 7 days for a typical fMRI data
set with 30 slices. Today, the calculations can perhaps be
performed in less than an hour with an optimized CPU
implementation. Variational Bayes (VB) can be used, in-
stead, to derive an approximate analytic expression of the
posterior distribution—for example, for estimation of
autoregressive parameters for fMRI time series (Penny,
Kiebel & Friston, 2003)—or in order to include spatial
priors in the fMRI analysis (Penny, Trujillo-Barreto &
Friston, 2005). A first problem is that a large amount of
work may be required to derive the necessary equations,
which often is straightforward for MCMC methods. Second,
most VB applications assume that the posterior distribu-
tion factorizes into several independent factors, to obtain
analytic updating equations. Third, tractability typically
necessitates a restriction to conjugate priors (Woolrich et

al., 2004). This restriction can be circumvented by in-
stead using approximate VB.

To our knowledge, an unexplored approach to Bayesian
fMRI analysis is to perform calculations with large spatio-
temporal covariance matrices, in order to properly model
nonstationary relationships in space and time. For example,
a neighborhood of 5×5×5 voxels for 80 time samples can
be considered as one sample from a distribution with 10,000
dimensions, rather than 10,000 samples from a univariate
distribution. The main problem with such an approach is
that the error covariance matrices will be of the size
10,000×10,000. GPUs can be used to speed up the inver-
sion of these large covariance matrices, which is required in
order to calculate the posterior distribution of the model
parameters. To estimate the covariance matrix itself, a first
approach can be to use a Wishart prior. A better prior can be
obtained by analyzing large amounts of data—for example,
the rest data sets in the 1,000 functional connectomes pro-
ject (Biswal et al., 2010). Such a prior may, however, require
MCMC algorithms for inference.

In the field of statistics, there is a growing literature on
using GPUs to accelerate statistical inference (see the work by
Guo, 2012, for a review on parallel statistical computing in
regression analysis, nonparametric inference, and stochastic
processes). Suchard, Wang, Chan, Frelinger, Cron and West
(2010) focused on how to use a GPU to accelerate Bayesian
mixture models. As a proof of concept, we made a parallel
implementation of an MCMC algorithm with a tailored pro-
posal density, described by Chib and Jeliazkov (2001). The
processing time for their example in Section 3.1 was reduced
from 18 s to 75 ms. The traditionally used MCMC algo-
rithms are sequential and, therefore, not amendable to
simple parallelization, except in a few special cases. In
fMRI, this can be circumvented by running many serial
MCMC algorithms in parallel (Lee, Yau, Giles, Doucet
& Holmes, 2010)—for example, one for each voxel
time series.

Ferreira da Silva (2011a) implemented a multilevel mod-
el for Bayesian analysis of fMRI data and combined MCMC
with Gibbs sampling for inference. As was previously pro-
posed, a linear regression model was fitted in parallel for
each voxel. Random number generation was performed
directly on the GPU, through the freely available CUDA
library CURAND, to avoid time-consuming data transpor-
tation between the CPU and the GPU (see Ferreira da Silva,

Table 4 Processing times for 10,000 runs of GLM model estimation and smoothing for 1,484 fMRI data sets

SPM FSL AFNI Multicore CPU Single GPU Multi-GPU

26.3 years 7 years 154 days 71 days 3.9 days 1 day

GPUs make it possible to apply nonparametric statistical methods to large data sets

592 Cogn Affect Behav Neurosci (2013) 13:587–597



2011b, for more details on the GPU implementation). Pro-
cessing of a single slice took 452 s on the CPU and 65 s on
the GPU. For a data set with 30 slices, this gives a total of
30 min, which still is too long for practical use. The graphics
card that was used was somewhat outdated; a more modern
card would likely yield an additional speedup of a factor of
at least 10, resulting in a processing time of about 3 min, as
compared with more than 3.5 h on the CPU.

For DTI, GPUs have been used to accelerate a Bayesian
approach to stochastic brain connectivity mapping (McGraw &
Nadar, 2007) and a Bayesian framework for estimation of fiber
orientations and their uncertainties (Hernandez, Guerrero,
Cecilia, Garcia, Inuggi & Sotiropoulos, 2012). This framework
normally requires more than 24 h of processing time for a single
subject, as compared with 17 min with a GPU. We believe that
GPUs are a necessary component to enable regular use of
Bayesian methods in neuroimaging, at least for methods that
rely on a small number of assumptions.

Spatial normalization

Multisubject studies of fMRI, VBM, and DTI normally require
spatial normalization to a brain template (Friston, Ashburner,
Frith, Poline, Heather & Frackowiak, 1995a). This image-
processing step is generally known as image registration but
is often called “normalization” in the neuroimaging literature. A
suboptimal registration can lead to artifacts, such as brain
activity in the ventricles or artifactual differences in brain anat-
omy. In general, there is no perfect correspondence between an
anatomical volume and a brain template (Roland et al., 1997).
The spatial normalization step was early acknowledged as a
problem for VBM (Bookstein, 2001), as well as for fMRI
(Brett, Johnsrude & Owen, 2002; Nieto-Castanon, Ghosh,
Tourville & Guenther, 2003; Thirion, Flandin, Pinel, Roche,
Ciuciu & Poline, 2006) and DTI (Jones & Cercignani, 2010;
Jones et al., 2002). Another problem is that MR scanners often
do not yield absolute measurements, as CT scanners do, but
relative ones. A difference in image intensity between two
volumes can severely affect the registration performance. This
is especially true for registration between T1- and T2-weighted
MRI volumes, where the image intensity is inverted in some
places (e.g., the ventricles). To solve this problem, one can, for
example, take advantage of image registration algorithms that
do not depend on the image intensity itself but, rather, try to
match image structures such as edges and lines (Eklund,
Forsberg, Andersson & Knutsson, 2011b; Heinrich et al.,
2012; Hemmendorff, Andersson, Kronander & Knutsson,
2002; Mellor & Brady, 2004, 2005; Wachinger & Navab,
2012). Another approach is to steer the registration through an
initial segmentation of brain tissue types. The boundary-based
registration algorithm presented by Greve and Fischl (2009)
uses such a solution to more robustly register an fMRI volume
to an anatomical scan. For DTI, it is possible to instead increase

the accuracy by combining several sources of information, such
as a T2-weighted volume and a volume of the fractional anisot-
ropy (Park et al., 2003). Additionally, nonlinear registration
algorithms with several thousand parameters can often provide
a better match between the subject's brain and a brain template,
as compared with linear approaches, which optimize only a few
parameters (e.g., translations and rotations).

While increasing robustness and accuracy, more ad-
vanced image registration algorithms often have a higher
computational complexity. If a registration algorithm re-
quires several hours of processing time, it does not have
much practical value. Here, the GPU can once again be used
to improve neuroimaging studies, by lowering the process-
ing time to enable practical use of more robust and accurate
image registration algorithms. Using GPUs to accelerate
image registration is very popular. One reason is that GPUs
can perform translations and rotations of images and vol-
umes very efficiently, which is beneficial for image regis-
tration algorithms. Two recent surveys (Fluck, Vetter, Wein,
Kamen, Preim & Westermann, 2011; Shams, Sadeghi, Ken-
nedy & Hartley, 2010) mention about 50 publications on
GPU accelerated image registration during the last 15 years.
By using a GPU, it is not uncommon to achieve a speedup
by a factor of 4–20, as compared with an optimized CPU
implementation. As an example, Huang, Tang and Ju (2011)
accelerated image registration within the SPM software
package and obtained a speedup by a factor of 14.

Discussion

We have presented some examples of how affordable PC
graphics hardware can be used to improve neuroimaging
studies. The speed improvements that can be attained by
analyzing fMRI data with one or several GPUs have also
been documented. The main focus has been nonparametric
and Bayesian methods, but we have also discussed how the
spatial normalization step can be improved by taking ad-
vantage of more robust and accurate image registration
algorithms. Another option is to use GPUs to explore the
large space of dynamic casual models (Friston, Harrison &
Penny, 2003), which can be very time consuming, or to
apply nonparametric or Bayesian methods for brain connec-
tivity analysis. An area not covered here is real-time fMRI
(Cox, Jesmanowicz & Hyde, 1995; deCharms, 2008;
LaConte, 2011; Weiskopf et al., 2003), where simple models
and algorithms are often used to be able to process the
constant stream of new data.

GPUs can clearly be used to solve a lot of problems in
neuroimaging. The main challenge, as we see it, is how
researchers in neuroscience and behavioral science can take
advantage of GPUs without learning GPU programming.
One option is to develop GPU accelerated versions of the
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most commonly used software packages (e.g., SPM, FSL,
AFNI), which would make it easy for the users to utilize the
computational performance of GPUs. Mathworks recently
introduced GPU support for the parallel computing toolbox
in MATLAB. Other options for acceleration of MATLAB
code include using interfaces such as Jacket6 or GPUmat.7

For the C and Fortran programming languages, the PGI
accelerator model (Wolfe, 2010) or the HMPP workbench
compiler (Dolbeau, Bihan & Bodin, 2007) can be used to
accelerate existing code. A comparison between such frame-
works has been presented by Membarth, Hannig, Teich,
Korner and Eckert (2011). There is also a lot of active
development of GPU packages for the Python programming
language—for example, PyCUDA8—which are likely to be
used by Python neuroimaging packages like NIPY9 in the
near future. Recently, an interface between the statistical
program R and the software packages SPM, FSL, and AFNI
was developed by Boubela et al. (2012). Through this inter-
face, preprocessing can be performed with standard
established tools, while additional fMRI analysis can be
accelerated with a GPU. As an example, independent com-
ponent analysis was applied to 300 rest data sets from the
1,000 functional connectomes project (Biswal et al., 2010).
The processing time was reduced from 16 to 1.2 h.

To conclude, using GPUs to speed up fMRI analysis that
takes only a few minutes is unlikely to be worth the hassle
and expense for most researchers. The true power of GPUs
is that they practically enable algorithms for statistical anal-
ysis that rely on weaker assumptions. GPUs can also be
used to take advantage of more robust and accurate algo-
rithms for spatial normalization. Inexpensive PC graphics
hardware can thus easily improve neuroimaging studies.
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