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Abstract
People’s placement of numbers on number lines sometimes shows linear and sometimes compressive scaling. We investigated
whether people’s placement of numbers was affected by their range and distribution, as indicated by Parducci’s (Psychological
Review, 72, 407–418, 1965) range-frequency theory. Experiment 1 found large compressive effects when the endpoints were 1
and 1016. Experiment 2 showed compression when 14 logarithmically distributed numbers were placed on a linemarked 1–1,000
and close to linear scaling when the numbers were linearly distributed. Thus, we found both range and frequency effects on
compression. Where compression arose, it was not as pronounced as that predicted by logarithmic scaling, but analyses of the
results from Experiments 1 and 2 indicate this was not explained by participants switching between linear and logarithmic
scaling.
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Introduction

When young children are asked to indicate the appropriate
placement of numbers on a line that is bounded below by 0
and at the upper end by (say) 10, 20 or 100, their placements are
likely to display non-linearity and compression. A dispropor-
tionate section of the line may be allotted to the smaller num-
bers, and the physical distance between 2 and 4 will often be
greater than the difference between 7 and 9 (e.g. Dehaene,
1997; de Hevia & Spelke, 2009; Droit-Volet, Clément, &
Fayol, 2008; Siegler, 2009; Siegler & Booth, 2004). This phe-
nomenon has sometimes been taken as suggesting that children
simply cannot represent numbers in the way adults do, but other
interpretations are also possible (e.g. Cohen & Sarnecka, 2014;
Moeller, Pixner, Kaufmann, & Nuerk, 2009; Slusser & Barth,
2017; Zax, Slusser, & Barth, 2019).

Although adults often make linear placement of numbers
on lines, they too sometimes demonstrate compression (e.g.
Cohen & Blanc-Goldhammer, 2011; Dehaene, Izard, Spelke,
& Pica, 2008; Dotan & Dehaene, 2016; Huber, Moeller, &
Nuerk, 2014; Izard &Dehaene, 2008). Moreover, a number of

the adult findings, as well as some of those obtained from
children, indicate that the extent and nature of compression
depends on the experimental context and what training or
instruction the participants are given (e.g. Cohen & Blanc-
Goldhammer, 2011; Göbel, Shaki, & Fischer, 2011; Huber
et al., 2014; Izard & Dehaene, 2008). One way to interpret
these results is to consider that humans may not have a single
innate number line (Núñez, 2011) and that adults at least are
quite capable of a number of different ways of representing or
producing magnitudes.

Support for our possession of a range of different magnitude
estimation capabilities can be found outside of number line
research. Natural addition is the minimum of all monotonic
functions of the natural numbers. Thus, if humans are respon-
sive to monotonicity (functions always increase), addition of
whole numbers is, in a sense, the simplest operation to perform
on them (Grice, Kemp, Morton, & Grace, 2020). Indeed, such
additive systems are widely used in everyday life. Consider
estimating the number of paving stones to use on a narrow path
or calculating the right amount of change to give after being
presented with notes of different denominations.

Psychophysics provides many examples of compressive
estimation of sensory magnitudes. As a single example, con-
sider how we respond to sounds of different levels. The range
of sound intensity from the faintest sound that we can hear to
that of the loudest sound we can hear without immediate hear-
ing damage is about 1–1015 (e.g. Moore, 2004, Table 1.1).
Because of this colossal range, we frequently express sound
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levels in terms of the logarithmic decibel scale (10log10(I/I0),
where I stands for the intensity level and I0 is a reference
intensity level). Weber’s Law holds well for wideband noise,
and the difference threshold intensity in decibels is the same
(about 0.5–1 dB) for noise regardless of the sound level
(Moore, 2004, pp. 138–139). If we were to regard each differ-
ence threshold as a single unit of psychological sensation,
there would then be a logarithmic relationship between psy-
chological sensation and sound intensity, as Fechner pointed
out long ago (Stevens, 1961).

Compression in sensory dimensions does not have to imply
logarithmic scaling. Another way to compress sound intensi-
ties, the sone scale, uses a power-law function (Stevens, 1961,
1975). To sum up, many features of the way we respond to
sound intensity, as well as to many other sensory dimensions,
are explained by assuming that we compress the range.

Both power-law and logarithmic functions are reasonably
common in psychophysics. Indeed, on occasion, the same
modality can display either a power-law or logarithmic rela-
tionship depending on the way participants are instructed to
estimate the modality. Magnitude estimation tends to produce
power-law relationships; category rating tends to produce log-
arithmic relationships (e.g. Galanter, 1962a; Kemp, 1991).

There is also evidence that people placing numbers on lines
can do so in different ways. Huber et al. (2014) found that
adults could be readily trained to make non-linear placements.
Grace, Morton, Ward, Wilson, and Kemp (2018) presented
pairs of stimuli and required clicking on a line as a response.
They found simple right/wrong feedback effective in steering
participants towards either ratio or difference judgements.

The experiments in the present paper aimed to see if
Parducci’s (1965) range-frequency theory could explain some
features of how adults assign numbers to number lines.
Range-frequency theory, which can be classed as a psycho-
physical theory, explains how people set up categories for
rating judgements of different stimuli along some dimension,
and suggests that, when people set up boundaries between
categories, two features of the stimuli are taken into account.
First, the range between the greatest and smallest stimulus,
and, second, the frequency distribution of the stimuli. In the
original model the boundaries between a seven-category sys-
tem are formed by taking the average of the boundaries indi-
cated by the range ((greatest stimulus – smallest stimulus)/7)
and the boundaries indicated by the frequency distribution (a
seventh of the stimuli would fall into each category).

There is reasonable evidence for range-frequency theory
(e.g. Parducci, 1965, 1974; Parducci & Wedell, 1986).
Application of the theory to the placement of numbers on
number lines is suggested, in a general sense, because range-
frequency theory is an account of how context affects mea-
surement, and placement of numbers on lines is affected by
context (e.g. Barth & Paladino, 2010; Huber et al., 2014). A
consequence of range-frequency theory is that, as a rule,

category boundaries will not be linearly placed, and, if the
distribution of stimuli is positively skewed, as our everyday
use of numbers is, the boundaries will show compression.
Range-frequency theory resembles the approach of Cicchini,
Anobile, and Burr (2014) to number placement in seeking to
explain non-linearity from the effects of previously presented
stimuli rather than from assuming a non-linear mental repre-
sentation of number.

There are theoretical difficulties in trying to explain num-
ber line placements using the range-frequency theory as orig-
inally proposed by Parducci (1965). Most obviously, when
numbers are placed on lines, they are not simply put into
categories, and often participants are careful to assign a slight-
ly lower number than a previous one to a position that is
slightly to its left. Nonetheless, application of the principles
of range-frequency theory to number placement does make
two clear predictions.

Firstly, the amount of compression shown in placements on
number lines should depend on the range of the stimuli and
endpoints of the number line. Such findings have already been
reported, although they have been explained in terms of num-
ber words (e.g. hundreds, millions) rather than range-
frequency theory (Landy, Charlesworth, & Ottmar, 2017;
Landy, Silbert, & Goldin, 2013). We examined the effect of
range in Experiment 1 below, using numerical stimuli that
were not easy to express as words.

Secondly, given a constant range, the amount of compres-
sion should depend on the frequency distribution of the num-
bers. To our knowledge this prediction has not been previous-
ly investigated systematically by researchers, and it is exam-
ined in Experiment 2.

Given that compression is obtained, what form might it
take? Some researchers (e.g. Dotan & Dehaene, 2016) have
suggested that number-line compression follows a logarithmic
function. However, there is also reasonable evidence for seg-
mented functions in which smaller numbers are fitted by a
linear function and larger ones by a different function, some-
times another linear one with a shallower slope (e.g. Landy
et al., 2013; Moeller et al., 2009). It is possible that segmented
functions are indicated, perhaps necessitated, by the common,
although not universal (Cohen & Blanc-Goldhammer, 2011;
Landy et al., 2013, 2017), use of zero as the lower marker on
the number line. This use creates a contradiction for any par-
ticipant wishing to use a true logarithmic function. The loga-
rithm (to any base) of zero is -∞ (or does not exist), and strictly
speaking it is impossible to include zero on any logarithmical-
ly scaled number line. Thus, if there is a lower marker of zero
it cannot be a point on such a line. (For discussion of the
implications of including zero on number lines for
compressive scaling, see Didino et al., 2019.)

In Experiment 1 we biased the stimuli towards logarithmic
placement by using logarithmically distributed stimuli. A con-
sequence of our bias was the frequent presentation of decimal
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rather than whole numbers. In both experiments we chose a
lower number line marker of 1 rather than 0 (the log to any
base of 1 is zero). We did not expect that these experimental
conditions would necessarily produce logarithmic functions.
As outlined above, a power law provides a reasonable func-
tional alternative to a logarithmic function. Moreover, if the
form of compression is determined contextually, as is indicat-
ed by range-frequency theory, we should not expect any clear
functional solution. However, one important aim in both our
experiments was to see if logarithmic placement might come
about in circumstances where it was mathematically reason-
able for this to occur.

Experiment 1

This experiment varied the range of numbers to be placed and
the line markers. In all three conditions the numbers to be
placed were logarithmically identically spaced in terms of line
distance, and used a lower marker of 1. (All logarithmic cal-
culation here and below used base 10.) Three higher markers
were used: 10, 1000 and 10000000000000000 (1016). In one
condition, subjects placed numbers on lines; in the other con-
dition the numbers were denoted as dollars and participants
were asked to assess value. Previous research suggested per-
ceived value (or utility) of monetary sums is a compressive
function of the monetary value, so we thought the value con-
ditions might be more likely to produce compression than the
plain numbers (Galanter, 1962b).

This experiment was preceded by an unreported study with
more restricted marker ranges (upper markers 10 and 1,000) that
found rather small range effects, but did establish that participants
were capable of using a lower marker of 1 appropriately.

Method

Sixty participants (24 male; 26 female; median age 24 years,
range 16–84; no age or gender information for ten partici-
pants) completed a questionnaire. Thirty-five completed
number-line questionnaires and 25 completed value-line ques-
tionnaires. Participants were recruited casually by seven paid
research assistants, with number- and value-line question-
naires randomly assigned.

Each participant placed four numbers or values on each of
three lines (12 placements in total), with one line per
landscape-oriented page. (The Appendix shows how one of
these pages appeared to participants, and may be useful to the
reader in interpreting the method.) All lines extended for 245
mm, with the lower marker placed at 60 mm and the higher
marker at 220 mm. The lower mark was always 1. The three
high markers were 10, 1000 and 10000000000000000000 (no
commas inserted). Numbers (or values) to be placed were:

High marker 10: 0.56, 1.15, 2.37, 4.87
High marker 1000: 0.18, 1.54, 13.3, 115.5
Highmarker 10000000000000000: 0.0001, 10, 1000000,
100000000000.

These numbers were presented under the number line in a
single randomly determined order (i.e. not sequentially).

In the value-line questionnaires all numbers, including the
markers, were preceded by the symbol $. The numbers were
chosen to provide equal spacing on a logarithmic scale, and
the four numbers (or values) to be placed would be at 20, 70,
120 and 170 mm from the extreme left hand of the line if
logarithmic scaling were used. Actual placements were also
recorded in mm from the extreme left-hand of the line. The
pagination of the three different lines was randomly varied.

Instructions for the number and value lines were, respectively:

“Above is a number line. Below is a list of four num-
bers. Please indicate how you would like to place each
number on the line by writing it near the line with a little
arrow to show where it best fits in on the line. Please
place the numbers where you think looks good to you.
You can place the numbers anywhere on the line, in-
cluding outside of the arrows.”
“Above is a value line. Below is a list of four amounts of
money. Please indicate how you would like to place
each amount of money on the line by writing it near
the line with a little arrow to show where it best fits in
on the line. Please place the money amounts wherever
you think best suits the value to people of that amount of
money. You can place the money amounts anywhere on
the line, including outside of the arrows.”

For 11 of the number-line questionnaires, after the partici-
pants had completed their number placements, they were
instructed:

“The following questions ask about your use of number
words (e.g. a hundred, fifty-five, ten thousand, point
five) when making your decisions. You are asked sepa-
rately for each number list. (It might help to turn back to
remind yourself of what you did.) To what extent did
you use number words to help you place the numbers?”

The three lists were each responded to with “Not at all”,
“For some numbers” or “For all the numbers”.

Results

Figures 1, 2, and 3 show the mean placement values alongside
those expected from logarithmic and linear placement for each
of the three high markers. All measures were taken from the
extreme left of the line (not the lower marker). Clearly the
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mean values were quite close to the linear expectations when
the High marker was 10, but veered towards logarithmic
placement for the 1000 High marker and veered more still
for the High marker of 1016. Analysis of variance of place-
ment showed significant main effects of the marker, F(2, 116)
= 38.6, p < .0001, partial η2 = .40, the number (perhaps best
thought of as logarithmic placement; F(3, 174) = 363.1, p <
.0001, partial η2 = .86), and most importantly the interactive
effect of these two, F(6, 348) = 39.3, p < .0001, partial η2 =
.40. However there was no significant effect of setting the task
as a number or value line (F(1,58) = .52, p = .47, MSError =
731) and no significant (p < .05) interactive effects of this
factor with the other two. Hence, the rest of this section
merges results from the number- and value-placement tasks.

The results clearly show that the higher markers produce a
tendency towards logarithmic scaling. However, examination
of Figs. 2 and 3 shows that for at least the two highest numbers
to be placed, the mean results are somewhere between those
expected from logarithmic and linear scaling. Does this come
about because some participants adopted logarithmic scaling
for these numbers and some adopted linear scaling, and thus
there was switching from one type of scale to the other?
Alternatively, it may be that individual participants adopted
a compromise placement that was neither linear nor logarith-
mic scaling.

The issue can be investigated from the distribution of the
placement values for the two highest numbers for the two
higher markers. If people were either using a linear scale or a
logarithmic scale but switched between them, we would expect
the distributions to be bimodal, with the modes centring on, for
example, 62 mm and 120 mm for placing 13.3 on the 1000

High marker line. Of course, we could not expect all the linear
responses to be placed exactly at 62 mm and all the logarithmic
ones at 120 mm, but we can expect that the errors for the linear
and logarithmic responses should be roughly equally placed
above or below 62 and 120 mm, respectively. Hence, if partic-
ipants were switching there should be roughly as many place-
ments either below the true linear value or above the true log-
arithmic value as there are between the two values. If, on the
other hand, at least some of the participants adopted compro-
mise responses, more than half the responses should be between
the linear and logarithmic values.

Table 1 gives the distribution results for the two higher num-
bers and the two higher markers. The results in the table indi-
cate that at least some participants were adopting compromise
placements. Overall, 185 of the 240 placements or 77% of the
placements were between the true linear and logarithmic values
rather than the 50% expected from switching (test of propor-
tion, p < .0001), and thus the switching hypothesis was
disconfirmed.

Six out of 11 participants claimed to have made no use at
all of number words for their 10 high marker placements; 6/11
for the 1000 high marker and 8/11 for the 1016 high marker.
Note that the eight participants for the 1016 high marker con-
dition who did not make use of number words had mean
placements at 36, 59, 95 and 138 mm from the left edge
(compare Fig. 3 to interpret these results). Thus, the use of
number words was not necessary for compressive scaling with
the highest marker.

Finally, we fitted power law functions to the average place-
ments. To do this, we subtracted 60 from all the distance
placements and fitted the equation (Distance − 60) =

.56 1.15 2.37 4.87
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Fig. 1 Actual mean placement value of each number, and 95% confidence intervals of the mean, when the high marker was 10 in Experiment 1. Also
shown are the expected placements if the scaling used was linear and logarithmic
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A(Number to place)b for the three numbers greater than 1 by
taking logarithms and using ordinary least squares regression
for each of the three marker conditions. (Note the lowest num-
ber was omitted because the average distance was negative
and its logarithm does not exist.) The three exponents (b)
obtained were 1.51 (High Marker 10; R2 = .98), .55 (High
marker 1000; R2 = 1) and .14 (High marker 1016; R2 = .94).

Experiment 2

This experiment examined the effect of the number distribu-
tion (linear or logarithmic) on how a reasonably large sample
(14) of numbers was placed on a line. In the main conditions
of this experiment (as in Experiment 1) the numbers to be
placed on the line were “all in view” together and participants
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Fig. 2 Actual mean placement value of each number, and 95% confidence intervals of the mean, when the high marker was 1000 in Experiment 1. Also
shown are the expected placements if the scaling used was linear and logarithmic
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Fig. 3 Actual mean placement value of each number, and 95% confidence intervals of the mean, when the high marker was 10000000000000000 in
Experiment 1. Also shown are the expected placements if the scaling used was linear and logarithmic
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could see all their placements as they went along. This proce-
durewas expected to increase participants’ knowledge of what
the distribution actually was. In addition, a small sample
placed the logarithmically distributed numbers in a “one-at-
a-time condition”. One would not expect distribution effects
to be so pronounced in this situation, but they might still be
present to some extent. In the “one-at-a-time” condition par-
ticipants placed single numbers on newly presented “clean”
lines. This condition only used the logarithmically distributed
numbers (similar to those in “all in view”).

Method

Details of participant numbers in the different conditions of
Experiment 2 are given in Table 2.

All-in-view condition

Seventy-six participants (21 male; median age 22 years, range
18–50+) completed “all-in-view” questionnaires in which
they placed 14 different numbers on a single number line.
(Another participant, whose placements were markedly disor-
dered, was excluded.)

All participants were presented the same number line. This
line was 245 mm long and had markers 60 and 220 mm from
its left edge. The lower marker was labelled 1, and the upper
marker 1000. (The line was thus identical to the 1000 high
marker condition of Experiment 1).

Below the line was a lettered list of 14 numbers.
Participants were asked to indicate the placement of each
number on the line. They did these under one of two instruc-
tion conditions. In one condition (n = 33), they were asked to
do so by “writing the letter near the line with a little arrow to
show where it best fits on the line. Please place the numbers

where you think looks good to you. You can place the num-
bers anywhere on the line, including outside of the arrows.”
(Similar instructions were used in Experiment 1 and Kemp,
1991). In the other, perhaps more restrictive, instruction con-
dition (n = 43) they were told to write in the letters and use
“little arrows to indicate where each number should be located
on the line.” (Similar instructions were used, for example, by
Cohen & Sarnecka, 2014.)

Each participant was presented with either 14 numbers that
were close to linearly distributed (that is equally spaced on a
linear scale) or 14 numbers that were logarithmically distrib-
uted (equally spaced on a logarithmic scale). The actual num-
bers presented were:

Linear: 0.5, 71, 143, 214, 286, 356, 430, 500, 573, 643,
715, 786, 857, 928.
Logarithmic: 0.9, 1.6, 2.7, 4.4, 7.2, 11.7, 19.2, 32.5, 52.5,
84.3, 138, 224, 370, 605.

A single random order was used to assign the numbers to
the letters (A to G; J to P). This order was preserved across the
two conditions. (For example, L was 71 in the linear and 1.6 in
the logarithmic condition.)

In total 39 participants placed linearly distributed and 37
logarithmically distributed numbers. Assignment of the differ-
ent questionnaires to the participants was random.

One-at-a-time condition

Fifteen participants (ten female; median age 20 years, range
18–35) were recruited. They received psychology course
credit for their participation. Participants were tested individ-
ually in a quiet room, with the entire experiment taking less

Table 1 Number of participants
(total n = 60 for all placements)
placing values below or equal to
the true linear value (in mm),
between the two true values,
equal or above the true
logarithmic value, for the two
higher numbers on the 1000 and
1016 high marker lines of
Experiment 1

True linear True logarithmic

1016 high marker

Number to place: 106

Placing at: <60 =60 60<placement<120 =120 >120

No. of participants: 0 1 49 1 9

Number to place: 1011

Placing at: <60 =60 60<placement<170 =170 >170

No. of participants: 0 0 43 0 17

1000 high marker

Number to place: 13.3

Placing at: <62 =62 62<placement<120 =120 >120

No. of participants: 1 6 53 0 0

Number to place: 115.2

Placing at: <78 =78 78<placement<170 =170 >170

No. of participants: 16 3 40 0 1
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than 10 min to complete. Participants were told to put the
number where they thought it should go on the line below.

Numbers were presented one at a time on a computer
screen. Below the number was a single line of length 165
mm. The line featured markers, labelled 0.5 (left) and 1000
(right), at either end. Participants responded by clicking on the
bar using a mouse. No feedback was given and each trial was
followed quickly by the next.

The numbers to be placed on the 14 trials were the same as
those used in the logarithmically distributed condition of
Experiment 2, except that all numbers were rounded to the
nearest whole number. (e.g. 0.9 became 1.) The numbers were
always presented in the same order, which was identical to
that used in the “all-in-view” condition.

Results

First, we performed analysis of variance to see if over all 14
letters there was a significant difference in placement between
the two distribution sets and the two instruction conditions for
the “all-in-view” results. The main purpose of this analysis
was to see if the different instructions had any effect. This
analysis of variance showed a significant difference between
the two number sets, F (1,72) = 206.7, p < .0001, MSError =
151.3. (Note, however, that this difference has no practical
importance because the numbers in the two sets were quite
different.) More importantly, we found no significant main
effect of the two instruction conditions, F(1,72) = 2.79, p =
.10, or the interaction of number sets and instruction condi-
tions, F(1, 72) = .04, p = .84. In consequence of this analysis,
the remaining results in this section merge data from the two
instruction conditions.

Figures 4 and 5 show key results from the experiment.
Figure 4 shows the results of presenting the numbers with
equal linear spacing. On average, the participant placed the
numbers using close to linear spacing, although with a tenden-
cy to undershoot. Figure 5 shows the results obtained with the
numbers with equal logarithmic spacing. The results show that
on average participants used neither equal linear nor equal

logarithmic spacing to place the numbers, although the aver-
ages are closer to linear than logarithmic spacing.

Signed deviations from the placements that would be ex-
pected from linear scaling were computed for each of the 14
linearly distributed numbers. One-sample t-tests showed sig-
nificant (p < .05) deviation from zero for seven of the numbers
(0.5, 286, 500, 573, 643, 786, 857). The largest of these devi-
ations was -8.8 mm (for 786). For the log distributed numbers,
signed deviations were calculated both from linear and from
logarithmic scaling. For the comparison with logarithmic scal-
ing there were significant (p < .05) deviations from zero (all
negative) for all but the lowest number (0.9). The largest de-
viation was -64.3 mm (for 84.3). For linear scaling there were
significant deviations from zero for all the numbers. These
deviations were all positive except for the lowest number.
The largest deviation was 20.8 mm (for 138). These statistical
tests simply confirm what is evident in Figs. 4 and 5.

As for Experiment 1, we can ask whether the intermediate
finding with the logarithmically distributed numbers reflects a
mix of individual participants using either logarithmic or lin-
ear scaling or most individuals adopting an intermediate posi-
tion. Table 3 shows the results for the 13 logarithmically dis-
tributed numbers greater than 1. It is clear that, for the lower
numbers particularly, individual participants overwhelmingly
adopted a compromise position in placing the numbers higher
on the number line than would be expected with linear place-
ment but not as much as would be expected from logarithmi-
cally scaled placement. (Note, however, that for the two
highest numbers (370 and 605), the distributions are reason-
ably even about the true linear value, in line with the closeness
of placements to true linear values in Fig. 5.) In sum, 399 out
of 481 of the placements (83%) fell between the true linear
and true logarithmic values, rather than the 50% predicted
under the switching explanation (test of proportion, p <
.0001).

We fitted power functions of the form (Average Distance −
60) = A(Number)b to the data from both distributions separate-
ly, using the 13 data points with numbers greater than 1. For
the linearly distributed numbers, b = .96 (R2 = 1.00); for the
logarithmically distributed numbers, b = .54 (R2 = .98).

“One-at-a-time” condition

In order to make the “one-at-a-time” results comparable with
the main results of Experiment 2, all responses on the number
line in this experiment were linearly converted to their equiv-
alent placements on the paper line of the “all-in-view” condi-
tion. So, for example, 1000 was converted to 220 mm, 1 to 60
mm. Figure 5 shows the average responses so converted from
the “one-at-a-time” condition. Confidence intervals for the
mean were quite varied (ranging from 59.9–64.0 for placing
1, to 74.2–115.9 for placing 138), but generally they were
wider than for the “all-in-view” condition. The figure

Table 2 Numbers of participants in the different conditions of
Experiment 2

Number distribution Linear Logarithmic Total

“All-in-view” questionnaires

Placed “where seemed good to you” 17 16 33

Placed “where … should be located” 22 21 43

Totals 39 37 76

“One-at-a-time” condition (all placed
“where … should be located”)

15 15
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indicates that the “one-at-a-time” placements were closer to
linear than those of the main results, but there is also some
evidence of compression. Averaging over the 14 numbers
gives a mean placement for the logarithmically distributed
numbers of the “all-in-view” condition of 89.2 mm and the
average for the “one-at-a-time” condition was 81.6 mm. A t-

test (using participants as the random factor) showed the dif-
ference to be significant, t(50) = 2.08, p = .04. Comparisons
for the individual numbers presented showed significant (t-
test, p < .05) differences between the two modes of viewing
and placement for seven of the numbers (0.9/1, 4.4, 7.2, 32.5,
84.3, 370, 605). A single-sample t-test comparing the mean
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placement for the “one-at-a-time” condition with the mean
expected linear placement (77.6 mm) also showed a signifi-
cant difference, t(15) = 2.30, p = .04.

Discussion

Both Experiment 1 and Experiment 2 produced results that
were predicted from Parducci’s (1965) range-frequency theory.
Experiment 1 found that using a very large number range leads
to more number compression than a small (1:10) or moderate
(1:1000) range, as predicted from range-frequency theory. One
might object that the largest range of numbers in this study is
completely outside the experience of the participants, but the
ratio of the smallest to the largest numbers (10-4:1011 or 1:1015)
to be placed was equal to the range of sound intensities humans
encounter. Thus, the range presented was not outside the range
of our experience of sensory qualities.

As noted in the Introduction, Landy et al. (2013, 2017)
previously reported range effects. A principal source of these
effects in their research seems to have been the use of number
words, but this does not seem to be the explanation of our
results. Most participants who were asked about their use of
number words reported not using them. Moreover, the highest
high marker stimuli we used were not easy to verbalise. Ten
quadrillion (1016) and a hundred billion (1011) are not com-
monly used words. Moreover, our omission of commas in the
number presentations was chosen to direct participants’ atten-
tion to the length of the number or number of zeros rather than
to a verbal description. In consequence, our range effects

probably came about through a different context-producing
process than those range effects found by Landy et al.
(2013, 2017).

Experiment 2 showed compression to be affected by the dis-
tribution of the numbers, again as predicted from range-
frequency theory. A linear (uniform) number distribution there
gave rise to near linear placement of the numbers, whereas a
logarithmic distribution gave rise to more compressive place-
ment. Somewhat different forms of the instructions did not have
a significant effect on this result. The more usual experimental
paradigm of presenting numbers to be placed one at a time on
new, clean lines did lead to a reduction in the strength of the
frequency distribution effect. Of course, in the one-at-a-time par-
adigm there was no opportunity for participants to see the actual
frequency distribution at a glance and a reduced opportunity for
learning it as they placed successive numbers.

The experiments were designed so as to enable a logarith-
mic compressive function to appear in at least some experi-
mental conditions. We used 1 as a lower marker in both stud-
ies and equal logarithmic placement in all conditions of
Experiment 1 and the logarithmically distributed condition
of Experiment 2. Yet, despite such nudges towards the use
of a logarithmic function, no experimental condition actually
produced one. This is evident from Figs. 1, 2, 3, 4 and 5.
Instead, the placement means tended to follow functions that
were intermediate between linear and logarithmic.

An obvious explanation of the average intermediate functions
would be that some participants might use a linear function and
others a logarithmic function, and the number of individuals
doing eachmight varywith the experimental conditions andwith
the actual number to be placed. The result of such switching
would be average data that were intermediate. However, the
analyses of individual responses for Experiments 1 and 2 indicate
this is not the correct explanation as the distribution of individual
responses indicated intermediate placement rather than bimodal
linear and logarithmic placement.

The finding that individual participants place numbers in a
way that is intermediate between linear and logarithmic place-
ment is in line with previous research indicating segmentation
in placement on number lines (e.g. Landy et al., 2013; Moeller
et al., 2009). It also resembles a finding from Grace et al.
(2018) that participants often responded in a way that mixed
ratios and differences in comparing stimulus pairs, rather than
opting for one or the other.

Thus, our experiments indicate that where compressive
functions arise, the compressive function is not logarithmic.
So, what is it? Our studies fall short of answering this ques-
tion, but some tentative suggestions can bemade. It is possible
that the compressive function follows a power law, but, if so,
our results show that it follows a power law whose exponent
changes with both the range and distribution of the numbers to
be placed. This is possible and, in the case of stimulus range,
in line with previous research on power functions in

Table 3 Number of participants (total n = 37 for all placements) placing
values below or equal to the true linear value, between the two true
values, equal or above to true logarithmic value, for the higher 13
numbers to be placed in the logarithmically distributed condition of
Experiment 2

Number to place True linear True logarithmic
< = between = >

1.6 1 4 31 0 0

2.7 1 1 35 0 0

4.4 0 0 37 0 0

7.2 0 1 36 0 0

11.7 1 2 34 0 0

19.2 2 1 34 0 0

32.5 2 0 34 0 1

52.5 5 1 31 0 0

84.3 5 1 31 0 0

138 9 0 28 0 0

228 7 1 28 0 0

370 18 0 19 0 0

605 15 0 21 1 0
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psychology generally (Kowal, 1993; Poulton, 1968;
Teghtsoonian, 1973). On the other hand, it is not theoretically
very satisfying.

Another possibility that is consistent with the data present-
ed here, is that, following Parducci (1965), placements are
heavily influenced by the range and distribution of the pre-
sented numbers. This influence may be such as to overwhelm
any simple mathematical function. However, a detailed expla-
nation of how this might occur requires not only more empir-
ical work but also a coherent explanation of how range-
frequency theory should be developed in order to accommo-
date continuous rather than categorical variables. Larger scale
versions of the “one-at-a-time” condition of Experiment 2
might help resolve this issue (cf. Cicchini et al., 2014;
Haubensak, 1992).

The effects of range and frequency found here resemble the
effects of number words (e.g. Landy et al., 2013), training
effects (Huber et al., 2014), number-line midpoint practice
(Barth & Paladino, 2010), cultural effects (Göbel et al.,
2011), and boundary provision (Cohen & Sarnecka, 2014),
in that they indicate the importance of context in how people

assign numbers to number lines. Given all these different ef-
fects, it is difficult to imagine that there is any one basic num-
ber or magnitude representation.

To summarise, the experiments presented here show that
both the range (provided the range is great enough) and the
distribution of the numbers (provided there are enough num-
bers) affect the degree of compression when numbers are
placed on number lines. The compression is not simply de-
scribed by a logarithmic function, but it is not yet clear what
the compressive function is. Indeed, it is not clear that there is
a single compressive function.
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Appendix. Shown below is the layout used
for the Experiment 1 higher marker = 1000
page

Above is a number line. Below is a list of four numbers. Please
indicate how you would like to place each number on the line
by writing it near the line with a little arrow to show where it
best fits in on the line. Please place the numbers where you
think looks good to you. You can place the numbers anywhere
on the line, including outside of the arrows.
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