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Abstract On the basis of experimental data, long-range time
representation has been proposed to follow a highly com-
pressed power function, which has been hypothesized to ex-
plain the time inconsistency found in financial discount rate
preferences. The aim of this study was to evaluate how well
linear and power function models explain empirical data from
individual participants tested in different procedural settings.
The line paradigm was used in five different procedural vari-
ations with 35 adult participants. Data aggregated over the
participants showed that fitted linear functions explained more
than 98% of the variance in all procedures. A linear regression
fit also outperformed a power model fit for the aggregated
data. An individual-participant-based analysis showed better
fits of a linear model to the data of 14 participants; better fits of
a power function with an exponent β > 1 to the data of 12
participants; and better fits of a power function with β < 1 to
the data of the remaining nine participants. Of the 35 volun-
teers, the null hypothesis β = 1 was rejected for 20. The dis-
persion of the individual β values was approximated well by a
normal distribution. These results suggest that, on average,
humans perceive long-range time intervals not in a highly
compressed, biased manner, but rather in a linear pattern.
However, individuals differ considerably in their subjective
time scales. This contribution sheds new light on the average
and individual psychophysical functions of long-range time
representation, and suggests that any attribution of deviation
from exponential discount rates in intertemporal choice to the

compressed nature of subjective time must entail the charac-
terization of subjective time on an individual-participant basis.

Keywords Time representation . Line paradigm . Time
discounting . Psychophysics

Recently, interest has been growing in the study of time per-
ception and representation (e.g., Di Luca & Rhodes, 2016;
Grondin, 2010; Matthews & Meck, 2016; Shi, Church, &
Meck, 2013; Wittmann, 2009). The majority of these studies
addressed short intervals, ranging from milliseconds to a few
minutes. Despite the relevance of longer time scales (i.e.,
days, months, or years) to human decision making, only a
few studies have investigated how we perceive and use calen-
dar time when making financial decisions (Ray & Bossaerts,
2011; Takahashi, Oono, & Radford, 2008). For instance,
many economic intertemporal choices, such as taking a loan,
postponing the purchase of a car, choosing among different
options for investment, or deciding on withdrawing money
from a retirement plan, are made on those longer time scales.
Our internal representation of longer time intervals, along with
several possible cognitive biases, likely affects how we make
related decisions. For instance, when choosing between pros-
pects with different associated delays, humans apply hyper-
bolic discounting of future rewards (e.g., Frederick,
Loewenstein, & O’Donoghue, 2002; Green & Myerson,
2004), instead of the normative exponential discounting
(Samuelson, 1937). This leads to irrational choice behavior
from a theoretical economic perspective, such as preference
reversals. Biases in subjective time scale are hypothesized to
explain this inconsistency, along with alternative explanations
such as uncertainty about the delivery or reception of the re-
ward (Dasgupta & Maskin, 2005; Sozou, 1998).

* Camila S. Agostino
camila.agostino@ufabc.edu.br

1 Federal University of ABC, São Bernardo do Campo, Brazil
2 Koç University, İstanbul, Turkey

Atten Percept Psychophys (2017) 79:833–840
DOI 10.3758/s13414-017-1286-9

http://orcid.org/0000--0003--0539--7492
http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-017-1286-9&domain=pdf


Long-range time representation, by which we mean calen-
dar times in the range of days to years, is commonly assessed
via a cross-modal matching paradigm, frequently using line
length. This approach consists of asking participants to indi-
cate, on a straight line, the perceived length of the duration of
different long-range time intervals. It requires the translation
of time representation into a spatial representation (the length
of a line), based on a presumed isomorphism between the
representations of these two dimensions. There is substantial
variability in the ways this paradigm is used across different
studies. In most versions, the line is presented to the partici-
pants with a predefined length. Participants then have to move
the mouse cursor along the line to create a segment that best
represents how long they perceive a certain time interval to be
(Zauberman, Kim, Malkoc, & Bettan, 2009). Another version
allows participants to stretch the line to a desired length, un-
limited by the size of the screen, by means of a scroll bar (Kim
& Zauberman, 2009, 2013). The extremes of the line are typ-
ically labeled with reference words, such as “very short^ and
“very long^ (but see Kim & Zauberman, 2009, 2013).

The results of several studies (Han & Takahashi, 2012;
Kim& Zauberman, 2009, 2013; Zauberman et al., 2009) have
suggested that long-range subjective time follows a nonlinear
function (compressed form); that is, participants do not in-
crease the length of their spatial representation proportionally
to the increase in the time interval estimated. For example, the
estimated spatial (line) length of a 36-month-long interval is
only twice as long as the estimated spatial length of a 3-
month-long interval (Zauberman et al., 2009). A natural way
to approach both accelerating and decelerating psychophysi-
cal functions is by fitting them through a power function.
Power functions have been used to describe the perception
of several physical quantities since the early days of experi-
mental psychology (Stevens, 1957, 1961). Stevens’s power
law maps the intensity of physical stimulus M to subjective
magnitude ψ(M). The power function ψ(M) =αMβ used to-
ward this end has two parameters, where α is a multiplicative
constant that depends on the measurement units, and the ex-
ponent β changes from one stimulus attribute to the next,
determining the shape of the psychophysical function (e.g.,
negatively [β < 1], positively [β > 1], and proportionally
[β = 1] accelerating curves). The resultant psychophysical
functions become straight lines with a slope equal to β when
they are expressed on a log–log scale. Over a large number of
studies, Stevens identified how subjective intensity increases
as a function of physical intensity (namely, the β parameter)
for different attributes.

Although power functions were also found to account for
subjective time (Eisler, 1976, with exponents lower than but
close to 1; Grondin & Laflamme, 2015, with exponents higher
than but close to 1), the perception of short intervals in the
range of seconds is better described by linear, or quasilinear,
functions (e.g. Allan, 1983;Wearden& Jones, 2007). Here we

approached the issue by first reevaluating how well a linear
model explains the long-range timing data, in comparison to
power function models. We also evaluated how robust these
results are across different experiments through key procedur-
al variations.

Method

Participants

Thirty-five healthy undergraduate students (ages 19–29 years,
mean 21.9; 19 women, 16 men) participated as volunteers.
Each participant was assigned randomly to one of five exper-
imental groups; thus, each group was constituted of seven
participants. The experimental protocol for Groups I–IV
followed the conventional line paradigm (Zauberman et al.,
2009), whereas in Group Va modified version was used. Prior
to the beginning of the task, participants were told that they
would participate in a time perception experiment and provid-
ed written consent for their participation. All experimental
protocols were approved by the Research Ethics Committee
at the Federal University of ABC.

Stimuli, apparatus, and procedures

Group I Participantswere seated in an isolated laboratory room,
70cmfromacomputermonitor.The following instructionswere
presented on screen, in Portuguese: “In this study you will be
asked to indicate your subjective feeling of duration between
today and many days in the future. Time intervals may vary
between 3 and 36 months. Please read the instructions carefully
and indicate your response.^1 After confirming that the partici-
pant had understood these instructions, the following text was
displayed on the upper part of the screen: “Imagine the interval
below.Move the bar to indicate how long you consider the dura-
tionbetween today and the given interval to be.^2The time inter-
val in months was presented below these instructions and was
chosen pseudorandomly from the set {3, 6, 9, 12, 15, 18, 21, 24,
27, 30, 33, 36},with the restriction that, by the endof the session,
the number of trials with each interval was the same. Below the
numeric time interval, a 180-mm line (681 pixels)was presented
with the labels“Veryshort^ and“Verylong^placedat the leftand
right lineextremes, respectively.The initialpositionof themouse
cursor was always at the center of the line. Participants had to
move the cursor to the right or left to arrive at thedesired segment
length and click the left mouse button to confirm their response.

1 Nesse estudo, você será solicitado a indicar seu sentimento subjetivo da
duração entre hoje e vários dias no futuro. Os dias podem variar entre 3 e
36 meses. Por favor, leia as instruções cuidadosamente e indique suas
respostas.
2 Imagine o intervalo abaixo. Mova a barra para indicar quão longa você
considera a duração entre hoje e o intervalo dado.
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Themaximumresponsewindowwas10s, afterwhichanewtrial
was initiated. Each of the 12 time intervals was presented five
times, totaling60 trialsper sessionblock.Four training trialswith
random selection of intervals were presented in the beginning of
the task to familiarize participants to the procedure andwere not
included in the analyses.

Groups II, III, and IV The experimental designs for these
groups allowed for evaluation of the importance of the reference
labels at the extremes of the line to performance. The “Very
short^ and “Very long^ labels were replaced by “Today^ and
“36 months,^ for Group II, and “Today^ and “10 years,^ for
GroupIII.For theparticipants inGroupIV, thelineshadnolabels.

Group V The participants in Group V were explicitly asked
to imagine how long each time interval lasted, with the fol-
lowing instructions presented on screen in Portuguese:

Please read carefully the instructions. In this experiment,
you will be presented with time intervals. Imagine how
long each interval lasts. The beginning and end will be
signaled with a cross in the middle of the screen. Next, a
line will be presented. The left extreme represents a
short duration time interval. The right extreme repre-
sents a long duration time interval. Mark on the line,
with a finger touch, the length that corresponds to your
sensation in relation to the duration of the time interval.3

A fixation cross then appeared for 2 s in the middle of the
screen, to improve attentional focus and reduce trial-to-trial
variability. Next, the time interval was presented on the center
of the screen for 4 s, followed by another 2-s presentation of
the fixation cross. Finally, the line appeared in a random loca-
tion around the center of the screen (randomized coordinates,
with a radius distance of 100 pixels from the center of the
screen). Randomization of the line position was introduced
due to the possibility that participants might memorize the
previous line and response positions and use them to guide
subsequent responses, hence reducing the independency of
the trials. For Group V, the lines were presented with no ref-
erence labels. Figure 1 illustrates the general procedure.

Analyses

All responses (line lengths) RM were transformed into month
units—that is, RM/MU, where RM is the individual average
line length response generated for M months, and a month

unitMU was defined as R18/18. A referenceM = 18 was used
because the coefficient of variation was relatively low for
stimuli at and above 18 months. The data gathered were sub-
mitted to different types of analyses, to evaluate the different
quantitative models at the level of averaged and individual
data. Linear and power models were fit.

We compared the performance of a simple linear approach
to one in line with nonlinear behavior using the
nonnormalized data. Specifically, we used the power function
R = αMβ, with R being the nonstandardized rating by the re-
spondents, andM being the interval to be evaluated, expressed
in months. A constraint of β = 1 is equivalent to a no-intercept
linear model. Results with 0 < β < 1 indicate deceleration of
the ratings with increasing time, which is typically reported
in the literature based on aggregate data and is numerically
similar to a Weber–Fechner psychophysical relationship.
Results with β > 1 indicate acceleration as a function of time.
Whereas the β metric quantifies the downward or upward
curvature of the psychophysical metric function, the α metric
is a simple scaling parameter that varies according to how
participants use the rating scale. It is specifically related to
the upper limit of the lengths used across the range of the

3 Por favor, leia com atenção as instruções. Nesse experimento, serão
apresentados intervalos de tempo. Imagine quanto tempo dura esse intervalo.
O início e o fim desta parte serão marcados por uma cruz no meio da tela. Em
seguida, será apresentada uma linha. A extremidade esquerda da linha
representa um intervalo de tempo de curta duração. A extremidade direta da
linha representa um intervalo de tempo longa duração. Marque na linha, com
um toque do dedo, o comprimento correspondente a sua sensação em relação
à duração do intervalo de tempo.

Fig. 1 Experimental procedures. (A) Instructions given to the
participants in Group I. The same overall design was used for Groups
II–IV, but with variations on the labels at the extreme ends of the line (see
the text for details). (B) Sequence of events for Group V. The main
differences from the procedure used in the other groups were the
presentation of events on different screens, the presentation of a fixation
point, and the presentation of the response line at a randomized location in
each trial.

Atten Percept Psychophys (2017) 79:833–840 835



independent variable. Estimates of α and β are bound to be
inversely correlated across the range of the independent vari-
able, but this is a numerical rather than a conceptual issue.

The power function, as given in Stevens (1961), includes
an additional parameter to capture an “offset^ term, which he
called the effective threshold. We assumed the offset to be zero
in order to make comparisons with other published models
(usually with two free parameters) easier. The offset is also
more meaningful in the original context of sensory coding,
where it indicates the effective sensory threshold; it is not clear
what it would mean in symbolically represented input infor-
mation, as is the case for the experiment reported here.

Comparisons of Bayesian information criteria (BICs) and
log-likelihood ratio tests were used to evaluate the extents to
which participants had a compressed subjective experience as a
function time (β < 1), a near-linear view of time (β ≈ 1), or an
accelerating view of time (β > 1). Note that we do not advocate
the hypothesis that people cluster in three distinct groups, but
rather that this nonlinearity coefficientmight have a continuous
distributionacross thepopulation, rather thana fixedvalueof1,
possibly similar to a normal distribution. TheBIC comparisons
and log-likelihood testsmerely allowedus to identify forwhich
participants the hypothesis that responses were linear could be
rejected with some amount of statistical confidence.

In all models, unless mentioned otherwise, a zero-value
intercept constant was assumed. All analyses were pro-
grammed in the R programming environment with the nlme
package, to obtain maximum-likelihood fits of the nonlinear
models (Pinheiro et al., 2016).

Results

Linear model

Figure 2A shows the lengths (in pixels) of the generated line
segments for each long-range interval, averaged across all
trials for each of the seven participants in Group I. Since there
was considerable variability across participants, responses
were normalized through a transformation to month units, as
described above. This normalization greatly reduced the var-
iability across participants (Fig. 2B), which suggests that, al-
though individuals differed in their criteria, their psychophys-
ical functions for time representation were similar. A linear
regression analysis showed that a linear function, fitted to
the averaged normalized data, explained over 99% of the var-
iance (Fig. 2C). Figure 3 shows that the normalization
absorbed the differences between the other conditions and
Group III, who had the instruction to consider a 10-year hori-
zon, which prompted people to adopt shorter line lengths for
corresponding intervals than in the other groups.

The same analysis was carried out with the data from all
five experimental groups. A comparison of the averaged

responses across participants shows only minor differences
between the groups (Fig. 3). In all cases, the fitted linear func-
tions explained more than 98% of the variance in the data.
Thus, at the level of aggregated data, a simple linear model
provided excellent absolute fits and did not support the sug-
gestion of subjective perceptual compression of calendar time.

Linear model versus nonlinear model

We first applied a standard simple linear regression and a
power model fit to the aggregated data (across groups), ob-
tained by averaging the ratings, in normalized subjective
months, across volunteers per time interval. The linear regres-
sion with an intercept (intercept = –1.23 ± 0.266, slope = 1.10

Fig. 2 Time interval estimations of Group I. (A) Average lengths of
responses (line segments, in pixels) for the seven participants in Group
I. (B) Normalized average responses for each participant. (C) Average
responses across participants, with the best linear function superimposed
(error bars represent SEMs).
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± 0.012) outperformed the power model with the same num-
ber of parameters (α = 0.823 ± 0.048, β = 1.07 ± 0.018) for the
aggregated data, with BICs of 19.22 versus 20.22. Note that a
lower BIC indicates a better model, and that a BIC difference
of less than 2 is considered “not worth more than a bare
mention^ (Kass & Raftery, 1995). If participants, at a group
level, were using a function of subjective time experience that
was compressed, we would expect an estimate of β < 1.We can
see that this is not the case: The better fit of the linear model and
the estimate of β larger than—and not significantly different
from—unity shows no evidence of the compression of time.

The model applied to aggregated data masks important
variability between individuals. A subgroup of the participants
showed upwardly curving psychophysical functions, whereas
others showed a downwardly curving trend in their ratings as a
function of time interval, and yet other participants seemed to
map months almost perfectly linearly onto the visual scale.
The averaging of individual scores that themselves followed
nonlinear power laws might produce a linear function at the
group level, depending on the specific sample distributions of
the α and β parameters. The effect of averaging across ob-
servers before fitting a model is often overlooked, but it can
give misleading results (Estes, 1956; Gallistel, Fairhurst, &
Balsam, 2004). It is, of course, not possible to obtain individ-
ual psychophysical functions in experimental designs that do
not rely on repeated measurements, which is the general case
of studies in long-range time representation (Han &
Takahashi, 2012; Kim & Zauberman, 2009, 2013;
Zauberman et al., 2009). To investigate the extent to which
participants varied in their psychophysical functions, we used
two complementary approaches. First, the power function was
fit to the data from individual observers, and point estimates of
α and β were obtained. Variation in α should be natural and is

what is generally accounted for by standardization, but varia-
tion in β around the unity reference value should reveal
whether observers had a compressed or an accelerated view
of time at long time scales. In a second approach, variations in
α and β values across volunteers were parametrically modeled
and incorporated in a nonlinear mixed model.

The linearmodelhadahigher log-likelihoodfor14outof the
35participants,whereas a powermodel provided the best fit for
21 participants. Out of these 21, 12 participants yielded esti-
mates of β > 1, consistent with acceleration in their respective
psychophysical functions,whereas only nine yielded estimates
of β < 1, the latter being in line with the compression-of-time
hypothesis.Theestimatesofα andβwerecorrelated (Fig. 4), as
expected, but this fact does not bear onwhether the participants
were represented better by accelerating or decelerating psycho-
physical functions. Clearly, most β estimates were above 1.

Note that, because the transformation to subjective month
units was linear (though with scale parameters for each indi-
vidual), the model with the best fit for each participant was
independent of whether the raw line lengths or the subjective
month-unit scale was used. The values of the estimated slope
parameters, represented by α in the power function, would be
different, however. One notices, in Fig. 4, that Group III, in
which participants were told to consider the end of the line as
representing 10 years, shows lower estimates for α than do the
other groups when the raw length scores are used. This is to be
expected: If the line has to span 120 months rather than 36, the
subjective months-unit references in Group III should have a
length that is lower than the references in the other groups. In
the next paragraph, we test this formally by using mixed
models. The β parameter estimates, however, which respond
to nonlinearity, are not affected by scaling. A histogram,
Gaussian fit, and kernel density estimate are shown in

Fig. 3 Comparison of the normalized time interval estimations from the
different experimental groups (I to V). The data points are averages across
all group participants.

Fig. 4 Point estimates of the α and β parameters in Stevens’s power law
[ψ(t) =αtβ] for all volunteers in the five experimental groups. The dashed
horizontal reference line represents linearity (power estimates above the
line support an accelerating curvature, and values below the line support a
decelerating curvature). The insets present results from the participants in
experimental Group I (the arrows indicate their respective β and α
function values).
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Fig. 5. Out of the 35 participants, the null hypothesis β = 1was
rejected for 20 (F test, df = 1, p < .05). Although this drops to
13 when a Bonferroni–Holm correction is applied, it points
clearly toward a wide distribution of this nonlinearity param-
eter across volunteers. Figure 5 shows that a normal distribu-
tion across the population is a useful approximation. Both
Kolmogorov–Smirnov and Shapiro–Wilk tests of normality
showed that the Gaussian distribution fit the distribution of
βs excellently (ps> .50 for both tests).

By applying a mixed nonlinear model, the observations
made above were quantified in the form of the estimated pop-
ulation mean and standard deviation of the distribution of α
and β values. Since the volunteers participated in groups with
different scaling instructions, which particularly affected the α
estimates for Group III (10-year horizon) when using line
length as the dependent variable, we included Group as an
additional fixed-effect factor. Specifically, indicator variables
were used to identify which instruction manipulation each of
the volunteers pertained to. Likelihood ratio tests for hierar-
chical models were used in order to identify whether the group
variable affected α or β, for pixel lengths as well as for the
normalized subjective month scale.

According to theAkaike information criterion (AIC) and like-
lihood ratio (LR) tests, for raw pixel length, group significantly
affectedα (LR20.49,df = 4,p = .0004).ToverifywhetherGroup
III alone was responsible for this significant likelihood ratio test,
we constructed a model in which a single indicator variable was
used to code whether participants did or did not belong to Group
III.Theresultsof thesemodelfitsshowedthat thiswas, indeed, the
case:Therewasnosignificantdecrease in fit from the substitution
of all previous dummy indicator variables by this single one (LR

2.58, df = 3, p= .46), but including this single indicator variable
yielded a significantly better fit, judging from both information
criteria and the likelihood ratio test (LR 17.91, df = 1, p < .0001).
This sequence indicates that Group III alone was responsible for
the significant effect ofαwhen pixel line length was used.

In a similar fashion, the effect of group on β was tested.
However, when we took the most parsimonious previous
model, in which α was allowed to be different from the value
for other groups only for Group III, including estimates for β
that varied across groups did not significantly improve the
model (LR = 4.05, df = 4, p = .40). This shows that, although
the different experimental instructions did change the ways
that volunteers—specifically, the group that was requested to
observe a 10-year maximum—used the visual scale, the psy-
chophysical functions were not either more or less linear in
any group than in the others. The best model for
nonnormalized responses had, as its population distribution
estimates, a mean of 17.37 and a population standard devia-
tion of 10.62; for Group III specifically, the mean was
11.13 pixels lower. The population mean estimate for β was
1.052, and its standard deviation was 0.146. The standard
error of the mean β estimate was 0.028, and a 95% two-
sided confidence interval still included 1, so in principle we
cannot reject that the population average corresponds to linear
treatment of the scale, although we did find a marginally sig-
nificant p value when testing this (.064). Fixing β at either 1
(linearity) or its best estimate in the mixed model for all par-
ticipants failed to capture the variability in the data complete-
ly. In likelihood ratio testing, there are some caveats for
assigning p values to model comparisons when one of the
parameters is at boundary. However, with a likelihood ratio
of 189.6 and considerable increases in the AIC and BIC due to
the constraints, there is no doubt that it is inappropriate to
consider β to be fixed in the population. This underscores
the importance of understanding individual variation.

Although sex differences in time perception of short intervals
have been reported in the literature (e.g., Glicksohn & Hadad,
2012),wedidnot findsystematicdifferencesduetosexinfollow-
upanalyses.Themeanβestimates formalesandfemales, respec-
tively,were 1.11 (SD = 0.237) and 1.04 (SD = 0.186).A t test for
independent samples on the beta estimates did not come close to
reaching statistical significance (p > .30). Neither did age corre-
latesignificantlywithβ,withaPearsoncorrelationof .10(p > .50
in a t test). Nonparametric equivalents, as well as an analysis of
variance of age group and sex, including an interaction, did not
reveal any straightforward relation between age, sex, and long-
range time representations.

Discussion

In this study, the line paradigm was used to investigate the rela-
tionship between subjective and objective calendar time. A

Fig. 5 Density of β estimates across the sample. The solid lines form a
traditional histogram with 0.1-width bins, the dashed line is the best-
fitting normal distribution (mean 1.070, standard deviation 0.200), and
the dotted line is the kernel density estimate—see the legend. In this
density estimation method, the bandwidth is determined in a data-
driven fashion, after Sheather and Jones (1991). In this case, the
bandwidth value thus produced, and used in this graph, was 0.1059.
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conventional experimental paradigmwas usedwith variations on
the reference labels, and a modified version was tested with par-
ticipantswho imagined thedurationsofdifferent long-range inter-
vals and responded on a linewith no reference labels. The group-
averaged data gathered from all experiments were describedwell
byalinearfunction.Theseresultsarediscrepantfromthenonlinear
(i.e., compressed) functions that have related subjective to objec-
tive calendar time reported in previous studies (Han&Takahashi,
2012; Kim & Zauberman, 2009, 2013; Zauberman et al., 2009).
The source of the discrepancy is uncertain, but the experimental
setting is not a plausible source, since the demonstrated effects
were stable across different conditions and all participants were
members of the sameWestern culture. The experimental designs
and statistical analyses of earlier studies are more plausible
sources. All previous studies measured the performance of many
participants but ignored their individual differences, thus not
allowing for estimation of the individual psychophysical func-
tions. However, any claimmade regarding subjective time scales
necessitates theassessmentof temporal judgments regardingmul-
tiple targets within an individual participant. In the present study,
fewer participants were engaged in the experiments, but repeated
measurements allowed for estimates of the individual subjective
time representation functions. The analyses revealed significant
differencesacross individuals, demonstrating theamountof infor-
mation lost by averaging across participants.

Taken together, the results of the best individual model fits
with the mixed power model, the conclusion is sobering and
unavoidably unspecific: Some participants produced near-
linear evaluations of time on time scales up to 3 years; others
produced a compressed pattern, as is commonly reported in
literature; and yet others, possibly the largest group, produced
ratings that as compared to a linear model, accelerated as a
function of time. The experimental design had sufficient sta-
tistical power to show that the data do not support a general
compressed-time model. In fact, the best generalization for the
aggregated data was a simple linear function. Interestingly, the
reference labels at the extremes of the response line did not
affect the subjective functions after normalization at the mid-
point. This indicates that humans maintain relatively constant
ratios between different subjective magnitudes of the time
intervals in different conditions of line labeling.

The near-linearity of the subjective time scales for long
intervals provides some insights regarding the representation-
al basis of long time intervals. The mechanisms (e.g., integra-
tion) and processing dynamics that are widely implicated for
timing short intervals are not directly applicable to intervals in
the range of days, months, and years. However, magnitude-
based representations of short intervals might still be used for
assigning values to the semantic categories of calendar units.
The kind of transformation that interfaces between these sym-
bolic and magnitude-based representations appears to pre-
serve proportionality (as unitless quantities) to a large extent.
Similar arguments have previously been made regarding the

nature of the mapping between numerals and magnitude-
based representations of numerosities (e.g., Gallistel &
Gelman, 1992), as well as for the mapping between the
magnitude-based representations of time and numerosity
(e.g., Balci & Gallistel, 2006). Thus, humans might be able
to process and operate on long intervals by translating them
into a functional representational space that originally consti-
tutes the representational raw material of other quantities.

A theory-of-magnitude approach formulated by Walsh
(2003), in fact, assumes that the representations of time,
numerosity, and space are part of a generalized magnitude
system with overlapping cortical substrates. This would pro-
vide similar metric properties for these representations, mak-
ing it possible to use other dimensions in addition to short time
intervals (such as spatial distances) as the metric basis for
quantifying calendar units. According to the same rationale,
it is also possible that similar results would be observed for
long-scale distances (in addition to calendar times)—for in-
stance, those presented in conventional units. It is important to
note that one would not expect the individual differences ob-
served in this study to emerge from personal prioritization of
one dimension or another as the metric basis for calendar
units, since from a formal theoretical perspective these dimen-
sions would be expected to abide by the same representational
transformations during both encoding and decoding.

In summary, the results of the present study shed new light on
the psychophysical functions that govern long-range time repre-
sentation. Instead of a highly compressed, biased time represen-
tation, theresultssuggest that,at leastonaverage,peopleperceive
time in a near-linearmanner,with considerable individual differ-
ences toward slightly compressed or accelerating power func-
tions. This weakens the basis for attributing deviations from ex-
ponential discount rates in intertemporal choice to a bias in sub-
jective time (Lucci, 2013; Wittmann & Paulus, 2008), and calls
for the reevaluation of results that have suggested otherwise.
Given that this work emphasizes individual differences in psy-
chophysical functions, future studies could focus on the reliabil-
ity of β estimates by testing the same group of participants peri-
odically over a long test period. Finally, it needs to be noted that
the age range of the participants in the present study, 17–29, only
spanned early adulthood, and the correlation analysis conducted
might therefore not capture tendencies across a larger portion of
the lifespan.Clearly, tounderstand thepatternsof representation-
al differences across the population, further studies are in order.
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