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Abstract Observers show small but systematic deviations
from equal weighting of all elements when asked to localize
the center of an array of dots. Counter-intuitively, with small
numbers of dots drawn from a Gaussian distribution, this bias
results in subjects overweighting the influence of outlier dots
– inconsistent with traditional statistical estimators of central
tendency. Here we show that this apparent statistical anomaly
can be explained by the observation that outlier dots also lie in
regions of lower dot density. Using a standard model of V1
processing, which includes spatial integration followed by a
compressive static nonlinearity, we can successfully predict
the finding that dots in less dense regions of an array have a
relatively greater influence on the perceived center.
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Introduction

Much of our environment consists of Bstuff^ that contains com-
plex statistical structure. The human visual system is exquisitely
sensitive to the summary statistics that describe this structure
across a wide variety of domains that includes orientation, size,
location, speed, and facial expression (Albrecht & Scholl, 2010;

Alvarez & Oliva, 2009; Ariely, 2001; Chong & Treisman,
2005; Hubert-wallander & Boynton, 2015; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001). What is less well un-
derstood is the mechanisms by which these summary represen-
tations are formed.

Here we examine how the statistics of a sample’s distribution
influence the weighting of individual items in the context of one
of the most commonly studied summary statistics – the ability of
individuals to extract the mean or central tendency of a group of
similar objects (Alvarez & Oliva, 2008; Greenwood, Bex, &
Dakin, 2009; Hubert-Wallander & Boynton, 2015). Findings
that representations of the group are more accurate than for any
individual element has led many to conclude that the process
appears to include all items in the group (Allik, Toom,
Raidvee, Averin, & Kreegipuu, 2014; Ariely, 2001; Chong &
Treisman, 2005; Haberman & Whitney, 2007; Oriet & Brand,
2013; Robitaille & Harris, 2011). It remains, however, an open
question what contribution each element makes, and how the
visual system arrives at a summary of these elements.

Some studies have shown that elements that deviate far from
the group mean contribute less to the mean estimate than those
that are more similar to the mean, consistent with the idea of a
Brobust estimator^ that treats outliers as being less reliable.
Such Brobust weighting^ has been shown both for category
judgments of shape and color (de Gardelle & Summerfield,
2011), and for estimates of the centroid of a set of dots (Juni,
Singh, & Maloney, 2010). However, other studies have shown
the opposite finding, despite using quite similar stimuli. When
observers were asked to saccade to the center of an array of dots
they showed biases towards regions with fewer dots
(McGowan, Kowler, Sharma, & Chubb, 1998).

In our study, subjects estimated the center of a two-
dimensional array of dots using a procedure similar to that of
McGowan et al.’s (1998) but with a mouse click response rather
than a saccade. We thought it possible that explicit judgments
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(Juni, Singh, & Maloney, 2010) and saccades (McGowan
et al., 1998) might be mediated by different estimates of
the center location and could explain the differing results.
To further examine any possible dissociation between
these measures we also collected free viewing eye move-
ments alongside explicit mouse click responses. The
prediction made from the previous literature would be that
eye movements would be biased towards more isolated
dots and click responses would show equal weighting.
Our results replicated those of McGowan et al. for both
clicks and fixations – dots that lay further from other dots
were weighted more heavily than those in denser regions.
A second experiment serves to rule out the possibility of a
more object-based model where it is the number of items
per-unit-space in favor of a perceptually-based filtering
model.

Such results cannot easily be explained as being me-
diated by the process of statistical estimation per se –
sensible statistical estimators of central tendency (mean,
median, mode, trimmed mean, and so forth) universally
weight outliers less heavily. We suggest here that Banti-
robust^ biases in statistical estimation may reflect pro-
cessing within an earlier stage of processing, and show
that our results can be explained using a simple model
where estimates of the mean are generated through sim-
ple unbiased averaging of nonlinear V1 responses that
are themselves influenced by dot density.

Experiment 1

Methods

Participants

Fifteen students from the University of Washington were re-
cruited from the Department of Psychology. All received pay-
ment of US$20 for their participation. Data collection for each
subject was completed in under 60 min, across two sessions
separated by a minimum of 4 h. All participants had normal or
corrected-to-normal vision. Recruitment and study procedures
in all experiments presented here were conducted in accordance
with the ethical policies set forth by the University of
Washington’s Human Subjects Division, and those in the
Declaration of Helsinki.

Analysis of simulated data using variance based on two
similar studies (Juni et al., 2010 - see Supplementary
Material; McGowan et al., 1998) suggested that ten subjects
would be sufficient to detect the predicted effect and would
replicate previous findings. We set out to collect 15 observers
to ensure sufficient power given that we expected to exclude
trials due to failures in eye-tracking.

Apparatus and materials

Observers sat in a dimly lit room, 50 cm from a CRT monitor
subtending 40.4° × 30.8° of visual angle. Two-dimensional
movements of one eye were recorded by an ASL Eye-Trac®
6 at ~100 Hz. The subject’s other eye remained uncovered. A
chin and forehead rest was used to stabilize the head position
and maintain the distance from the screen. All stimuli were
generated by custom software written using Psychophysics
Toolbox (Brainard, 1997) for MATLAB.

Procedure

A schematic of the task design is shown in Fig. 1. Participants
viewed a fixation cross in the center of the screen for a period
that varied randomly between 500 and 1,000 ms. Then ten dots
(radius of 0.3°) appeared simultaneously. Participants were free
tomove their eyes as soon as the dots appeared.After 300ms the
dot array was removed. After a further 300ms a cursor appeared
in a random location on the screen and participants made their
response by moving the cursor with the mouse and clicking on
the location they perceived to be the mean of the dots shown.

The instructions to the participant were to maintain fixation
on the cross until it disappeared from the screen and to click on
the location they thought was the center of the dots shown. It
was made clear that this was not a sample from a larger pop-
ulation whose mean they were estimating.

A response had to be made within 2,000 ms of the cursor
appearing or the trial would be discarded and a warning
displayed. In order to make it clear that the saccade was not
an explicit response, both eye movement data and click re-
sponses were collected within the same trials.

For each trial, the dot locationswere sampled from a bivariate
Gaussian probability distribution with a standard deviation of
2.3°. The center of the bivariate Gaussian distribution was
drawn randomly on each trial from a uniform rectangular region,
subtending the inner 70% of the full screen (20.2° × 15.1°). If a
dot’s sampled location was outside the borders of the screen, it
was resampled until it was within the full screen region.

Participants completed practice trials before beginning the
experimental trials and were given the opportunity to clarify
any instructions. Each participant completed 8–10 blocks of
50 trials with eye-tracking recalibration between each block.

Eye-tracking inclusion criteria

Fixations were defined as periods of eye position velocity be-
low .015°/s for interpolated first derivatives of the eye position.

Trials were excluded if there were disturbances in the eye-
tracking data collection such as no detected fixations, eye-
tracking locations beyond the screen area or periods of no
eye-tracking (including blinks). Trials were also excluded if
the first fixation was not within 1.5° visual angle of the
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fixation cross at the beginning of the trial, if the second fixa-
tion occurred before 200 ms or after 600 ms and if the second
fixation was made further than 7° visual angle from the trial
array center (based on the dot distribution SD = 2.3 this would
include almost all possible dots).

A number of subjects struggled to consistently meet these
criteria and were excluded. In total, five of 15 subjects were
excluded from all analyses on this basis, leaving ten subjects
with 300–500 trials each.

Results

Our measures of interest were the click response reporting the
subjects’ explicit estimate of the center of the dots with a
mouse click, and the location of fixation at the end of the first
saccade (note that subjects were not specifically told to fixate
on the center of the dot array). Both responses consistently
landed near the mean of dot arrays. This can be seen in Fig. 2
where the response location is centered on the mean of the dot
array. Error in locating the mean of the array was smaller in the
click responses (M = 0.64°, SD = 0.43°) than the first fixation
(M = 1.22°, SD = 0.82°). There was no difference in size of
error dependent on the eccentricity of the trial (Click: t(9) =
0.58, p = .58, 95% CI [−0.001, 0.002]; Fixation: t(9) = 0.80, p
= .44, 95%CI [−0.003, 0.006]). All subjects showed an under-
shoot in the saccades with a group mean proportion of 0.91
(SD = 0.23) compared with a group click mean proportion of
1.00 (SD = 0.14). This can be seen in Fig. 2b where the
distribution of fixation responses is shifted to the left of the
origin. These undershoots are consistent with previous sac-
cade to target literature (e.g., McGowan et al., 1998).

Dot weighting as a function of distance from the true mean

We used maximum likelihood estimation to estimate the
weight given to dots as a function of the distance from the
true mean. Dots were sorted into distance bins with edges
defined using a cumulative normal distribution so that each
bin contained, on average, the same number of dots.

We then calculated the average weight applied to each dot
within a bin by assuming that the perceived center of the array
on trial t is the average of the individual dot locations, weight-
ed by how far each dot fell from the mean. Let Xt = {x1t, x2t,
…, x10t} and Yt = {y1t, y2t,…, y10t} be the X and Ypositions of
the 10 dots for trial t, and let the weights for the bins be w[1],
w[2],…,w[nbins]. The perceived center G(X),G(Y) for trial t
is then predicted by:

G w;X tð Þ ¼
X 10

i¼1
xitw βit½ �

X 10

i¼1
w βit½ �

and G w; Y tð Þ

¼
X 10

i¼1
yitw βit½ �

X 10

i¼1
w βit½ �

where βit is the index [1, 2,…, nbins] for the bin that dot i falls
in on trial t. If the weights are all equal, then the model predicts
that subjects will estimate the center of the dots to be located at
the true center of gravity of the dots:

G X tð Þ ¼
X 10

i¼1
xit

10
and G Y tð Þ ¼

X 10

i¼1
yit

10

The best-fitting weights were found using a maximum like-
lihoodmethod that assumed that the variability in the subject’s
responses has a bivariate normal distribution and is indepen-
dent across trials (supported by observing descriptive plots of
the responses, Fig. 2a and b) (Wilks, 2011).

While the slope of the best-fitting weights for the click
responses appears qualitatively to increase as a function of
distance, the deviation from equal weighting is just shy of
statistical significance (Mean slope = 0.089, SD = 0.12, t(9)
= 2.18, p = .057; Fig. 3b). Equal weighting as a function of
distance is more apparent with the fixation response. The lo-
cation of the first fixation does not deviate significantly from
the flat line prediction of a weighting of 1 regardless of dot
distance (Mean slope =−0.003, SD = 0.13, t(9) = −0.08, p =
.94; Fig. 3c).

Fig. 1 Trial schematic. Participants were instructed to maintain fixation
on the cross until the ten dots appeared. The dots were presented for
300 ms. Participants made their response by moving the cursor to the
location they perceived to be the mean dot location. A faint grid of dots

were always present to help participants localize objects on the screen and
minimize effects of other non-uniform visual landmarks such as screen
edges (e.g., Deubel, 2004)
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Dot weighting as a function of dot proximity

Because our dots were drawn from a Gaussian distribution,
density falls off with distance from the sample mean. Thus, an
alternative explanation for our findings is that subjects put
more weight on dots that are isolated from other dots. We first
tested this bymeasuring how dot contribution is influenced by
the number of other dots in near proximity.

For each trial, dot proximity was measured as the average
distance to the other 9 dots. For isolated dots this results in a
larger number. This is a parameter free measure of density.
Weights as a function of average proximity were then estimat-
ed by fitting the model described above, but this time dots
were sorted into discrete average proximity bins instead of
into discrete distance to the mean bins.

Unlike the distance results we do not see equal weighting
as a function of proximity for the click responses (Mean slope
= 0.011, SD = .007, t(9) = 4.88, p < .001; Fig. 3e). Greater
weight is associated with dots that lie further from other dots.
Weights for fixation responses did not deviate from equal
weighting (Mean slope = 0.03, SD = 0.14, t(9) = 0.60, p =
.56; Fig. 3f).

Dot weighting as a function of density

Average proximity as implemented above is a measure of
density over the whole array of ten dots and is therefore a
somewhat implausible calculation for the brain. An alternative
which can be measured over a more local area implements a
linear filter which has been widely observed in the visual
system. Our third model takes this approach.

For each trial, dot density was determined by convolving
an image of the dot field with a 2-D Gaussian. The standard
deviation of the Gaussian used to define density was allowed
to be a free parameter for each observer which led to slightly

different boundaries of the density bins. Density was then
defined as the amplitude of this Bdensity map^ at each dot
location. An isolated dot takes the lowest possible density of
one. Weights as a function of density were then estimated by
fitting the model described above, but this time dots were
sorted into discrete density bins instead of discrete distance
bins. The results reported here were found by repeating the bin
fits using the average Gaussian width separately for click re-
sponses (M = 0.83, SD = 0.17) and first fixations (M = 0.80,
SD = 0.23).We tested a range of Gaussian standard deviations
between 0.4° and 2.0° and found the weights to be robust to
the choice of Gaussian standard deviation.

Consistent with the proximity results, we do not see equal
weighting as a function of density for the click responses
(mean slope = −0.10, SD = 0.07, t(9) = −4.54, p = .001;
Fig. 3h); lower weights were assigned to dots in high density
regions (Fig. 3h). Free viewing data examining the location of
the first fixation shows the same pattern of results (mean slope
= −0.05, SD = 0.06, t(9) = −2.75, p = .022; Fig. 3i).

A linear-nonlinear model for localization

We next show how our results are consistent with a linear-
nonlinear, or LNmodel, in which the perceived center of mass
is computed by linear spatial filtering followed by a static
compressive nonlinearity. To implement the model we the
generated a density map as described above by convolving
an image of the dot field for each trial with a 2-D Gaussian.
The density map was then passed through an exponential
function, U = Vp. The perceived center was calculated as the
two-dimensional centroid of the modified density map. If p <
1, then Vp a compressive nonlinearity that increases the rela-
tive influence of dots in regions with lower density. This mod-
el of linear spatial filtering followed by a static non-linearity is
consistent with known psychophysical (Legge, 1981; Legge

Fig. 2 Scatterplots showing responses from one representative subject for the (a) mouse-click and (b) first fixation. Responses for each trial are rotated
so that the true mean is to the right of fixation and normalized so that the true mean is at the origin. The central black cross indicates (0,0)
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& Foley, 1980) and physiological evidence (D. G. Albrecht &
Hamilton, 1982), as well as well-established Bnormalization^
models of early visual processing (Carandini & Heeger, 2012;
Heeger, 1992).

Figure 4 shows an example of this model for an example
set of dots. The leftward panel shows the center-of-mass after
linear spatial filtering. The center-of-mass remains identical to

the Euclidian mean of the unfiltered dots. The rightward panel
shows the center-of-mass after the output of the linear spatial
filters is passed through a saturating nonlinearity (p = 0.5).
The effect is a small shift of the center-of-mass of the image
away from high density regions.

For each subject we estimated the value of p that mini-
mized the difference between predicted and obtained center

Fig. 3 Estimated weights as a function of distance from the true mean (a-
c), average proximity (d-f), or density (g-i). All error bars are standard
errors across 10 observers. a Histogram of observed dot distances from
the truemean. bWeights as a function of distance for click responses. The
influence of a dot on the estimated center increases as a function of how
far it was from the true mean. c The binned weighting according to
distance for the first fixation as a response. d Histogram of average
proximity to other dots at each dot location. e The binned weighting

according to average proximity for click responses. Dots in a trial
receive weighting as a function of how far they are on average from
other dots. f The binned weighting according to average proximity for
the first fixation as a response. gHistogram of densities at dot locations. h
The binned weighting according to density for click responses. Dots in a
trial receive weighting as a function of how far they are from the trial
mean. i The binned weighting according to density for the first fixation as
a response

Atten Percept Psychophys (2017) 79:553–562 557



of mass estimates. The best fitting value of p ranged between
0.31 and 0.84 for our ten subjects. The mean value of p across
subjects was significantly lower than 1 (M = 0.63, SD = 0.16),
t(9) = −7.28, p < .001, 95% CI [0.52, 0.75]. Thus, adding a
compressive nonlinearity significantly improves our ability to
predict subjects’ performance.

We next demonstrate the relationship between the LNmod-
el and the binned distance and density models by simulating
responses generated by the LNmodel and fitting the simulated
data with the weighted models. If the LN model is valid, we
expect to find the similar weights as for the observed data.

Responses were generated, for the same dot stimuli that were
presented to the observers, using a power function, U = Vp, and
the values of p found for each observer. Noise was added to the
simulated responses using the observers own click response stan-
dard deviation for draws from a zero mean 2-D Gaussian.

The weights for the density and distance binning models
are shown in Fig. 5. The weights found for the predicted
responses closely follow those observed in the behavioral
data.

Interim discussion

This first experiment investigated whether the visual system
equally weights all elements when localizing a group of dots.
We found that observers were not equally weighting all dots.
Instead there is support for an overweighting of dots in low
density regions as defined by both a parameter free proximity
model and a linear filter model. We were able to account for
these findings by using a simple LN model of early visual
processing where a linear spatial filter is followed by a non-
linear compression leading to an emphasis on lower densities
relative to higher densities.

Experiment 2

Experiment 1 showed that observers were not equally
weighting all of the dots when estimating the sample center.
These results are consistent with two main classes of models.
For the Bposition-based^ model, elements are assigned

Fig. 4 Model of local detectors as mechanism of localization. Left: The
Euclidian center of mass calculated after convolving a dot field with a
Gaussian. The center-of-mass remains identical to the Euclidean mean.

Right: Passing the output of the linear spatial filters through a saturating
nonlinearity results in the center-of-mass being shifted towards regions of
the image with lower dot density

Fig. 5 Results of the LNmodel fit to click responses. Using the same set
of stimuli presented to observers, responses were generated using a linear
filter then a compressive non-linearity power function using the power
values for each observer. Bins are jittered in the x-axis for clarity.
Predicted responses are shown in black and observed in red. a Predicted

response weights for the binned distance model compared to observed
response data model. b Predicted response weights for average proximity
model compared to observed response data model. c Predicted response
weights for density model compared to observed response data model
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weights based entirely on their position relative to other ele-
ments, so that outlying and/or dots in regions of low density
receive relatively higher weights. For the Bperceptually-
based^ model, the center of mass is computed on the repre-
sentation of the stimulus after an early stage of perceptual
processing. A compressive nonlinearity in the early filtering
process leads to an effective overweighing of dots in low-
density regions.

Experiment 2 was designed to distinguish between these
two classes of models by varying the contrasts of the dots
within each array. A spatially-based model only considers
dot location and should therefore not be affected by dot con-
trast. However, the filtering process in the LN model should
reduce the influence of low-contrast dots on the perceived
center.

Methods

Participants

Eight subjects from the University of Washington participated
in the experiment. All received payment of US$20 for their
participation. Data collection was completed in under 60 min.
All participants had normal or corrected-to-normal vision.

Apparatus and materials

The apparatus was the same as for Experiment 1.

Procedure

The procedure was as for Experiment 1, but the dot stimuli
were not of uniform contrast. Instead five of the ten dots were
presented at 75% (high) contrast, and the other five at 18.75%
(low) contrast (See Fig. 6a for an example stimulus).
Participants were asked to report the mean location of the dots
weighting the presence of a dot equally without regard to the
contrast. We did not collect eye movement data. Each of the
eight participants completed 12 blocks of 50 trials.

Results and discussion

The average error in locating the trial center was comparable
to Experiment 1 (M = 0.70°, SD = 0.41°). A multivariate
regression using high and low contrast dots as independent
variables found that observers weigh higher contrast dots
more than those of lower contrast (mean difference = 0.007,
SD = 0.009, t(7) = 2.37, p = .050, 95% CI [0.00, 0.15];
Fig. 6b).

These data support a perceptually-based model that de-
pends at least somewhat on contrast. We tested this hypothesis
by using the LNmodel, with the same subject parameters as fit
in Experiment 1, to predict the center response and comparing

the weights estimated for high and low contrast dots. Indeed,
the results show that high contrast dots are contributing more
to the center estimation (Fig. 6b). The effect size is larger in
the predicted responses compared with the experimental data.
This could be explained by some equal weighting of all the
dots with a bias based on contrast. The equal weighting would
reduce the effect size of contrast. This stage could operate on
the output of the visual systems linear-nonlinear cascade
where observers actively attempt to account for all the dots
in their estimate.

While contrast may not be the sole characteristic of dot
localization, Experiment 2 provides evidence that contrast is
an important contributor to the decision and can be accounted
for in the LN model.

Experiment 3

Experiments 1 and 2 provided evidence that observers are
basing their center judgements on the basis of density as de-
fined by contrast rather than proximity. In both experiments,
dot positions were drawn from a 2-D Gaussian distribution for
which dots in low density regions also tended to fall far away
from the geometric mean.

For Experiment 3, we used a Bdoughnut-shaped^ non-
Gaussian distribution for which, on average, dot density was
maximal at an intermediate distance from the geometric mean.
This allowed us to compare weights for dots in low density
regions either near or far away from the geometric mean.

Methods

Participants

Fourteen subjects from the University of Washington
Psychology Department Subject Pool participated in the ex-
periment. All received course credit for their participation.
Data collection was completed in under 60 min. All partici-
pants had normal or corrected-to-normal vision.

Apparatus and materials

The apparatus was the same as for Experiments 1 and 2.

Procedure

The procedure was as for Experiment 1, but the dot stimuli
were drawn from an alternative distribution. Dots were located
by drawing first from a one-dimensional distribution
consisting of two overlapping Gaussians with means of ±2°
and SDs of .5°. Dots drawn from this distribution were then
rotated by a random angle around the origin, and the whole
field was then shifted to a new position on the screen based on
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a uniform distribution. Participants were asked to report the
mean location of the dots weighting the presence of a dot
equally. We did not collect eye movement data. Each of the
14 participants completed 12 blocks of 50 trials.

Results and discussion

The average error in locating the trial center was comparable
to Experiments 1 and 2 (M = 0.90°, SD = 0.62°). Using the
same maximum likelihood estimation procedure as
Experiment 1 we find that each of the models showed a similar
qualitative pattern of weighting to that of the Gaussian distri-
bution, although weighting by distance was now also signifi-
cantly different from zero (Distance: t(13) = 3.30, p = 0.006;
Average proximity: t(13) = 6.70, p < .001; Density: t(13) =
−7.36, p < .001) (Fig. 7).

The Bdoughnut^ distribution has, on average, a maximal
density at an intermediate distance from the geometric mean.
This distribution has regions of low density both near and
away from the mean and therefore allows for the dissociation
between density and distance by examining weights for re-
gions of low density both near and far away from the geomet-
ric mean. We binned dots into equal frequency bins according
to both distance and density, resulting in a three-by-three ma-
trix crossing low, medium and high density with near, medium
and far distances from the mean. A two-way ANOVA found a
main effect of distance F(2,117) = 23.45, p < .001, density
F(2,117) = 4.10, p = .019, but no interaction of distance and
density F(4,117) = 0.169, p = .954. The main effects were
expected from the slopes found above and the lack of interac-
tion indicates that low density regions have a greater influence
than high density regions not solely because they fall far away
from the geometric mean, demonstrating that density has a
strong influence on the perceived center of mass.

Discussion

When asked to determine the center of a group of dots,
observers show biases that deviate from equal weighting
of each element. Dots which lie further from other dots are
given more weight. This result is highly counter intuitive
because it cannot easily be explained as being mediated by
the process of statistical estimation per se. Contrast appears
to matter in this density weighting as low contrast dots
received less weight than high contrast dots. Finally, we
showed that this was not limited to samples drawn from
Gaussian distributions by replicating these findings in a
Bdoughnut-shaped^ distribution which allowed us to disas-
sociate the contributions of distance and density to
weights. Our results show that weights for dots at different
distances from the mean are not weighted differently when
they fall in regions of similar density.

We therefore conclude that local density is a major
factor in influencing a dot’s contribution to the perceived
center of an array. We suggest that this may be the result of
processing within earlier visual areas: our results can be
explained using a simple LN model consisting of a linear
filter followed by a static compressive nonlinearity. This
model is consistent with, for example, known psychophys-
ical (Legge, 1981; Legge & Foley, 1980), physiological
(Albrecht & Hamilton, 1982) and imaging data (Kay,
Winawer, Mezer, & Wandell, 2013) describing V1 process-
ing. It could also be attributed to other earlier areas (e.g.,
Freeman et al., 2015) but the size of the receptive fields
required for the linear stage suggests later areas (Kay et al.,
2013; Smith, Singh, Williams, & Greenlee, 2001). Our
results do not require that the summary representation itself
must be generated at this early sensory stage, rather, the
output of this early stage is the available representation to
be summarized.

Fig. 6 a Schematic representation of the stimuli for Experiment 2. Half
of the dots on each trial were of high and low contrast. bWeight given to
dots in center estimation for low and high contrast dots. In red are the

weights from the observed data of Experiment 3. In grey and black are the
predicted weights from the LNmodel using the parameters (compressive
power and standard deviation of click responses) from Experiment 1
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These results are similar to a previous study that had sub-
jects saccade to the estimated center of a field of uniformly
distributed dots (McGowan et al., 1998). Our replication of
their findings demonstrates that their results were not specific
to using a saccade as an explicit response to report the center
of mass. Like us, McGowan et al. found that localization
showed a bias toward regions of lower dot density. In their
Discussion, McGowan et al. (1998) suggested that their re-
sults could potentially be accounted for by local detectors
covering the array region have a response that depends on
the number and intensity of dots in its Breceptive field.^ To
explain the overweighting of dots in regions with few other
dots the response of a local detector must increase at a succes-
sively slower rate (saturate) as dots are added to its Breceptive
field.^ This description is very similar to our LN model.
Furthermore, we have shown that that the density of dots not
only depends on an all-or-nothing presence of dots but also on
its contrast which is indicative of an early sensory process and
rules out later proximity mechanisms.

One previous study (Juni et al., 2010) using samples drawn
from a Gaussian distribution found that subjects’ performance
was consistent with equal weighting of all dots. Simulations of
Juni et al.’s analysis suggest that they may not have been able
to detect an effect of distance the size of that reported in

Experiment 1 (Supplementary Material). Our model also sug-
gests that with the larger number of dots in the sample (100)
they would also not expect to see a strong effect of density as
the variation in dot density falls off relatively uniformly as a
function of distance in all directions. As a result, the effect of
variations in dot density on center-of-mass estimates is negli-
gible with larger numbers of dots. In the Juni et al. study, when
mixtures of distributions were used, and subjects were told to
ignore noise dots when making their estimates of mean loca-
tion, subjects behaved robustly – down weighting the influ-
ence of outlier dots in regions of low density. We suggest that
this represents a second stage of robust integration that follows
an earlier sensory stage that, under some circumstances, pro-
duces anti-robust biases in estimates of central tendency.

The effects of earlier stages of processing may explain
some of the apparent differences in how summary statistics
are computed across different domains. For example, we have
previously shown striking differences in how summary statis-
tics are computed when objects are presented serially over
time. Summaries of mean object location were influenced
very strongly by early items. Summaries of mean object size,
facial expression and motion direction did not show this pri-
macy effect, and were more influenced by later items (Hubert-
Wallander & Boynton, 2015). One possibility is that these

Fig. 7 a Example trial from the alternative Bdoughnut^ distribution.
Marginal histograms show the dot locations for all the trials for one
observer. They follow the overlapping Gaussian distribution they were

drawn from. b Weights as a function of distance from the trial mean. c
Weights as a function of average distance to all other dots of the trial. d
Weights as a function of density
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results do not reflect differences in how summary statistics are
calculated, but rather reflect differential processing at an ear-
lier stage. For example, if spatial attention is rapidly deployed
to the location of early-presented dots, then this may enhance
the early sensory representations of those (and later) dots that
fall near that location, producing a strong primacy effect, with-
out overweighting of early items existing explicitly within the
summary statistic calculation.

In conclusion, here we suggest that some summary statis-
tics are not computed over items in the world, but over sensory
representations of those stimuli. Anything that alters that sen-
sory representation is likely in turn to influence the resulting
sensory statistic.
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