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Abstract Foraging and search tasks in everyday activities are
often performed in large, open spaces, necessitating head and
body movements. Such activities are rarely studied in the lab-
oratory, leaving important questions unanswered regarding
the role of attention in large-scale tasks. Here we examined
the guidance of visual attention by statistical learning in a
large-scale, outdoor environment. We used the orientation of
the first head movement as a proxy for spatial attention and
examined its correspondence with reaction time (RT). Partic-
ipants wore a lightweight camera on a baseball cap while
searching for a coin on the concrete floor of a 64-m2 outdoor
space. We coded the direction of the first head movement at
the start of a trial. The results showed that the first head move-
ment was highly sensitive to the location probability of the
coin and demonstrated more rapid adjustment to changes in
environmental statistics than RTs did. Because the first head
movement occurred ten times faster than the search RT, these
results show that visual statistical learning affected attentional
orienting early in large-scale tasks.

Keywords Attention in learning . Visual search . Spatial
cognition

Substantial research on visual attention has used reaction
times (RTs) and eye movements as primary indices of spatial
orienting (Corbetta et al., 1998; Deubel & Schneider, 1996;

Kowler, 2011; Liversedge, Gilchrist, & Everling, 2011; ’t
Hart, Schmidt, Roth, & Einhäuser, 2013). These measure-
ments are adequate in laboratory tasks in which actions are
limited just to eyemovements. However, foraging, search, and
other daily activities often occur in large spaces that necessi-
tate head and body movements. The difference in spatial
scales and the range of actions may result in unique charac-
teristics of spatial attention in large-scale tasks (for research
demonstrating possible differences between attention in the
lab and in the real world, see Kingstone, Smilek, Ristic,
Friesen, & Eastwood, 2003; ’t Hart et al., 2009). Real-world
environments tend to be stable and contain statistical regular-
ities that repeat across multiple encounters with the same en-
vironment. Yet, visual statistical learning has rarely been stud-
ied outside of the laboratory. Important questions regarding
the time course of statistical learning in large-scale tasks re-
main largely unanswered. The goal of the present study was to
examine visual statistical learning in a large-scale outdoor
task, using the first head movement and search RT as indices
of spatial attention.

Studies conducted on a computer monitor show that sta-
tistical learning can facilitate RTs in visual search and
foraging-like tasks. For example, when searching for a target
among distractors, participants are faster if the search display
occasionally repeats, demonstrating contextual cueing (Chun
& Jiang, 1998). In addition, when the target more frequently
appears in some screen locations than others, participants are
faster at finding it in high-probability locations, demonstrat-
ing probability cueing (Geng & Behrmann, 2002, 2005). Two
theories have been proposed to account for enhanced RTs in
search tasks. The attentional guidance theory proposes that
statistical regularities guide spatial attention to important lo-
cations, and that such guidance often occurs through implicit
learning (Chun & Jiang, 1998). The response selection
theory, in contrast, proposes that statistical learning
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speeds up response decisions after the target has been found
(Kunar, Flusberg, Horowitz, & Wolfe, 2007). These theories
differ in the purported stages during which statistical learning
affects performance: early attentional allocation versus late
response selection. Evidence for the attentional guidance ac-
count has come from studies that measure the first saccadic
eye movement in computerized tasks. Occurring soon after
trial onset, the first saccade is biased toward locations that
have frequently contained the target before (Jiang, Won, &
Swallow, 2014). Evidence for the response selection account
has come from studies that have examined the search RTs for
displays that contain different numbers of distractors (i.e., set
size). Contextual cueing does not increase at larger set sizes,
suggesting that learning may have facilitated response deci-
sions after the target was found (Kunar et al., 2007). Studies
that use event-related potentials to index early attention and
late response decisions have found evidence for both ac-
counts (Schankin, Hagemann, & Schubö, 2011).

Several studies have begun to extend the findings ob-
tained on a computer monitor to large-scale tasks. These
studies have used virtual reality (Rothkopf, Ballard, &
Hayhoe, 2007) or real-world navigation tasks (Droll &
Eckstein, 2009; Foulsham, Chapman, Nasiopoulos, &
Kingstone, 2014). Among them, two studies have specifi-
cally examined the impact of visual statistical learning on
foraging and search behavior in large-scale tasks. These
studies provide an important test for the idea that statistical
learning may have evolved to support navigation and for-
aging in human evolution (Chukoskie, Snider, Mozer,
Krauzlis, & Sejnowski, 2013; Smith, Hood, & Gilchrist,
2010). Smith et al. asked participants to search for a floor
light that, when switched on, would turn to a target color
(e.g., red). The room was surrounded by black curtains and
had minimal environmental cues. Unbeknownst to the par-
ticipants, the target light appeared on one side of the room
four times more often than on the other side. Smith and
colleagues found that participants were faster to find the
target light on the high-probability side than on the other
side, demonstrating statistical learning. In another study,
Jiang, Won, Swallow, and Mussack (2014) asked partici-
pants to search for a coin on the ground of a large outdoor
environment. Unbeknownst to the participants, the coin
was more often placed in one region around them than in
the other regions. Participants became faster to find the
coin in the high-probability region. In both Smith et al.’s
and Jiang, Won, Swallow, and Mussack’s studies, few par-
ticipants spontaneously noticed that the target’s location
probability varied across different regions. These data sug-
gest that similar to computerized tasks, search and foraging
in large-scale environments are aided by visual statistical
learning. However, these studies have not addressed
whether learning affects early spatial attention or late re-
sponse decisions.

As in computerized tasks, in large-scale tasks people may
become faster to orient spatial attention toward high-
probability locations (the early attentional guidance account),
or they may become faster to respond to targets in high-
probability locations (the late response decision account).
The first account predicts that participants shouldmore readily
attend to the high-probability locations, resulting in faster RTs.
However, even if the initial attentional orienting is directed
toward a random location, increased familiarity with the un-
changing visual noise in the high-probability locations may
speed up RTs after participants have oriented toward that
quadrant. As an aggregate measure of all processes, the RT
does not inform us at what stage statistical learning affects
performance. Evidence for or against the attentional guidance
account would come from studies that directly measured early
attentional orienting.

In the present study, we aimed to measure early attentional
orienting in a large, outdoor task using the first head move-
ment and the RT as proxies for spatial attention. This allowed
us to assess whether visual statistical learning affects search
performance relatively early or relatively late. Using these
measures, we examined the time course of visual statistical
learning in large-scale tasks. We reasoned that if search be-
havior is sensitive to ongoing visual statistics, then people
should rapidly acquire an attentional bias toward high-
probability locations during training. In addition, if the target’s
location probability changes later in the experiment, people
should rapidly readjust their attentional bias to reflect the new
environmental statistics. Previous studies using computerized
tasks have found rapid acquisition of visual statistical learn-
ing, but once learned, the attentional bias toward previously
high-probability locations was highly persistent (Jiang, Swal-
low, Rosenbaum, & Herzig, 2013). Here we examined wheth-
er rapid acquisition and slow extinction were also key features
of visual statistical learning in large-scale search tasks.

Participants in our study wore a lightweight video camera
mounted on a baseball cap. The camera recorded continuously
during the task. The video footage was analyzed subsequently
to identify the direction of the first head (and/or body) move-
ment after trial onset. This method is analogous to recording
the direction of the first saccadic eye movement (Jiang, Won,
& Swallow, 2014; Land, 1992; Land & Hayhoe, 2001; Peter-
son & Kramer, 2001). The first head (and/or body) movement
occurs shortly after trial onset. Visual information about the
coin could not have influenced its direction, especially on
trials in which the coin was behind the participant and could
not have been seen without a head (or body) turn. If statistical
learning affects spatial attention, and if changes in attention
are coupled with changes in head and body orientation, then
the first head (and/or body) movement should be more likely
to be directed toward the side of the visual space that more
often contains the coin. In contrast, if statistical learning
speeds up processes that occur after people have oriented
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toward the high-probability region, the direction of the first
head (and/or body) movement should be random.

Method

Participants

Sixteen college students (11 females and five males, mean age
20.5 years) produced complete video and behavioral data. The
sample size was chosen to be the same as in our previous study
on large-scale search (Jiang, Won, Swallow, & Mussack,
2014). An additional three participants were tested, but their
data are not included. For two participants, the video camera
ran out of battery before the completion of the experiment, and
for the third, the video images were unsteady because the
participant frequently touched the baseball cap.

All participants were naïve to the purpose of the study, had
normal or corrected-to-normal visual acuity and normal hear-
ing, and could walk unassisted. Participants received either
$15 or extra course credit for their time. The University of
Minnesota Institutional Review Board approved the study
protocol.

Materials

The study was conducted in an outdoor open area outside
Elliott Hall of the University of Minnesota. Participants
searched for a coin on the concrete floor and reported whether
the black or silver side was up. A piece of paper was taped on
each side of the coin to reduce the sound the coin made when
contacting the concrete floor and the reflection from the coin.
The paper on one side of the coin was black and that on the
other side was silver. These colors were chosen to be approx-
imately equally discernable from the gray concrete. The coin
was the size of a US quarter (diameter = 2.4 cm) and was
ferromagnetic.

The search space was approximately 8 × 8 square meters,
excluding the 0.5-m wide strip of red bricks that bisected the
search space along the east–west direction. Chalk marks
framed the perimeter of the search space and were visible from
the center. Participants stood at the approximate center of the
search space at the beginning of each trial. The search space
could be divided into four equal quadrants (each 4 × 4 m)
around the participants: two in front and two behind. Partici-
pants were shielded from the sun or rain by a large overhang
approximately 3.5 m above the ground. The area was other-
wise open. At the beginning of each trial, half of the partici-
pants faced east, whereas the other half faced west. The facing
direction was consistent throughout the experiment. The coin
could be placed at the center of a cell chosen from an invisible
8 × 8 matrix. Figure 1 shows the schematic and photographic
search environment.

A MacBook Pro laptop computer was placed 0.5 m behind
the participant’s starting position. It controlled the trial timing
and interfaced with a cordless mouse (an Apple Magic
Mouse) using the laptop’s Bluetooth connection. The main
experimenter stood behind the laptop and relied on
pregenerated trial sequences (displayed on a smartphone) to
determine where to place the coin and which side should be
up. To speed up the pace of the experiment, a second experi-
menter picked up the coin from the preceding trial, while the
main experimenter prepared to place the coin for the next trial.
The second experimenter always returned to a fixed position
outside the search space before the trial began. Only one coin
was on the ground during each trial. To reduce the physical
strain on the experimenters, a magnetic pickup tool was used
to place and pick up the coin.

To avoid giving different verbal feedback for each condi-
tion, we standardized the administration of the trials. The main
experimenter said Bgood,^ or Bgood job^ after each trial, ex-
cept on trials in which participants made an error (Bthat’s fine^
or Bthat’s alright^) or were timed out (BYou got timed out. The
coin was over there.^). The second experimenter remained
silent.

Participants wore earplugs that reduced sound by 30 dB.
They closed their eyes between trials, during which time the
main experimenter placed the coin for the next trial. Pilot data
and queries indicated that the participants could not discern
the experimenter’s movement when their eyes were closed.
Participants carried the cordless mouse in their hands as their
response device. A lightweight camcorder was mounted on a
baseball cap that the participants wore. The camcorder record-
ed at a temporal resolution of 30 frames/s and a spatial reso-
lution of 480 × 320 pixels.

Design

The experiment was divided into eight blocks of 24 trials each.
The first six blocks constituted the training phase. During this
phase, the coin was placed in one specific quadrant on half of
the trials (50 % probability, or 12 out of the 24 trials), and in
each of the other three quadrants on 16.7 % of the trials (or
four out of the 24 trials). The coin appeared in a random
location out of the 16 possible locations of the chosen quad-
rant (see Fig. 1a). For simplicity of description, the high-
probability quadrant will be referred to as the Brich^ quadrant,
and the other three quadrants will be referred to as the
Bsparse^ quadrants. Which quadrant was rich was
counterbalanced across participants but was held constant
for a given participant.

The last two blocks constituted the testing phase. During
this phase, the target’s location probability was either the same
as in the training phase (50 % in the rich quadrant, 16.7 % in
each of the sparse quadrants) or was changed to an even dis-
tribution (25% in each quadrant). Half of the participants were
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tested in the probability-maintained condition, whereas the
other half were tested in the probability-changed condition.

We did not tell participants that the coin’s location would
be biased toward the rich quadrant. We also did not inform
them that the coin’s location probability might change.

Procedure

At the beginning of each trial, the participants returned to
the center of the search space. The main experimenter as
well as a voice from the laptop reminded the participants
to close their eyes. The computer voice also read the trial
number (e.g., BBlock 1 Trial 1^). This audio was recorded
by the camcorder and facilitated subsequent video coding.
The main experimenter then swiftly and quietly placed the
coin at a location specified by the pregenerated trial se-
quence. After both experimenters had returned to their
initial positions, the main experimenter shouted BGo,^ up-
on which the participant clicked the mouse to start the
computer’s timer and began search. The mouse click led
to an immediate high beep (1300 Hz, 100 ms) that con-
firmed the beginning of the trial. Participants were free to
move after the trial had started and could make a response
as soon as they had found the coin. They made either a
left or a right mouse click, depending on whether the coin
was black or silver. The laptop recorded their RT and
accuracy and gave a feedback sound about whether the
response was correct. The trial terminated if participants
did not find the coin within 30 s (this happened on 2.5 %
of the trials). The maximal time—30 s—was assigned as
the RT for that trial. We analyzed all trials including
timed-out trials, because the RT was at least 30 s on those
trials. The results were qualitatively similar when timed-
out trials were excluded. At the completion of the exper-
iment and after the earplugs were removed, we asked
participants whether they thought that the coin’s location
was random. We then informed them that it was not ran-
dom and asked them to choose the quadrant where it was
most often placed. Testing lasted approximately 1 h.

Video data coding

An experimenter and a research assistant coded each partici-
pant’s data independently. The research assistant did not know
which quadrant was the rich quadrant or whether a participant
was tested in the probability-maintained or probability-
changed condition. A subset of the trials (3.6 %) showed no
discernable head motion and were not included in the head
movement analysis. The interrater reliability between the
coders was high: .88. The head direction data reported here
were based on coding by the research assistant.

When participants were waiting for the coin to be placed,
the video image was relatively still. When the trial started
(signaled by the experimenter’s BGo^ command and the com-
puter’s beep), the video image quickly panned to the left or to
the right. This panning motion corresponded to either a clock-
wise or a counterclockwise movement of the head and/or
body. Because the panning motion could be produced by ei-
ther a head turn or a body rotation, for simplicity of descrip-
tion we will refer to the motion as the Bhead movement.^

The panning motion toward the side containing the rich
quadrant was assigned a score of 1, whereas the opposite
movement was assigned a score of –1. For example, if the rich
quadrant was on the right side of the participant (either front-
right or back-right), a rightward movement would be coded as
a 1. This coding was independent of whether the coin itself
was on the left or the right. If participants had turned random-
ly, there should be no preference for the left or the right side,
yielding an average score of 0. A preference toward the side of
the rich quadrant would yield a positive score, whereas a pref-
erence toward the opposite side would yield a negative score.

To provide an estimate of the timing of the first head move-
ment, the first author paused the video upon hearing BGo!^
She then stepped through the video one frame at a time until
she could identify a change in head motion that sustained in
the same direction for at least ten consecutive frames
(333 ms). The first frame of that detectable motion
corresponded to the onset of the first head movement. A re-
search assistant also coded a subset (12.5 %) of each partici-
pant’s data to determine the timing of the first headmovement.

A BFig. 1 (a) Schematic illustration
of the search environment. (b)
Photograph of the visual search
environment facing west
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The interrater consistency between the two coders was .79. An
example of the experimental setup and the coding process of
first head movements (created on a Macintosh computer) can
be found at the following website: http://jianglab.psych.umn.
edu/LargeScaleSearch/LargeScaleSearch2.html. The first
video is a Bmock^ video of a lab research assistant
demonstrating the general procedure. The second video is
from an actual recording session.

Results

Behavioral results

Because accuracy was at ceiling (99.0 %), our analysis fo-
cused on the RT data. We excluded incorrect trials in the RT
analysis. RT data from the training (Blocks 1–6) and testing
(Blocks 7–8) phases are displayed separately in Fig. 2a and b.

Training phase We conducted an analysis of variance
(ANOVA) on the target’s quadrant (rich or sparse) and exper-
imental block (1–6). We also entered Group (probability
maintained or changed) as a between-group factor to verify
that the two groups produced similar results in the training
phase. This analysis showed that the RT was significantly
faster when the target was in the rich quadrant than when it
was in a sparse quadrant, F(1, 14) = 20.85, p < .001, ηp

2 = .60.
The RTalso became faster in later than in earlier ones, F(5, 70)
= 3.41, p < .01, ηp

2 = .20. These two factors showed a signif-
icant interaction, F(5, 70) = 4.91, p < .001, ηp

2 = .26. The
effects of target quadrant increased with training, as reflected
by a significant linear trend in the interaction term between the
target’s quadrant and block, F(1, 14) = 4.86, p < .05, ηp

2 = .26.
RTs were comparable between the participants tested in the
probability-maintained and probability-changed conditions, F
< 1. Group did not interact with the other factors, all Fs < 1.11,
ps > .30. As in previous studies, probability cuing showed a
rapid onset in the present study (Jiang, Swallow, Rosenbaum,
& Herzig, 2013; Jiang, Won, Swallow, & Mussack, 2014;
Umemoto, Scolari, Vogel, & Awh, 2010). Probability cuing
was marginally significant in Block 1, t(15) = 2.08, p = .055,
though the effect strengthened with training.

Testing phase The data from the testing phase showed that
probability cuing in RTs persisted despite changes in the tar-
get’s location probability. An ANOVA on group (probability
maintained or changed), block (7 and 8), and the target’s quad-
rant (rich or sparse) revealed a significant main effect of the
target’s quadrant, F(1, 14) = 18.40, p < .001, ηp

2 = .57. Par-
ticipants were faster when the target was in the rich quadrant
than when it was in a sparse quadrant. However, probability
cuing did not interact with group, F < 1. None of the other
main effects or interactions reached significance, all Fs < 1.

Planned contrasts showed that both groups showed probabil-
ity cuing in the testing phase: t(7) = 2.81, p < .026, for the
probability-maintained group; t(7) = 3.32, p < .013, for the
probability-changed group. Consistent with previous
computer-based studies, probability cuing in RTs did not rap-
idly readjust even after the target’s location became random
(Jiang, Swallow, Rosenbaum, & Herzig, 2013; Jiang, Won, &
Swallow, 2014).

Head movement data

Did the behavioral advantage in the rich quadrant reflect a
change in attentional prioritization, or did it happen relatively
late—after people had already oriented toward the rich quad-
rant? Because the first head movement occurred soon after
trial onset, it allowed us to examine changes in early attention-
al orienting.

Timing We coded the timing of the first head movement by
measuring the median onset time across each block in each
participant. The median onset time was then averaged across
participants. This analysis showed that the first head move-
ment started approximately 17 frames, or 561 ms (SE =
76 ms), after hearing the BGo^ signal. The onset time short-
ened as the experiment progressed, F(7, 98) = 3.45, p < .005,
ηp

2 = .20, for the main effect of block (Fig. 3). The onset time
was longer than the typical saccade latency, but was more than
ten times faster than the RT. This confirmed that the first head
movement occurred relatively early during the trial.

To examine whether the onset time of the head movement
correlated with the search RT, we calculated the Pearson cor-
relation between headmovement onset time and search RT for
each participant.We then obtained the mean correlation across
participants. The mean correlation was low (r = .054) and did
not differ significantly from zero, t(15) = 1.90, p > .05. The
lack of a strong correlation suggests that the head movement
and RT measures were not redundant. The head movement
onset latencies were comparable, whether participants turned
toward the rich side (mean 562 ms) or toward the sparse side
(mean 640 ms), t(15) = 1.21, p > .20.

Direction of the first headmovements in the training phase
Figure 4a shows the first-head-movement data from the train-
ing phase. Here, we are particularly interested in whether the
average deviated from zero. A tendency to turn toward the rich
quadrant should yield a positive score, whereas a tendency to
turn toward the other side should yield a negative score. The
mean score was .36 (SE = .08), which was significantly above
zero, t(15) = 4.33, p < .001. To examine whether this tendency
depended on the Target’s Location (rich or sparse quadrant),
Block (1–6), and Group (probability maintained or changed),
we entered these factors in an ANOVA. The analysis showed
that the tendency to orient toward the rich side was statistically
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independent of where the target itself was, F(1, 14) = 1.80, p >
.20. None of the other main effects or interactions were sig-
nificant, all ps > .15. Inspecting Fig. 4a suggests that the head
response was somewhat stronger when the target was in the
rich rather than the sparse quadrants. Although this difference
was far from significant, it suggests that on a small proportion
of trials, the first headmovement was made after the target had
been spotted (e.g., via eye movements). This would be the
case only when the coin was in front of the participants.

To verify that the head movement was frequently directed
toward the rich side even on trials without visual cues from the
target, in the next analyses we included only data from trials in
which the coin was placed behind the participants. Figure 4b
shows data from these trials. Participants showed a tendency
to direct the first head movement toward the side of the rich
quadrant (mean = .33), t(15) = 3.58, p < .003.

Direction of the first head movement in the testing phase
Unlike RTs, the first head movement was sensitive to the
change in the target’s underlying statistics. Figure 5 shows
the testing phase data from trials in which the coin was behind
the participants. Participants in the probability-maintained
group tended to turn toward the side of the rich quadrant,
t(7) = 16.35, p < .001. In contrast, those in the probability-

changed group showed a weaker effect that did not differ
significantly from zero, t(7) = 0.96, p > .35. The tendency to
turn toward the rich quadrant was significantly stronger in the
probability-maintained group than in the probability-changed
group, F(1, 14) = 5.66, p = .032. These data show that partic-
ipants readjusted their overt attentional orienting following a
change in the target’s likely locations.

Statistical learning or intertrial priming? Previous research
on location probability learning had emphasized the contribu-
tions of both long-term statistical learning and short-term in-
tertrial priming (Geng & Behrmann, 2005; Jiang, Swallow,
Rosenbaum, & Herzig, 2013; Jones & Kaschak, 2012;
Walthew & Gilchrist, 2006). Specifically, participants might
prioritize the rich locations either because the target was fre-
quently found there (statistical learning) or because repetition
of the target’s quadrant occurred more often in the rich loca-
tions (intertrial priming). These two mechanisms frequently
co-occur, but several design and analysis approaches can be
used to dissociate them. Here we examined whether the RT
and first head movement preference for the rich quadrant re-
sulted from statistical learning or intertrial priming.

One design approach to tease apart these two mechanisms
was to examine the long-term persistence of the learned atten-
tional bias after the target’s location became random (Jiang,
Swallow, Rosenbaum, & Herzig, 2013). Because intertrial
priming for the previously high- and low-probability regions
was identical during the random phase, any long-term persis-
tence must result from long-term statistical learning alone.
The present study revealed evidence for long-term persistence
in RTs (Fig. 2), providing evidence for a long-term learning
component in the RT measure. However, because head move-
ments did not show long-term persistence, we needed to take a
second data analysis approach to dissociate intertrial priming
from long-term statistical learning.

To this end, we examined the head movement direction for
trial n as a function of the target’s location on trial n – 1 (this
calculation necessitated the inclusion of all trials). We adopted
the following logic: If intertrial priming was the primary driver
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of the head movement direction, then the target’s location on
trial n – 1 should dictate the head movement on trial n. Spe-
cifically, if on trial n – 1 the target was on the rich side, then on
trial n participants should be biased toward turning in the
direction of the rich side, yielding a positive score. Converse-
ly, if on trial n – 1 the target was on the sparse side, then on
trial n participants should be biased toward turning in the
direction of the sparse side, yielding a negative score. The
positive bias following a target on the rich side should be
equal in magnitude but opposite in sign from the negative bias
following a target on the sparse side. Furthermore, because
intertrial priming is a short-term effect, it should produce sta-
ble effects throughout all experimental blocks. In contrast, if
long-term visual statistical learning influenced the headmove-
ment direction, the head movement direction should be biased
toward the rich side on trial n, even when the target on trial n –
1 was on the sparse side. In addition, any long-term effect
should increase in strength as the experiment/training
progressed.

This analysis provided evidence for both mechanisms. Fig-
ure 6 (left) shows data from all participants. An ANOVA on

the preceding target’s side (rich or sparse) and block showed a
significant main effect of the previous target’s side, F(1, 15) =
20.87, p < .001, ηp

2 = .58. Participants were substantially more
likely to turn in the direction of the rich side if the preceding
target was on the rich side. This bias was weaker if the pre-
ceding target was on the sparse side. However, the positive
and negative biases were not equivalent in magnitude. Partic-
ipants showed an overall bias toward the rich side, and this
bias strengthened with training. Both the main effect of block
and the interaction between block and the preceding trial’s
target side were significant, F(7, 105) = 2.19, p < .05, ηp

2 =
.13, for the main effect of block, and F(7, 105) = 2.77, p < .02,
ηp

2 = .16, for the interaction. With training, participants were
more likely to turn toward the rich side, overcoming intertrial
priming on trials in which the preceding trial’s target was on
the sparse side.

The clearest evidence for long-term statistical learning
came from trials in which the previous trial’s target was on
the sparse side. On these trials, intertrial priming should bias
the head direction toward the sparse side (where the previous
target had been), but long-term statistical learning should
drive the head direction toward the rich side. Figure 6 (right)
shows data from these trials only, separately for participants in
the probability-maintained and probability-changed groups.
As is apparent, at the beginning of the experiment head move-
ments were biased toward the sparse side, suggesting that it
was driven primarily by intertrial priming. As training
progressed, however, the bias toward the sparse side was
weakened, and eventually reversed, resulting in a significant
main effect of block, F(7, 98) = 4.03, p < .001, ηp

2 = .22. The
long-term component was strengthened and sustained in par-
ticipants in the probability-maintained condition, but was
weaker in participants in the probability-changed condition.
The interaction between block and participant group was not
significant, F(7, 98) = 1.73, p > .10, though the linear trend in
the interaction term was, F(1, 14) = 5.76, p < .05, ηp

2 = .29.
These data show that training produced long-term biases in
head movements toward the rich side.
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The head movement direction on trial n reacted strongly to
the target’s location on trial n – 1, providing evidence for
intertrial priming. In addition, the head movement direction
was biased toward the rich side, even when the target on trial n
– 1 had been on the sparse side. This second pattern strength-
ened with training, providing clear evidence for long-term
statistical learning.

Explicit awareness

At the end of the experiment, six of the 16 participants report-
ed that they had noticed a pattern in the target’s location. Of
these participants, four gave a vague description of the target’s
location (e.g., more often in front than back, more often near
than far), and the other two spontaneously reported that the
target was more often in their designated rich quadrant. One
participant reported that the coin’s placement had changed
during the experiment. Despite the general lack of spontane-
ous insights, nearly all participants (13 of 16) correctly iden-
tified the rich quadrant in the forced-choice question. The
manner in which they made the correct identification was
revealing: They typically hesitated for several seconds,
expressed a lack of confidence, before moving on to select
(often correctly) the rich quadrant. The recognition rate was
significantly above chance, p < .01. Thus, statistical learning
had produced recoverable explicit knowledge about the tar-
get’s likely locations, yet the use of the knowledge may have
been unintentional.

Discussion

We measured RTs and first head movements in an outdoor
visual search task. The RT data showed that participants relied
on the visual statistics about the target’s location to optimize
search. When the target was frequently placed in one quadrant
of the search space, participants were faster to find it in that
quadrant (see also Jiang, Won, Swallow, & Mussack, 2014).

These behavioral data were bolstered by movement data from
the head and body. The first head and/or body movement that
participants made in the beginning of a trial was frequently
directed toward the side where the target was most often
placed. Because the first head movement occurred relatively
quickly after trial onset, and the orienting preference was
shown even when the target was behind the participant and
could not have been seen, these data provide strong evidence
for the attentional guidance account.

Going beyond previous studies, we showed here that
changes in the target’s statistics led to a corresponding change
in the first head movement. However, the RT advantage in the
rich quadrant persisted. The persistence of probability cuing in
RTs was consistent with findings in computerized search
tasks. Using a similar statistical manipulation (e.g., the target
was placed in one visual quadrant on 50 % of the trials), we
had previously found that participants developed a long-
lasting attentional bias toward the rich quadrant. The bias
persisted in RTs for several hundred trials after the target’s
location became random, and was also detectable over a
one-week delay (Jiang, Swallow, Rosenbaum, & Herzig,
2013; see also Jiang & Swallow, 2013). The head movement
data, however, showed a more rapid readjustment of search
behavior. The discrepancy between RTs and head movements
was unlikely to be a general dissociation between covert and
overt measures of attention. First saccadic eye movements—a
measure of overt attention—have shown a persistent tendency
to be directed toward the previously rich quadrant (Jiang,
Won, & Swallow, 2014).

The rapid readjustment in head movements may reflect the
fact that an incorrect head movement is costly and effortful.
The head movement system is not likely to tolerate the dis-
crepancy between the environmental statistics and attentional
orienting. Therefore, there is great pressure for head move-
ments to accurately reflect the current state of the environ-
ment. One way to do this is to rely more heavily on recent
history (e.g., the preceding trial) rather than on long-term trial
history. Indeed, our analysis of intertrial priming and long-
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term statistical learning showed that both mechanisms contrib-
uted to head movements. Participants tended to turn toward
the side of the preceding trial’s target location, revealing inter-
trial priming. At the beginning of the experiment, priming was
the primary dictator of the head movement direction, but as
training went on, participants were also biased toward the rich
side, even when the preceding trial’s target was on the sparse
side. The strong contribution of intertrial priming to head
movement direction may explain why participants rapidly ad-
justed their head movement direction when the underlying
target statistics changed.

Yet how could participants continue to show an advantage
in RTs toward the rich quadrant after their first head move-
ment had approached randomness? Two factors may explain
the RT difference. First, the RT was sensitive to attentional
orienting from other effector systems. For example, a persis-
tent tendency to direct saccades toward the rich quadrant
could lead to an effect in RTs, even after the head movement
system had adjusted. It is possible that the relative contribu-
tions of intertrial priming and long-term statistical learning
differ for different effector systems. Second, as an aggregate
measure, RT was sensitive to early attentional orienting as
well as to processes that occurred after participants had orient-
ed to the rich quadrant. Evidence for this idea was found
previously in the contextual-cueing paradigm (Kunar et al.,
2007; Schankin et al., 2011). One difficulty with the coin
search task was to segregate the coin from the concrete ground
and to ignore dirt patches that might be confused for the coin.
Because the dirt patches and other background input were
constant, frequent practice might have enhanced participants’
ability to extract the coin from the rich quadrant. This would
lead to faster RTs in the rich quadrant even if the initial
orienting had been random.

The relatively rapid adjustment in first head movements
may also reflect the amount of training used in this experi-
ment. Because the outdoor setup was complex, within an hour
of testing we could only fit 144 trials in the training phase. In
the laboratory, the training phase often contains more than 300
trials. It is possible that if we had increased the length of
training, the headmovement systemmight also have exhibited
long-term persistence. In fact, the long-term component of
learning was more obvious in participants who received train-
ing for eight blocks (the probability-maintained group) than in
those who received training for just six blocks (the
probability-changed group). Clearly, future studies will be
necessary to examine differences in the persistence of various
indicators of attention (e.g., RTs, eye movements, reaching,
head movements, and body locomotion) and to tease apart the
contributions of short-term intertrial priming from long-term
visual statistical learning.

The present study extends research on human attention and
foraging behavior from computerized to large-scale tasks.
Several recent studies have attempted to relate laboratory

search behavior to real-world performance. For example,
Wolfe and colleagues have characterized performance in tasks
involving low-prevalence targets (Wolfe, Horowitz, &
Kenner, 2005) or in computerized tasks that mimicked forag-
ing (Wolfe, 2013). However, attentional phenomena discov-
ered in the lab do not always extend to real-world tasks. For
example, Hayhoe and colleagues showed that whereas percep-
tual saliency is a major factor driving attention in laboratory
tasks (Itti & Koch, 2001; Li, 2002; Theeuwes, 1994; Zhang,
Zhaoping, Zhou, & Fang, 2012), it has virtually no impact on
realistic tasks (Foulsham et al., 2014; for a review, see Tatler,
Hayhoe, Land, & Ballard, 2011). In addition, the spatial ref-
erence frame used to code attended locations is more flexible
in an outdoor search task than on a computer (Jiang & Won,
2015; Jiang, Won, Swallow, & Mussack, 2014). To under-
stand how spatial attention works in more realistic tasks, it is
necessary to broaden research paradigms from computerized
tasks to large-scale tasks. So far, virtual reality is the primary
alternative approach to computerized tasks. Yet, the current
technology in virtual reality does not include all cues that
people naturally use when navigating the real world. The out-
door search task used here presents a new approach to exam-
ining spatial attention in a completely immersed, real-world
environment. The setup is both realistic and controlled, open-
ing new opportunities for testing various aspects of spatial
attention.

Our study leaves several open questions to explore in the
future. At the theoretical level, it raises questions about the
nature of attentional guidance by statistical learning. Our
study showed that statistical learning affects visual attention
relatively early, and therefore is a major source of attentional
guidance. However, it is unclear what role, if any, explicit
awareness plays in the guidance of attention. The high recog-
nition rate for the rich quadrant suggests that explicit learning
could be involved, yet the lack of spontaneous intention con-
tradicts this possibility. How statistical learning relates to more
deliberate forms of goal-driven attention remains an important
question. In addition, our study raises the possibility that the
readjustments in attention differ in flexibility for different ef-
fector systems. The first head movement rapidly readjusted
when the target’s location became random, but a benefit in
RTs persisted. Future studies should examine conditions under
which visual statistical learning produces a flexible rather than
a persisting attentional bias. To contrast the results from dif-
ferent effector systems, it would be necessary to integrate the
present setup with eye tracking and other technologies.

Conclusion

A major challenge of attention research is to characterize the
mechanisms of spatial attention in large-scale tasks. Here we
presented an experimental paradigm that assessed attentional
allocation in an outdoor spatial task. We showed that
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participants rapidly developed an attentional bias toward lo-
cations that frequently contained a search target. This bias was
reflected in both the RT and the first head movement. The
first-head-movement data showed that statistical learning
modulated spatial attention relatively early, often before par-
ticipants could have seen the target. In addition, we showed
evidence that the attentional bias in head movements
readjusted when the target’s statistics changed. These data
provide compelling evidence for the role of visual statistical
learning in early attentional orienting. They also show the high
sensitivity of the head movement system to short-term inter-
trial priming. Our study opens new opportunities for investi-
gating spatial attention in large-scale tasks.
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