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Abstract Spatial attention is thought to play a critical role in
feature binding. However, often multiple objects or locations
are of interest in our environment, and we need to shift or split
attention between them. Recent evidence has demonstrated
that shifting and splitting spatial attention results in different
types of feature-binding errors. In particular, when two loca-
tions are simultaneously sharing attentional resources, sub-
jects are susceptible to feature-mixing errors; that is, they tend
to report a color that is a subtle blend of the target color and the
color at the other attended location. The present study was
designed to test whether these feature-mixing errors are influ-
enced by target–distractor similarity. Subjects were cued to
split attention across two different spatial locations, and were
subsequently presented with an array of colored stimuli,
followed by a postcue indicating which color to report. Tar-
get–distractor similarity was manipulated by varying the dis-
tance in color space between the two attended stimuli. Proba-
bilistic modeling in all cases revealed shifts in the response
distribution consistent with feature-mixing errors; however,
the patterns differed considerably across target-distractor color
distances. With large differences in color, the findings repli-
cated the mixing result, but with small color differences, re-
pulsion was instead observed, with the reported target color
shifted away from the other attended color.
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Target–distractor similarity

Spatial attention has long been thought to play a role in feature
binding. In Treisman’s classic feature integration theory, spa-
tial attention is described as the Bglue^ that binds object fea-
tures together (Treisman, 1988, 1998; Treisman & Gelade,
1980). The idea is that spatial attention helps solve the
Bbinding problem,^ such that features falling within the same
window of attention are grouped together into a coherent ob-
ject, and features outside this focus are excluded. When atten-
tion is diverted, binding errors can occur, resulting in Billusory
conjunctions^ (Treisman & Schmidt, 1982)—for example, if
a subject were to view a blue circle and a red square, but report
seeing a blue square.

If spatial attention is important for accurate feature bind-
ing, then what happens to feature binding when we need to
shift or split attention? In the real world, multiple objects or
locations are often of interest in the environment. Golomb,
L’Heureux, and Kanwisher (2014) recently reported that a
unique pattern of feature-binding errors can occur under cir-
cumstances with unstable or ambiguous spatial attention. In
the few hundred milliseconds following a saccadic eye
movement—when spatial attention has not fully
remapped—Golomb et al. reported both Bswapping^ errors
(misreporting a distractor color in the display, similar to
illusory conjunctions) and Bmixing^ errors (reporting a color
blend between the target color and the retinotopic distractor
color). These effects were not specific to eye movements,
but could be found under other, more general attentional
scenarios as well: BSwapping^ errors were found when spa-
tial attention needed to be rapidly shifted from one location
to another, whereas Bmixing^ errors occurred when two spa-
tial locations were simultaneously attended.

The present article explores these feature-mixing errors in
more detail, asking whether the mixing effect is sensitive not
only to the distribution of spatial attention, but also to the
properties of the features themselves. Specifically, target–
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distractor similarity was manipulated, by varying the dis-
tance in color space between the items. Target–distractor
similarity could be expected to influence feature-mixing er-
rors in a few different ways. On the one hand, distractors
that are more similar to the target might make the target less
distinctive and increase errors, as has been observed in vi-
sual search (Duncan & Humphreys, 1989), multiple-object
tracking (Makovski & Jiang, 2009), working memory
(Shapiro & Miller, 2011), and illusory conjunction (Donk,
1999) tasks. On the other hand, greater similarity might
decrease errors and improve precision for the target, as in
change detection tasks (Lin & Luck, 2009).

Alternatively, since in the present task the target was cued
and defined spatially, similarity in feature space might have
less of a fundamental influence on the type or amount of
errors; rather, the mean of the response distribution (i.e., the
reported target color) might simply shift accordingly based on
the target–distractor distance. In other words, if the distractor
is similar in color to the target, the shift would be small, but if
the distractor is farther in color space from the target, the shift
would be larger, reflecting a mix between two very different
colors. Finally, however, a different sort of prediction could be
made: When very similar colors share the focus of attention,
they might actually inhibit each other, resulting in repulsion
away from the distractor, rather than blending toward it. In a
2009 article, Johnson, Spencer, Luck, and Schöner de-
scribed a dynamic neural field model of visual working
memory, which included implications for target–distractor
similarity; when two working memory items are similar in
feature space (e.g., color), they interact in a strongly in-
hibitory fashion, which makes it easier to detect subse-
quent changes at test.

In the present task, these possibilities were explored by
adopting the same paradigm as in the split-attention experi-
ment of Golomb et al. (2014, Exp. 4). Subjects were pre-
sented with an array of four colored stimuli and were
instructed to report the color of a designated stimulus by
clicking the appropriate place on a color wheel (Fig. 1).
Before stimulus presentation, subjects were cued to attend
to two of the four spatial locations. The to-be-reported color
was always in one of the attended locations, and was indi-
cated with a postcue during the response period. In the orig-
inal Golomb et al. study, the adjacent distractor colors were
always quite different in color from the target, located ±90°
along the color wheel in color space. In the present experi-
ment, distance in color space was varied systematically, by
testing distractors both closer to and farther from the target
color. The analyses investigate whether target–distractor sim-
ilarity alters the probability and nature of feature-binding
errors, by examining the distribution of responses and using
probabilistic mixture modeling to evaluate how the reported
target color was influenced by the color of a distractor shar-
ing the focus of attention.

Materials and method

Subjects

Twenty subjects (14 female, six male; mean age = 19.4 years)
participated in the experiment. Four additional subjects were
excluded for not successfully performing the task (>50 %
probability of random guessing, according to the γ parameter
from Model A; see Golomb et al., 2014).

Experimental setup

Stimuli were generated using the Psychophysics Toolbox ex-
tension (Brainard, 1997) for MATLAB and presented on a 21-
in. flat-screen CRT monitor. Subjects were seated at a chinrest
61 cm from the monitor, and their eye position was monitored
using an EyeLink 1000 eyetracking system recording pupil
and corneal reflection. The monitor was color calibrated with
a Minolta CS-100 colorimeter.

Task

The task (Fig. 1) was the same as in Golomb et al.’s (2014)
Experiment 4. Each trial began with a white fixation dot pre-
sented at the center of the screen. Once subjects had accurately
fixated for 1.5 s (determined by real-time eyetracking), two of
the four stimulus locations (adjacent horizontal or vertical lo-
cations) were simultaneously precued. The stimulus locations
were 2° × 2° squares located to the upper left, upper right,
lower left, and lower right of fixation (7.4° eccentricity). The
precues were black square outlines presented for 200 ms. Sub-
jects were instructed to attend to both precued locations (i.e.,
to share or split attention). After another 1.5-s fixation period,
an array of four differently colored squares appeared at the
stimulus locations. The colored squares appeared for 50 ms,
followed by a 200-ms mask (colored with a random color
value at each pixel location, covering each of the four stimulus
locations).

A large color wheel (diameter 16.4°) was then presented at
the center of the screen at a random rotation. When the color
wheel appeared, a postcue was also presented, indicating to
subjects to report the color that had appeared at that location.
The postcued location was always one of the two precued lo-
cations, but it was unpredictable which one. Subjects clicked
with the mouse to report the color of the stimulus at the
postcued location. They were then given feedback showing
them the correct color. At any point in the trial, if the subject’s
eye position deviated more than 2° from the fixation location,
the trial was immediately aborted and repeated later in the
block.

Stimulus colors were chosen as follows: The color at the
postcued (target) location was chosen randomly on each trial
from 180 possible colors (evenly distributed along a circle in
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CIE L*a*b* color space, according to the parameters in Zhang
& Luck, 2008, and Golomb et al., 2014). The color at the other
attended location was chosen to be 30°, 60°, 90°, or 120°
different in color space from the target color (clockwise or
counterclockwise along the color wheel, with the direction
and magnitude varying pseudorandomly from trial to trial).
The color at the equidistant control location was chosen to
have the same-magnitude color difference, but in the opposite
direction. The stimulus at the fourth location was always set
180° away in color space.

The distractor colors were designed to be symmetric in color
space around the target color so that the attended distractor and
control distractor would be equidistant in both feature and phys-
ical space. The fourth color was included to balance the array,
so that the target location would not be predictable. However, in
the 30°, 60°, and 120° conditions, there was a possibility that
subjects technically could have predicted which color would be
the target, on the basis of the symmetric distribution in color
space. This possibility seems quite unlikely in practice, though,
since the extremely short, masked presentation times would
have made it almost impossible for subjects to perceive all four
colors in enough detail to figure out which one was the target,
especially when the colors and similarity distances varied ran-
domly from trial to trial.

Analyses

The location on the color wheel where subjects clicked on
each trial was recorded and converted into a difference score
in degrees of angle, with the correct target color having a 0°

difference. Responses in the direction of the other attended
location color were aligned to be positive differences, with
the control color direction being negative. The mean of the
distribution was calculated separately for each subject and
condition, and submitted to within-subjects analyses of vari-
ance (ANOVAs) and t tests.

The distribution of responses was then fit with probabilistic
mixture models (Bays, Catalao, &Husain, 2009; Golomb et al.,
2014; Zhang & Luck, 2008) accounting for various sources of
error. Several variations of models were tested that included
parameters for single Gaussian (target color) distributions, mul-
tiple Gaussians (Bswapping^/misreport of distractor colors),
and uniform guessing components. For each of these models,
log-likelihood and AIC (Akaike information criterion: Akaike,
1974) values were calculated for each subject. Lower AIC
values indicate a better model fit after taking into account the
number of parameters in the model. On the basis of the AIC
comparison, the subsequent analysis focused on two variations
of the model. The lowest AICs were found for a simple model
with a single Gaussian (with flexible mean) plus noise (Model
A below). In addition, data are presented from the best-fitting
variation of amore complexmodel that included parameters for
Bswapping^ errors from the distractor colors (Model B below).

A. Simple mixture model combining a circular Gaussian
(von Mises) probability density function (pdf) and a uni-
form guessing component:

p θð Þ ¼ 1−γð Þϕμ;κ þ γ
1

2π

� �
; ð1Þ

Fig. 1 Task. While subjects fixated the fixation dot, two spatial precues
briefly appeared, in adjacent horizontal or vertical positions. Subjects
were instructed to attend to both locations (split attention). An array of
four colored stimuli was then presented briefly andmasked. Only after the
stimuli disappearedwere subjects given a postcue instructing which of the
two attended stimuli was the target. A large color wheel (randomly
rotated) was presented at the center of the screen, and subjects used the

mouse to report the target color. (Inset) The similarity in color space
between the target and distractor colors was manipulated: The attended
distractor color could be either 30°, 60°, 90°, or 120° different from the
target color. The control distractor was always the same distance in color
space from the target as the attended distractor, but in the opposite
direction
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where θ is the difference in radians between the reported
and target color values, γ is the proportion of trials on
which the subject responds at random, and φ is the von
Mises distribution with mean μ and concentration κ
(standard deviation = √1/κ).

B. Full mixture model, allowing for both a shift in mean and
misreport of the distractor colors, plus guessing.

p θð Þ ¼ 1−β−δ−γð Þϕμ;κ þ βϕAtt;κ þ δϕCtl;κ þ γ
1

2π

� �
; ð2Þ

where γ is the probability of random guessing, β is the
probability of misreporting the other attended color value
(defined by a von Mises distribution with a fixed mean
centered on the attended distractor color value), δ is the
probability of misreporting the control color value (de-
fined by a von Mises distribution with a fixed mean cen-
tered on the control distractor color value), μ is the mean
of the primary von Mises distribution, and κ is the con-
centration of the distributions.

Maximum-likelihood estimates of the parameters μ, κ, γ,
β, and δ were obtained separately for each subject and condi-
tion using the MemToolbox (Suchow, Brady, Fougnie, &
Alvarez, 2013) and MATLAB’s fminsearch optimization pro-
cedure (Nelder & Mead, 1965). A range of initial parameter
values were tested to ensure that global minima were reached.

Results

For each condition, response histograms were generated
(Fig. 2A), plotting responses on each trial in terms of the
difference in color value between reported colors and correct
target colors. To assess the effects of attended versus control
distractors on these distributions, the data were analyzed in
several ways:

First, the mean reported color was calculated for each sub-
ject and condition (Fig. 2C). A value of 0 would indicate no
systematic deviation from the correct color; positive values
indicate a greater tendency to report colors closer to the other
attended color (Battraction^), and negative values indicate a
greater tendency to report colors in the opposite direction
(closer to the control color; Brepulsion^). A one-way ANOVA
revealed a significant main effect of target–distractor similar-
ity [F(3, 57) = 14.88, p < .001, ηp

2 = .44], as well as a signif-
icant linear contrast [F(1, 19) = 60.56, p < .001, ηp

2 = .76].
When distractor colors were very different from the target
color (90° or 120°), there was attraction toward the other
attended color, as in Golomb et al. (2014). But when the
distractor colors were similar to the target color, subjects were
actually more likely to report colors shifted in the opposite

direction, as if there were repulsion—in feature space—away
from the attended distractor.

The mean response provides a rough measure of biased
responses, but it does not tell us what types of errors subjects
were making to produce this shift. Golomb et al. (2014) dem-
onstrated that when attention is split between two simulta-
neous cues, as here, the errors are driven by color Bmixing^
(a blend or shift toward the distractor color), rather than by
color Bswapping^ (misreporting the color of the distractor
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instead of the target). These two types of errors can be disso-
ciated using probabilistic mixture modeling (below), but they
can also be visualized by comparing the two tails of the his-
togram and errors made in the directions of the attended versus
control distractors. If the two halves of a histogram are com-
pared to each other (Fig. 2B), mixing errors should be appar-
ent at close-to-intermediate distanced bins, whereas swapping
errors should appear as a peak at the actual color of the
distractor (dashed lines).

For the larger target–distractor differences (60°, 90°, and
120°), no swapping errors were obvious, but there were signs
of subtler mixing errors. For the largest target–distractor dif-
ference (120° condition), responses were shifted more toward
the attended distractor color than in the control direction in the
bins centered at 60° and 90° [t(19) = 2.26, p = .036, d = 0.51,
and t(19) = 2.31, p = .032, d = 0.52, respectively]. For the 90°
target–distractor condition, the effect was significant in the bin
centered at 60° [t(19) = 2.24, p = .037, d = 0.50], and margin-
ally so in the bin centered at 30° [t(19) = 1.92, p = .069, d =
0.43]. In the 60° target–distractor condition, the mixing effect
reversed: Responses were more commonly shifted toward the
control distractor color in the 30° bin [t(19) = –2.18 p = .042,
d = –0.49]. The final, 30° target–distractor condition is harder
to interpret, because at this small difference, mixing and swap-
ping errors are not well dissociated. Nonetheless, responses
were significantly shifted away from the attended distractor
color and toward the control distractor color in the 30° and 60°
bins [t(19) = –5.92 p < .001, d = –1.32, and t(19) = –3.51, p =
.002, d = –0.79, respectively].

Finally, to quantify these effects using probabilistic
modeling, the data from each subject and condition were
fit to two types of mixture models (see the Materials and
method section). Figure 3 illustrates the results from the full
mixture model (Model B) and the simple mixture model
(Model A). Both models included a primary, target-
centered Gaussian distribution, from which it was possible
to estimate the standard deviation (precision) of responses
and whether the mean of this distribution was shifted from

0, as well as a uniform noise distribution, from which the
probability of random guessing could be estimated. The sim-
ple model with these two components captured the variance
well in all conditions, but the full mixture model allowed us
to explicitly test for the probability of swapping errors as
well, with additional Gaussians centered on the attended and
control distractor colors.

In the full mixture model, neither the standard deviation nor
the probability of random guessing significantly varied across
conditions [F(3, 57) = 0.86, p = .465, ηp

2 = .04, and F(3, 57) =
0.40, p = .756, ηp

2 = .02, respectively]. For the swapping
errors (pMisreport), there was a significant interaction be-
tween type of misreport (attended vs. control) and target–
distractor similarity [F(3, 57) = 24.29, p < .001, ηp

2 = 0.56];
this effect was driven by a large probability of control misre-
ports in the 30° target–distractor condition. Indeed, the differ-
ence between attended and control misreports was only sig-
nificant in this 30° target–distractor condition [t(19) = –6.07, p
< .001, d = –1.36]; in all other conditions, the probabilities of
misreports were small and not significantly different between
attended and control distractors (all ts < 1.20, all ps > .245). As
was noted above, in the 30° target–distractor condition it is
nearly impossible to dissociate errors driven by an increased
probability of misreports versus a shift in the mean, because
the small distractor distance falls within the normal standard
deviation of the distribution. Figure 3C illustrates the fits of the
full mixture model to the data; here, the increase in pMisreport
looks nearly identical to a shift for this 30° condition.

The critical parameter for both models is the shift in the
mean of the distribution. Both models revealed a consistent
effect: The Shift parameter varied significantly as a function
of target–distractor similarity [simple model: F(3, 57) =
36.15, p < .001, ηp

2 = .66; full model: F(3, 57) = 4.69, p
= .005, ηp

2 = .20]. For the 30° and 60° target–distractor
conditions, responses were shifted away from the attended
distractor [simple model: t(19) = –7.91, p < .001, d = –1.77,
and t(19) = –2.09, p = .051, d = –0.47, respectively; full
model: t(19) = –1.39, p = .18, d = –0.31, and t(19) = –2.45,
p = .024, d = –0.55, respectively]. For the 90° and 120°
target–distractor conditions, on the other hand, responses
were shifted toward the attended distractor [simple model:
t(19) = 2.76, p = .012, d = 0.62, and t(19) = 2.24, p = .037,
d = 0.50, respectively; full model: t(19) = 2.08, p = .051, d
= 0.47, and t(19) = 1.49, p = .152, d = 0.33, respectively].
The estimates for this parameter are more reliable for the
simple model because of the challenge noted above, and
indeed, the analyses of model fit revealed better fits (lower
AICs; see the Materials and method section) for the simple
than for the full model; nonetheless, both models present a
similar story, reinforcing the observations noted earlier: that
a simultaneously attended distractor can bias the perceived
target color, by either attractive or repulsive mixing of fea-
tures, depending on target–distractor similarity.

�Fig. 2 Distribution of responses. (A) Response histograms (combined
across subjects) are shown for each condition; data are plotted as
differences in color values relative to the correct target color. Difference
scores were calculated by aligning all trials such that the target color was
defined as 0° and the attended distractor color was in the positive
direction (+30°, 60°, 90°, or 120°). Note, however, that the actual
attended distractor color could have been located in either direction
along the color wheel—the color strip shown here is just for illustrative
purposes. Vertical lines indicate target and attended distractor color
values. (B) Responses are binned and plotted as a function of absolute
distance from the target color value; that is, the two halves of the
histogram are folded over one another for comparison. The lightly
shaded areas around the lines indicate SEMs; asterisks indicate bins in
which the two curves differed significantly (p < .05; the cross indicates p
< .10). (C) Mean reported color values plotted for each condition. Error
bars are SEMs; N = 20
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Hemifield-based effects

A number of studies have demonstrated attentional differences
when stimuli are presented within versus across visual
hemifields (Awh & Pashler, 2000), suggesting that the two
cortical hemispheres may contain independent attentional re-
sources (Alvarez&Cavanagh, 2005). This raises the interesting
question of whether feature-mixing errors might be influenced
by hemifield effects. The same analyses were conducted as
above, but now with the data split into within-hemifield and

across-hemifield attention trials. None of the main effects or
interactions with hemifield were significant [for mean reported
color: main effect, F(1, 19) = 2.53, p = .128, ηp

2 = 0.12; inter-
action F(3, 57) = 0.22, p = .88, ηp

2 = 0.01; for Shift parameter
from the simple model: main effect F(1, 19) = 0.11, p = .74, ηp

2

= 0.01; interaction F(3, 57) = 0.25, p = .86, ηp
2 = 0.01]. The

lack of hemifield effects could be due to the fact that only two
locations needed to be attended, and they were separated by a
large enough spatial distance so as not to interfere or compete
with each other (Clevenger & Beck, 2014).

Fig. 3 Model fits. (A) Cartoon models showing different ways that a
baseline distribution (dashed lines) could change as a result of increases
in different error sources (thick black lines). (B) Maximum-likelihood
estimate fits for corresponding parameters of the mixture models:
standard deviations, probabilities of noise (guessing) and misreports
(swapping of attended or control distractors), and shifts in mean are
shown for the full and simple mixture models (see the Materials and

method section). Models were fit separately for each subject, and
parameter values were then averaged across subjects. Error bars are
SEMs. (C) Response histograms for each condition, fit with the full
mixture model. The thick black lines show the best-fitting Model B,
and the vertical lines indicate, from left to right, the control distractor,
target, and attended distractor colors. N = 20
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Discussion

The results from this experiment make two contributions. First,
when target and distractor colors are sufficiently different, the
experiment replicated the finding that a distractor color can
mix, or blend, with the perceived target color when spatial
attention is split between the two locations (Golomb et al.,
2014). Second, these feature-mixing errors are influenced by
target–distractor similarity: Dissimilar colors result in attractive
mixing toward the attended distractor color, whereas similar
colors result in repulsion away from the attended distractor
color. Note that both of these effects exceed any generic influ-
ence of other, control (unattended) distractors in the display.

This task was designed to manipulate spatial attention—that
is, the extremely brief, masked stimulus presentations required
that subjects attend to the precued locations in order to success-
fully perform the task—and we primarily think of these feature-
mixing errors as being driven by attentional mechanisms. In
Golomb et al. (2014), the attractive feature-mixing effect was
explained as a result of attentional processes: When attention is
split across two different spatial locations that are simultaneous-
ly occupied by objects containing different features, because
both objects share attentional resources, their features are not
perfectly distinguished, and may partially blend together. Thus,
when the feature of onemust be reported, subjects tend to report
a color shifted in color space toward the other.

Similar attractive shifts have also been reported for items held
serially (Fischer & Whitney, 2014; Huang & Sekuler, 2010) or
simultaneously in visual working memory (Brady & Alvarez,
2011). For example, Brady and Alvarez had subjects remember
the sizes of a set of circles; when subjects were asked to report
the size of a single circle, their reports were biased toward the
mean size of the set. Brady andAlvarez argued that this blending
makes sense computationally, if you assume that items in the
world tend to be similar to other items. It is possible that this
optimal-integration account could play a role here as well, with
the caveat that it is highly sensitive to selection by spatial atten-
tion (items were selectively biased by the attended distractor,
relative to the equally differentiable control distractor). But nei-
ther this account nor the attentional-resource account described
above provides a clear prediction of the finding of repulsion with
increased target–distractor similarity.

Three possible explanations are proposed here for the re-
pulsion effect. The first assumes a strategic difference at
encoding. Subjects deploy attention to two spatial locations
and know they must try to encode both colors (since either
could be tested at the time of response).When two sufficiently
different colors are presented, subjects may find it easy
enough to encode both. But when two very similar colors
are presented, subjects may try to make them more discrimi-
nable, so that they can correctly assign each to its respective
location. For example, if subjects are presented with a
greenish-blue color and a bluish-green color, they may—

either consciously or unconsciously—try to encode them as
the bluer color at location A and the greener color at location
B. Thus, the repulsion errors might be due to shifts at
encoding, rather than the attention-splitting process per se
disrupting binding. One could question whether the attractive
mixing effects could also be driven by the demands of
encoding two objects simultaneously, but this explanation
could not account for the attractive feature-mixing errors ini-
tially reported by Golomb et al. (2014, Exp. 1) in the saccadic
remapping context, since in that context subjects were only
instructed to encode the color at one single attended location.

A second explanation follows a similar logic, but as-
sumes that these effects manifest neurally during the deci-
sion stage. Recent studies have demonstrated that perceptu-
al discriminations between two highly similar stimuli are
served better by neurons tuned slightly away from the tar-
get (off-channel neurons), because these neurons are actu-
ally most informative (Navalpakkam & Itti, 2007; Scolari
& Serences, 2009, 2010). Although in the present experi-
ment the task was not to discriminate between the two
colors, it is possible that responses could be similarly bi-
ased toward these off-target neurons.

The third explanation for the repulsion effect could be that it
is driven by dynamic interactions between the items in working
memory, as in Johnson et al.’s (2009) dynamic neural field
model. Although the task here was designed to tax attention
more than working memory, it did involve a small working
memory component, and attention and working memory are
known to interact (Awh, Vogel, & Oh, 2006). Johnson et al.’s
model proposed that items in working memory are represented
according to a three-layer model, with activation along the fea-
ture dimension for perceptual, inhibitory, and working memory
fields. When two similar items are held in working memory,
their shared inhibition results in a sharpening of their represen-
tations in working memory, which results in enhanced change
detection (Johnson et al., 2009). Although the Johnson et al.
article focused on change detection performance (as did Lin &
Luck, 2009), this dynamic inhibitionmodel makes an additional
prediction: that the representations of two similar colorsmay not
only be sharpened, but shifted away from each other. Such a
shift could underlie the repulsion effects here, as well as similar
repulsion effects reported in a working memory context by
Johnson in an unpublished study (Johnson, 2008). Interestingly,
the experimental contexts and results of these studies differed in
a few key ways: As was noted earlier, in the present study, the
emphasis was more on attentional selection than working mem-
ory; spatial precues were used to direct subjects to selectively
attend to certain items in the display, and the working memory
load was lower (only two items). Additionally, here the stimuli
were presented for only 50 ms, increasing the likelihood that the
reported errors were due to errors in perceptual feature binding
rather than to working memory decay. Finally, an intriguing
difference is that the Johnson et al. model predicts repulsion
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for close target–distractor similarity, but no effect for far items.
On the other hand, here robust attractivemixing emerged for far
items (large target–distractor color differences). An interesting
question is whether these findings of joint attraction and repul-
sion would generalize to more traditional workingmemory con-
texts with longer encoding times.

An important question for future research will be whether a
single mechanism can explain both the attraction and repul-
sion effects, or whether multiple mechanisms contribute to
them. Furthermore, what determines where exactly this tran-
sition from repulsion to attraction takes place?

Both the attractive and repulsive feature-mixing errors re-
ported here raise important implications for feature binding in
the context of multiple simultaneously attended items. Spatial
attention is typically thought of as a way to aid feature bind-
ing, by allowing features within the spatial locus of attention
to be bound together (Treisman, 1988, 1998; Treisman &
Gelade, 1980). But this idea assumes that features within an
attentional locus should belong to the same object. Is this an
assumption that our visual system makes as well? If so, it
would explain feature-binding errors stemming from ambigu-
ities in the allocation of spatial attention: that when features
belonging to two different objects in distinct spatial locations
are both spatially attended, they can blend together or repulse
each other in feature space. Of course, in the real world, mul-
tiple objects and spatial locations are often of interest, so it is
unclear whether we regularly experience subtle versions of
these errors in everyday functioning, or whether our visual
systems adopt additional, compensatory mechanisms to avoid
or minimize these errors.
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