
An objective measure of auditory stream segregation based
on molecular psychophysics

Daniel Oberfeld

Published online: 22 January 2014

Abstract Auditory stream segregation is an important para-
digm in the study of auditory scene analysis. Performance-
based measures of auditory stream segregation have received
increasing use as a complement to subjective reports of
streaming. For example, the sensitivity in discriminating a
temporal shift imposed on one B tone in an ABA sequence
consisting of A and B tones that differ in frequency is often
used to infer the perceptual organization (one stream vs. two
streams). Limitations of these measures are discussed here,
and an alternative measure based on the combination of deci-
sion weights and sensitivity is suggested. In the experiment,
for ABA and ABB sequences varying in tempo (fast/slow)
and duration (long/short), the sensitivity (d′) in the temporal
shift discrimination task did not differ between fast and slow
sequences, despite strong differences in perceptual organiza-
tion. The decision weights assigned to within-stream and
between-stream interonset intervals also deviated from the
idealized pattern of near-exclusive reliance on between-
stream information in the subjectively integrated case, and
on within-stream information in the subjectively segregated
case. However, an estimate of internal noise computed using a
combination of the estimated decision weights and sensitivity
differentiated between sequences that were predominantly
perceived as integrated or segregated, with significantly
higher internal noise estimates for the segregated case.
Therefore, the method of using a combination of decision
weights and sensitivity provides a measure of auditory stream
segregation that overcomes some of the limitations of purely
sensitivity-based measures.
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Subjective and objective measures of auditory stream
segregation

The question of how humans and animals are able to structure
the mixture of sound waves arriving at their ears into different
auditory objects (e.g., a single speaker in a noisy environ-
ment), known as auditory scene analysis (Bregman, 1990) or
the cocktail party problem (Cherry, 1953), is one of the current
hot topics in psychoacoustics, experimental psychology, and
the neurosciences (e.g., Carlyon, 2004; Ciocca, 2008;
Griffiths & Warren, 2004; Moore & Gockel, 2012; Shamma,
2008; Shinn-Cunningham, 2008). Strong efforts have also
been made to develop algorithms that mimic the capability
of the auditory system to identify auditory sources or objects
(computational auditory scene analysis; e.g., Bell &
Sejnowski, 1995; Cooke & Ellis, 2001; Haykin & Chen,
2005; Wang & Brown, 1999). Since the pioneering work of
Al Bregman (e.g., Bregman, 1990; Bregman & Campbell,
1971) and Leon van Noorden (1975), auditory stream inte-
gration or segregation is a paradigm very frequently used for
studying auditory scene analysis. In experiments on auditory
streaming, sequences of at least two different types of tones
(e.g., high- and low-pitched) are presented. The conditions in
which subjects perceive a temporal sequence of auditory
events as either a single, serially integrated auditory stream
(“fusion”) or multiple, segregated streams (“fission”) (Miller
& Heise, 1950) have been studied rather extensively (for
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recent reviews, see Moore & Gockel, 2012; Shamma &
Micheyl, 2010). Modeling the psychophysical results still
remains a challenge, as is evident in the broad range of models
that have been proposed for the phenomena, with a recent
focus on neuronal and neurophysiological models (e.g.,
Beauvois & Meddis, 1996; Elhilali, Ma, Micheyl, Oxenham,
& Shamma, 2009; Ellis & Vercoe, 1992; Nelken & Bar-Yosef,
2008; Roelfsema, 2006; Rogers & Bregman, 1993; Wang &
Chang, 2008; Winkler, Denham, & Nelken, 2009).

During the first decades of research, auditory stream seg-
regation was primarily studied on the basis of subjective
measures. For example, van Noorden (1977) presented
ABAB . . . sequences, in which two different tones alternated,
and listeners varied the difference in frequency, level, or
another attribute between tone A and tone B so that they could
just perceive two separate streams (e.g., an isochronous se-
quence of high tones and an isochronous sequence of low
tones). Recently, so-called objective or performance-based
measures of auditory streaming have gained importance
(e.g., Carlyon et al., 2010; Cooper & Roberts, 2009;
Micheyl, Carlyon, Cusack, & Moore, 2005; Micheyl &
Oxenham, 2010). These measures are based on the assump-
tion that specific auditory tasks are either facilitated or ren-
dered more difficult by auditory stream segregation, and thus
that the perceptual organization can be inferred from the
observed accuracy or sensitivity in a specific task. For exam-
ple, it was demonstrated that the perception of temporal posi-
tion or temporal order is more difficult for tones belonging to
separate streams than for tones belonging to a single stream
(Bregman & Campbell, 1971; Warren, Obusek, Farmer, &
Warren, 1969). Performance-based measures of this kind are
assumed to be less prone to the effects of expectations or
instructions than are the subjective measures. Beyond that,
they can be used in subjects who cannot communicate the
perceived organization (e.g., Ma, Micheyl, Yin, Oxenham, &
Shamma, 2010). Therefore, performance-based measures rep-
resent an important complement to subjective indices of
stream segregation.

Limitations of sensitivity-based measures of auditory stream
segregation

One exemplary task that has frequently been used as a
performance-based measure of auditory stream segregation
(for a recent review, see Micheyl & Oxenham, 2010) involves
detecting a temporal shift in the onset of one tone (“target”)
embedded in a longer sequence of tones. For instance, Jones,
Jagacinski, Yee, Floyd, and Klapp (1995) presented an iso-
chronous sequence of high-pitched tones at a fast rate
(interonset interval [IOI] = 533 ms) together with a sequence
of low tones with a slower rate (IOI = 800 ms). The listeners’
task was to detect a temporal shift of one of the low tones. On
no-shift trials, the onset of this tone was centered between the

onsets of the two neighboring high tones. The temporal shift
could be detected, for instance, by comparing the IOI between
the preceding high tone and the target tone to the IOI between
the target and the following high tone. If both intervals were
identical, then the target was not shifted. If the two intervals
were unequal, then the target was either shifted forward in
time (delayed onset) or shifted backward (early onset). The
critical assumptions for inferring the perceptual organization
from accuracy in this task are (a)that detecting the temporal
shift would be more difficult if the to-be-compared temporal
intervals are long (e.g., Friberg & Sundberg, 1995; Getty,
1975; Sorkin, Boggs, & Brady, 1982) and (b)that listeners
would be unable to use between-stream information. If lis-
teners perceived the sequence as being segregated, they
should compare the interval beginning with the low tone
preceding the target and ending with the target tone to the
interval beginning with the target tone and ending with the
next low tone. Thus, two within-stream intervals of about
800 ms would need to be compared. If, on the other hand,
the sequence was perceived as being integrated, then the two
between-stream intervals constituted by the target tone and its
two neighboring high tones could be compared, which would
be an interval of only about 260 ms. Because the gap duration
difference limens (GDDLs) approximately follow Weber’s
law for IOI durations between 200 and 1,000 ms (Friberg &
Sundberg, 1995; Getty, 1975; Grondin, 2012; Rammsayer,
2010; Sorkin et al., 1982), the accuracy for detecting the shift
should be higher in the case of integrated perception than for
segregated perception, simply because the compared IOIs
would be shorter than in the segregated case.

Although variants of this task have been successfully used
in several studies (Boehnke & Phillips, 2005; Elhilali et al.,
2009; Vliegen, Moore, & Oxenham, 1999), in some situations
a sensitivity-based measure of stream segregation must nec-
essarily fail. For example, with the frequency separation be-
tween the high and the low tones held constant, the perception
as integrated or segregated would critically depend on the
tempo of the sequence (Bregman, 1990; van Noorden,
1977), with faster tempi promoting stream segregation.
However, this fundamental effect of sequence tempo on per-
ceptual organization cannot be assessed in terms of sensitivity
in the temporal shift discrimination task. As the tempo in-
creases, all IOI durations are reduced, and therefore the accu-
racy in temporal interval discrimination would also increase
(Friberg & Sundberg, 1995; Getty, 1975; Sorkin et al., 1982).
This increase in sensitivity with the tempo of the sequence
would be in conflict with the decrease in sensitivity caused by
the higher probability of perceiving the sequence as segregat-
ed at faster tempi, and the resulting difficulty in using
between-stream information. For this reason, the dependence
of auditory-stream segregation on the presentation rate cannot
be studied with a sensitivity-based measure of the described
type.
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A related but less serious problem applies even to the study
of effects of the frequency difference Δfbetween the tones in a
sequence on the probability of stream segregation. The prob-
ability of stream segregation increases with Δf, and this is
reflected by a decrease in accuracy in the shift detection task
(e.g., Roberts, Glasberg, & Moore, 2008). However, even for
pairs of sounds presented in isolation rather than embedded in
a sequence, the accuracy for judging the temporal interval
between the two sounds would decrease when the frequency
separation was increased (e.g., Divenyi & Danner, 1977;
Izumi, 1999; Kinney, 1961; Lister, Besing, & Koehnke,
2002). Thus, the effect of stream segregation on accuracy in
the temporal shift detection task would be confounded by an
effect of Δf on gap duration discrimination (Boehnke &
Phillips, 2005). As a consequence, when accuracy in the
temporal shift detection task is used as a measure of stream
segregation, then the estimate of the frequency difference at
which the sequences become segregated perceptually might
be biased toward lower values of Δf.

A closer look on temporal shift discrimination in alternating
sequences: Sensitivity, decision weights, and efficiency
measures

The aim of this study was to develop and to evaluate a new
performance-based measure of stream segregation that avoids
some of the limitations of previous measures and provide
complementary information about the effects of auditory
stream segregation on performance in a temporal discrimina-
tion task. To this end, methods of “molecular psychophysics”
(Green, 1964) were used to estimate decision weights (also
termed perceptual weights) from the trial-by-trial data (cf.
Ahumada, 2002; Ahumada & Lovell, 1971; Berg, 1989).1

These decision weights provide a rather direct insight into
the decision process and the information sources used by the
listener, rather than just summarizing the average outcome of
the decision process in terms of sensitivity, the latter being the
approach used in “molar psychophysics” (Green, 1964). The
use of decision weights as information about the performance
in a temporal shift discrimination task is best explained by
taking one condition from the present experiment as an ex-
ample. Figure 1 shows an ABA type of sequence, which
consists of an isochronous sequence of A tones with tone
frequency fA, and a slower isochronous sequence of B tones

with higher frequency fB. If integrated, the sequence would be
perceived as a “galloping” rhythm “ABA-ABA-ABA...” (van
Noorden, 1975), where “- ” represents a pause. If segregated,
two separate isochronous sequences are be perceived (“A-A-
A-A. . .” and “B—B—B—B. . .”). In the experiment presented
here, the task was to identify the temporal position of the last
B tone (target) as being either early (thick black rectangle in
Fig. 1) or late (thick gray rectangle in Fig. 1). As is indicated
by the small arrows in Fig. 1, the onsets of all tones except the
target were randomly perturbed. On each trial and for each
tone, a random temporal shift was imposed on the onset, by
drawing independently from a normal distribution. In order to
decide whether the target was presented early or late, the
listeners could, for example, use the interonset interval
IOIAB-T (beginning with the A tone preceding the target and
ending with target onset) or the following interval (IOIBA-T,
constituted by the target and its following A tone). Due to the
random perturbation of the onsets, both IOIs will vary from
trial to trial. However, if the target onset was delayed by Δt,
then IOIAB-T would on average become longer, and IOIBA-T
would become shorter. For this reason, the probability of
responding that the late target had been presented should
increase with increases in IOIAB-T, and decrease with increases
in IOIBA-T. In other words, the listener should assign a positive
decision weight to IOIAB-T and a negative weight to IOIBA-T.
Note that using the temporal information from IOIAB-T
or IOIBA-T would mean that the listener made use of be-
tween-stream information. Alternatively, the listener could
base his or her decision on the duration of the within-stream
interval IOIBB-T. The longer this interval, the higher the prob-
ability that the target had been presented at the late temporal
position.

Using methods of molecular psychophysics (e.g.,
Ahumada & Lovell, 1971; Berg, 1989), decision weights
can be estimated from the trial-by-trial data by relating the
response (“target early” or “target late”) to the randomly
varying IOIs. For example, if the listener used information
provided by IOIBB-T, this would be evident in the probability
to respond “target late” increasing with increases in IOIBB-T.
If, however, IOIBB-T was absolutely unimportant for the deci-
sion, the probability of a “target late” response would be
independent of the trial-by-trial variation in IOIBB-T. Thus,
the decision weights represent a quantitative measure of the
attention directed to the different within-stream and between-
stream IOIs (Berg, 1990).

How should different perceptual organizations be reflected
in the decision weights? In sensitivity-based measures of
stream segregation, it is usually assumed that a listener will
use between-stream information if the sequence is perceived
as integrated, but exclusively or predominantly within-stream
information if the stimuli are perceived as two separate
streams. Now it is evident that the decision weights described
above provide a direct measure for the use of these two types

1 The term molecular psychophysics (Green, 1964) refers to trial-by-trial
analyses that provide information about the relation between a stimulus
feature (e.g., the duration of one IOI in an ABA sequence) and the
response of the listener (e.g., “target early” vs. “target late”). These
methods, for which the alternative terms perceptual weight analysis and
psychophysical reverse correlation are used, typically impose random
trial-by-trial variation on the stimulus components. Correlational or re-
gression analyses are then used to estimate the impact of the variation of
each individual stimulus feature on a behavioral or neural response (for a
detailed explanation, see Oberfeld, 2008; Oberfeld & Plank, 2011).
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of information. In the integrated case, according to the as-
sumptions above, the decision variable should be dominated
by the between-stream IOIs if they are shorter than the within-
stream IOIs, which is the case for an ABA rhythm. In contrast,
in the stream segregation case, the decision weights on the
within-stream intervals should be much higher than the
weights assigned to the between-stream intervals.

This reversal in the predicted relative weights on within-
and between-stream IOIs is a specificity of the ABA type of
sequences, owing to the fact that the within-stream IOIs
including the target tone are considerably longer than the
between-stream IOIs. Other rhythms do not exhibit this char-
acteristic. To gain insight into the decision weights and sensi-
tivity for a rhythm with similar durations of the within- and
between-stream IOIs, an ABB sequence (Sussman, Wong,
Horvath, Winkler, & Wang, 2007), displayed in Fig. 2, was
additionally presented. In the segregated case, this type of
sequences is perceived as an isochronous stream of low tones
and a stream of pairs of high tones (cf. Fig. 2 in Sussman &
Steinschneider, 2009). As in the ABA rhythm, the probability
of perceiving the sequences as two streams increases with the
frequency separation between the A and B tones (Sussman &
Steinschneider, 2009). The effects of sequence tempo on
stream segregation have not been studied systematically for
the ABB type of sequence. In the present experiment, the
target tone in the shift discrimination task was the penultimate
B tone of the ABB sequence (see Fig. 2). Concerning the
information provided by within-stream and between-stream

IOIs, the ABB sequences differ markedly from the ABA
sequences. In the ABB sequence, the target is preceded by a
between-stream interval (IOIAB-T) and followed by a within-
stream interval (IOIBB+1-T) of the same duration as the
between-stream interval. For this reason, in the integrated case
the subject should place equal weights on the two IOIs.

At this point, it is important to note that the optimumweights
maximizing the percentage of correct responses can be assumed
to differ between a fast and a slow sequence, even in the
absence of stream segregation. Imagine that for the fast and
slow ABA sequence described above, the listener’s task was to
discriminate a temporal shift of the target tone onset of ±25 ms.
For the slow presentation rate used in the experiment, the
within-stream interval IOIBB-T had a duration of 1,040 ms.
What is the just-noticeable temporal shift for this base inter-
val—that is, the gap duration difference limen (GDDL)?
According to Friberg and Sundberg (1995), the Weber fraction
(GDDL/IOI) can be expected to be 5% for a 1,040-ms IOI, so
that the GDDL (just-noticeable temporal shift) should be
GDDLBB = 1,040 ms . 0.05 = 52 ms. The duration of the
between-stream interval IOIAB-T was 260 ms in the slow ABA
sequence, corresponding again to a Weber fraction of 5%
(Friberg & Sundberg, 1995), and GDDLAB = 260 ms . 0.05 =
13ms. Thus, the temporal shift of 25ms should be easy to detect
in the between-stream interval, but would be subliminal for the
within-stream interval. As a consequence, listeners should assign
a higher weight to IOIAB-T. In contrast, for the fast ABA se-
quence presented in our experiment, the within-stream interval

Fig. 1 ABA sequence. Schematic depiction of the ABA sequence. A fast
isochronous sequence of A tones and a slower isochronous sequence of B
tones were presented together. The frequency of the A tones was Δf= 9
semitones below the frequency of the B tones (fB= 800 Hz). The task was
to decide whether the target tone was presented early (black thick bar) or
late (gray thick bar). As is indicated by the double-headed arrows, the
onsets of all tones except the target tone were randomly perturbed. The

brackets indicate interonset intervals (IOIs) for which decision weights
were estimated. The ABA sequence was presented at two tempi. The
figure depicts the fast tempo. For the slow tempo, all IOIs were multiplied
by a factor of 2. The fast sequence was presented with two durations: a
short sequence duration with three ABA triplets, as depicted, and a long
sequence with 15 triplets. The slow ABA sequence contained seven
triplets

Fig. 2 ABB sequence. Schematic depiction of the fast ABB sequence. The target tone was the penultimate B tone, which could be presented either early
(black thick bar) or late (gray thick bar). For the slow tempo, all IOIs were multiplied by a factor of 2
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IOIBB-T had a duration of 520 ms (Weber fraction = 5%,
GDDLBB = 520 ms . 0.05 = 26 ms). The duration of the
between-stream interval IOIAB-T was 130 ms (Weber fraction =
9.6%, GDDLBB = 130 ms . 0.096 = 12.5 ms). Thus, the
difference in temporal interval discrimination performance be-
tween the within-stream and between-stream intervals should be
smaller for the fast than for the slow sequence, even without
differences in sequential streaming. This example demonstrates
that it may be difficult to unequivocally relate changes in deci-
sion weights caused by changing the tempo to differences in the
perceived grouping, just as was discussed for sensitivity.

To address this issue, measures of observer efficiency
(Berg, 1990; Tanner & Birdsall, 1958) were used to put the
observed sensitivity and the decision weights into the context
of the temporal resolution underlying performance in the shift
discrimination task. On a more general level, the experiment
took into account that two different factors could limit ob-
servers’ performance in the shift discrimination task. First, the
information about, for example, the duration of IOIAB-T that
was available at the decision stage might be inexact—for
example, due to the inherent variability of the sensory system,
which is often described and modeled as internal noise
(Swets, Shipley, McKey, & Green, 1959). According to the
assumptions underlying the sensitivity-based measures of
stream segregation, the information about IOIAB-T is degraded
if the listener perceives the sequence as being two segregated
streams. In other words, streaming is expected to cause an
increase in internal noise. Second, the different sources of
information available at the decision stage (i.e., the informa-
tion about the different IOI durations that can be used to infer
the temporal position of the target tone) could be combined in
a suboptimal fashion (Swets et al., 1959). A reduction in
sensitivity caused by sequential stream segregation could be
caused by either of these factors alone, or by both. Therefore,
sensitivity-based measures alone do not allow for deciding
whether stream segregation increases internal noise, or results
in an inappropriate integration of information, or both. A
recent study by Richards, Carreira, and Shen (2012)—which
appeared after the data collection for the present study had
been completed—indicated that estimates of decision weights
alone are also not sufficient for differentiating between se-
quences perceived as integrated or segregated. Their results
indicated that between-stream IOIs received a significant
weight even in some cases in which the sequence was clearly
perceived as being segregated, due to a large frequency dif-
ference between the A and B tones. The present study takes
the molecular psychophysics approach one step farther, by
combining decision weights and estimates of sensitivity (see
Berg, 2004, for an excellent explanation of these techniques).
This allowed for computing efficiency measures that quantify
the streaming-induced loss in sensitivity due to (a)increases in
internal noise or (b)suboptimal decision weights (Berg, 1990).
Importantly, the proposed efficiency measures for the first

time take into account the differences in sensitivity in the
absence of streaming, which above have been identified as
potential confounds of the purely sensitivity-based measures
of stream segregation. These analyses were possible because
in the experiment, GDDLs were measured for isolated tem-
poral intervals with the same duration and marker frequency
as the IOIs presented in the ABA and ABB sequences.

Indeed, the results showed that the sensitivity in the tem-
poral shift discrimination task did not differ between the fast
and slow sequences, despite the fact that these sequences
clearly differed in their perceptual organization (one stream
vs. two streams, as revealed by subjective ratings). In contrast,
an observer efficiency measure indexing the increase of inter-
nal noise relative to a situation without stream segregation was
able to dissociate the fast from the slow sequences and to
predict the subjective reports of the perceptual organization on
an individual basis.

Method

The study comprised two experiments. In the main experi-
ment, listeners judged the temporal position of one tone (the
target) in ABA and ABB tone sequences (temporal shift
discrimination). Decision weights for the different IOIs, as
well as the sensitivity and subjective ratings of streaming,
were obtained. In addition, GDDLs were measured for isolat-
ed temporal intervals with the same duration and marker
frequency as the IOIs in the ABA and ABB sequences.

In order to select appropriate parameters for the main
experiment, a pretest was conducted, which is described in
detail in the Appendix.

Ethics statement

The experiments were conducted according to the principles
expressed in the Declaration of Helsinki. All subjects partic-
ipated voluntarily after providing informed written consent.
They received partial course credit or were paid for their
participation.

Apparatus

The stimuli were generated digitally, played back via two
channels of an RME ADI/S D/A converter (fs = 44.1 kHz,
24-bit resolution), attenuated by a TDT PA5 attenuator, buff-
ered by a TDT HB7 headphone buffer, and presented
diotically via Sennheiser HDA 200 circumaural headphones
calibrated according to IEC 318 (1970). The experiment was
conducted in a double-walled sound-insulated chamber. The
listeners were tested individually.
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Subjects

Ten subjects participated in the experiment. All of them re-
ported normal hearing. The data of two subjects had to be
excluded from the analysis, because of unusually high gap
duration difference limens and very low sensitivity in the
temporal shift discrimination task in all conditions. For the
remaining eight subjects (seven female, onemale; 20–29 years
of age), detection thresholds measured by von Békésy track-
ing (Hartmann, 2005, pp.132–133; von Békésy, 1947) were
better than 17 dB HL between 125 Hz and 8 kHz, for both
ears. Three of the subjects were research assistants at this lab
and had also participated in the pretest (see the Appendix).

Stimuli, procedures, and conditions

Temporal shift discrimination task The stimuli were tone
sequences consisting of pure tones with a duration of 30 ms
(including 5-ms cos2 ramps), presented diotically with a sound
pressure level of 60 dB SPL. Two different rhythms were
presented: ABA and ABB sequences (see Figs. 1 and 2).
Both consisted of A and B tones differing in frequency (fB =
800 Hz; fA = 475.68 Hz, Δf = 9 semitones). The frequency
difference Δf was kept fixed, to avoid complications with
effects of across-frequency gap discrimination (e.g., Kinney,
1961).

Both rhythms were presented at two different tempi (fast vs.
slow), in order to vary the probability of perceiving the se-
quences as integrated or segregated (Bregman, 1990; van
Noorden, 1975). Since stream segregation needs time to build
up (Anstis & Saida, 1985; Bregman, 1978; Carlyon et al.,
2010; Snyder, Alain, & Picton, 2006; Thompson, Carlyon, &
Cusack, 2011), two different sequence durations (short and
long) were also presented. This allowed for inducing a stron-
ger tendency toward segregation in the longer sequence, while
keeping the sequence parameters constant, which is an impor-
tant feature because it avoids the effects of IOI duration and Δf
on sensitivity in the temporal shift discrimination task. For the
fast sequences, both durations were presented. For the slow
sequence, only the long duration was used.

For the fast ABA sequence (see Fig. 1), the IOI between the
first A tone of an ABA triplet and the following B tone was
130 ms, the IOI between the B tone and the last A tone of the
triplet was also 130 ms, and the IOI between the last A tone
and the first A tone of the following triplet was 260 ms. For
the slow ABA sequence, all of the IOIs were multiplied by a
factor of 2. The tone duration was constant in all conditions.
The short ABA sequences comprised three ABA triplets (se-
quence duration = 1,330 ms). The fast long ABA sequence
comprised 15 ABA triplets (sequence duration = 7,570 ms).
The slow long ABA sequence comprised seven triplets (se-
quence duration = 6,790 ms). The perception of this type of

sequence as either integrated or segregated seems to stabilize
after 10 s (Anstis & Saida, 1985). Slightly shorter durations
were used to reduce the experimentation time and to avoid
bistability (Pressnitzer & Hupé, 2006).

For the ABA rhythm, the target tone was the last B tone of
the sequence. On each trial, it was presented either early (onset
Δt before the midpoint between the onsets of the two A tones
in the last triplet) or late (onset Δt after the midpoint between
the onsets of the two A tones). On the basis of the results of
Pretest 1 (see the Appendix), Δt was set to 26 ms for all
listeners and conditions. The target tone was not marked by
using a different duration or a synchronous visual signal, in
order to avoid problems with stream resetting (Haywood &
Roberts, 2010). To make the estimation of decision weights
possible, the onsets of all tones except the target were ran-
domly and independently perturbed. For each onset, a random
temporal shift was drawn from a normal distribution with
mean μ = 0 ms. The standard deviation of the distribution
was set to σ = 20 ms for the fast and σ = 40 ms for the slow
sequences. To avoid temporal overlap between neighboring
tones, the random perturbations were restricted to
0 ms ± 2.5 ∙ σ.

The task of the subjects was to decide whether the ultimate
B tone was presented early (i.e., “A-B––A,” where the dash
denotes a silent gap) or late (i.e., “A––B-A”). In the first
sessions, the listeners first received practice blocks without
random perturbations of the tone onsets, in order to make the
task clear. They then received practice blocks with random
timing perturbations. The responses were indicated on a four-
point rating scale, with the ordered response categories Early–
rather certain, Early–rather uncertain, Late–rather uncertain,
and Late–rather certain. This rating scale, including informa-
tion about the confidence when giving the response, was used
in order to be able to construct ROC curves for estimating the
sensitivity. This method avoided the necessity to make poten-
tially unjustified assumptions about the form of the ROC
curve, which would be necessary if d′ based on binary re-
sponses had been used as a measure of sensitivity (e.g.,
Macmillan, Rotello, & Miller, 2004; Swets, 1986b). Note that
unlike in most previous experiments using a temporal shift
discrimination task, the task here cannot be viewed as the
detection of a temporal irregularity (e.g., Brochard, Drake,
Botte, & McAdams, 1999) because, due to the random per-
turbations, all IOIs varied from trial to trial, not only the two
IOIs within the last ABA triplet that contained the target.

For the fast ABB sequence (see Fig. 2), all of the IOIs
between neighboring tones had a duration of 130 ms. For the
slow ABB sequence, the IOIs were 260 ms long. Three ABB
triplets were presented for the fast short ABB sequence, plus
one appendedA tone (sequence duration = 1,200ms). The fast
long ABB sequence comprised 20 ABB triplets plus one
appended A tone (sequence duration = 7,830 ms). The slow
long ABB sequence comprised ten triplets plus one A tone
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(sequence duration = 7,830 ms). For the ABB rhythm, the
target tone was the penultimate B tone of the sequence. On
each trial, it was presented either early (onset Δt before the
midpoint between the onsets of the two neighboring tones) or
late (onset Δt after the midpoint between the onsets of the two
neighboring tones). The tone duration, tone frequencies,
sound pressure level, value of Δt, and standard deviation of
the random timing perturbations were identical to those values
in the ABA sequences.

In each experimental block, 25 trials were presented with a
delayed target onset, 25 trials with an early target onset, and 50
no-shift trials (Δt= 0). Only a single sequence (i.e., Rhythm ×
Tempo × Duration combination) was presented per block.
Trial-by-trial feedback was provided only in the practice
blocks. In the experimental blocks, information was provided
about the percentage of correct responses on the shift trials at
the end of each block.

A given sequence may sometimes be perceived as integrat-
ed, and sometimes as segregated (Bregman, 1990). In addi-
tion, the perceptual organization may change during the pre-
sentation (Pressnitzer & Hupé, 2006), showing bistability. In
order to be able to compare the performance-based measures
of stream segregation to the perceptual organization, the lis-
teners were asked to indicate after each trial whether they had
perceived one or two streams at the endof the sequence, where
the target tone was located. Thus, even on trials in which the
perceptual organization may have switched between one
stream and two streams during the presentation of the se-
quence, the responses of the subjects could be assumed to
reflect the perceptual organization in the target triplet. The
subject first listened to the sequence, then indicated the tem-
poral position of the target tone on the four-point rating scale,
and finally indicated whether at the end of the sequence he or
she had perceived one or two streams. The next sequence
started after an intertrial interval of 2 s.

Measurement of gap discrimination difference limens
(GDDLs) As is explained in the Estimation of Decision
Weights section below, for the ABA sequences, decision
weights were estimated for three temporal intervals involving
the target tone and its adjacent A and B tones (IOIAB-T, IOIBA-
T, and IOIBB-T; see Fig. 1). Two of these temporal intervals
were marked by tones of different frequencies. For the ABB
sequences, the analyzed IOIs were IOIAB-T, IOIBB+1-T, and
IOIBB−1-T (see Fig. 2). The GDDLs were measured for the
corresponding IOI durations of 130, 260, 520, and 1,040 ms,
and taking into account the potential effect of frequency
differences between the two tones marking a temporal interval
(Divenyi & Danner, 1977; Izumi, 1999; Kinney, 1961; Lister
et al., 2002). These GDDLs were used to estimate the optimal
decision weights in the absence of stream segregation—that
is, when there was no difficulty in using between-stream IOIs.
They were also used to compute measures of observer

efficiency, which made it possible to distinguish between the
roles of suboptimal decision weights and internal noise.

Just as in the ABA and ABB sequences, for the 130-ms and
260-ms base IOIs, the temporal gaps were marked either by
BB pairs of tones (i.e., both tones had a frequency of 800 Hz)
or by AB pairs (i.e., the first tone was presented at fA =
475.68 Hz, and the second tone at fB = 800 Hz). For the two
longest base IOIs, all gaps were marked by BB pairs. As in
previous studies (e.g., Divenyi & Danner, 1977), it was tacitly
assumed that the GDDLs would not differ between AB and
BA pairs. The sound pressure level and the durations of the
tones were identical to the values used in the temporal shift
discrimination task.

A one-interval, absolute identification task was applied
(e.g., Green, von Gierke, & Hanna, 1986). For a given com-
bination of base IOI and frequency difference between the first
and second tones, on each trial the IOI was randomly selected
from a normal distribution with a mean equal to the base IOI
(e.g., μ= 130 ms, corresponding to IOIAB-T at the fast tempo).
The SDs of the distribution were 20 ms for the 130-ms and
260-ms base IOIs, 40 ms for the 520-ms base IOI, and 100 ms
for the 1,040-ms base IOI. On each trial, listeners classified
the presented IOI as being either short or long (i.e., compar-
ison with an implicit standard; Nachmias, 2006), using a four-
point rating scale with the values Short–rather certain, Short–
rather uncertain, Long–rather uncertain, and Long–rather
certain. Visual trial-by-trial feedback was provided. Each
experimental block presented 155 trials of only one Base
IOI × Frequency Difference combination. For each listener,
two blocks presenting 155 trials were run for each of the six
Base IOI × Frequency Difference combinations, in separate
sessions.

The first six trials per block were excluded from the data
analysis. For each block, a cumulative-normal psychometric
function (PMF) was fitted to the dichotomized responses
(early–rather certain and early–rather uncertain vs. late–
rather uncertain and late–rather certain), using a maximum-
likelihood (ML) approach (e.g., Treutwein & Strasburger,
1999). The ML estimate of the SD parameter represents the
spread of the PMF.

The GDDL was defined as half the difference between the
75% and 25% points on the PMF, GDDL = (x.75− x.25)/2. For
each block (155 trials) obtained in the experiment, the GDDL
was computed from the ML estimate of the SD parameter of
the PMF, using the relation GDDL = 0.67449 . SD, which
applies to a cumulative-normal PMF.

Data analysis

Estimation of sensitivity in the temporal shift discrimination
task For each experimental block, an ROC curve was con-
structed from the observed frequencies of the rating responses
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on early-target and late-target trials (for details, see Macmillan &
Creelman, 2005, chap. 3). The first five trials per block were
excluded from the analysis. The area under the ROC curve
(AUC), converted to d′, was used as an index of sensitivity.
AUC does not require strong assumptions about the internal
distributions of “signal” and “noise” (e.g., Macmillan et al.,
2004; Swets, 1986b). It corresponds to the proportion of correct
responses obtained with the same stimuli in a forced choice task
(e.g., Green & Moses, 1966; Iverson & Bamber, 1997), if bias-
free responding can be assumed. To compute AUC, an ML
procedure (Dorfman&Alf, 1969)was used for fitting a binormal
model (Hanley, 1988).2 For each block, AUC was computed
from the ML estimates of slope and intercept of the ROC curve
(Swets, 1979). The observed values of AUC were then trans-
formed to d′. Given the correspondence between AUC and P(C)
in a forced choice task with unbiased responding, the relation

d02I ¼
ffiffiffi
2

p
z(AUC) can be used, where z(P) is the standard

normal deviate corresponding to the proportion P (cf.
Macmillan & Creelman, 2005, pp. 170–172; Swets, 1986b,
Eq. 21). The advantage of using d′ rather than AUC is that d′
can be viewed as a linearization of the binomial quantity AUC,
and d′ is often found to be linearly related to stimulus magnitude
(e.g., Buus & Florentine, 1991; Moore, Peters, & Glasberg,
1999). A linearization is also desirable because repeated mea-
sures analyses of variance (ANOVAs) are sensitive to departures
from normality (Oberfeld & Franke, 2013).

Estimation of decision weights The decision weights
representing the importance of particular IOIs for the decision
in the temporal shift discrimination task were estimated from the
trial-by-trial data using multiple logistic regression (Alexander &
Lutfi, 2004;Dittrich&Oberfeld, 2009; Oberfeld, 2008; Pedersen
& Ellermeier, 2008). For both rhythms and both sequence dura-
tions, decision weights were estimated for three IOIs involving
the target tone. For the ABA sequences, these IOIs were (a) the
between-stream interval ending with target onset (IOIAB-T; see
Fig. 1), (b) the between-stream interval beginning with the target
onset (IOIBA-T), and (c) the within-stream interval preceding the
target (IOIBB-T). For the ABB sequences, the analyzed IOIs were
(a) the between-stream interval endingwith target onset (IOIAB-T;
see Fig. 2), (b) the within-stream interval following the target
(IOIBB+1-T), and (c) the within-stream interval preceding the
target (IOIBB−1-T). The respective three IOIs were used as
predictors/covariates in the multiple logistic regression model.
Note that, in principle, all other IOIs might also contribute to the
decision variable. For example, for the ABA rhythm, IOIBB-T
might be compared to previous B–B intervals in the sequence.
However, the three intervals directly involving the target were

expected to be most important for the decision. In fact, additional
analyses (not shown, due to lack of space) showed that the
decision weights assigned to the intervals comprising tones from
the preceding triplet were consistently lower than those for the
three selected IOIs, and were nonsignificant for most listeners.
Analyzing additional IOIs would also have increased the com-
plexity of the analyses, and would have required more trials for
weight estimation. However, in future experiments, additional
sources of information can be included simply by adding addi-
tional IOIs to Eq. 1.

The ordered categorical rating responses (Early–rather
certain, Early–rather uncertain, Late–rather uncertain,
Late–rather certain) served as the dependent variable. The
predictors were entered simultaneously. A proportional-odds
model was used (McCullagh, 1980). The regression coeffi-
cients were taken as the decision weight estimates. For a given
IOI, a regression coefficient equal to zero would mean that the
IOI duration had no influence at all on the decision to judge
the target position as being either early or late. A regression
coefficient greater than zero would mean that the probability
to respond that the late target had been presented increased
with the duration of the given IOI. A regression coefficient
smaller than zero would indicate the opposite relation between
IOI duration and the probability to respond that the late target
had been presented.

This analysis is based on a decision model assuming that
listeners use a decision variable

Dj IOIð Þ ¼ ∑
i¼1

k
wiIOIi

� �
–c j; ð1Þ

where IOIi is the duration of a particular IOI (e.g., IOIAB-T), k
is the number of decision-relevant IOIs, IOI is the vector of
IOIs, wi is the perceptual weight assigned to IOIi, and cj is a
constant representing the decision criterion for the jth of the
four ordered response categories (cf. Agresti, 1989; Berg,
1989; Pedersen & Ellermeier, 2008). In other words, Dj(IOI)
is a weighted average of the different IOI durations.

Because of the four-category response variable Y, a
proportional-odds model was assumed (McCullagh, 1980),
according to which

P Y ≤ jð Þ ¼ eD j IOIð Þ

1þ eD j IOIð Þ ; j ¼ 1;…; J−1; ð2Þ

where J is the number of ordered response categories. This
model applies simultaneously to all J−1 cumulative probabil-
ities, and it assumes identical effects of the predictors for all
cumulative probabilities (Agresti, 1989).

2 Swets (1986a, 1986b) demonstrated that empirical data are typically
consistent with the assumption of Gaussian distributions. The binormal
model has also been shown to be robust against violations of this as-
sumption (Hanley, 1988).
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A separate logistic regression model was fitted for each
combination of subject and sequence (Rhythm × Tempo ×
Duration). Since the interest here was in the relative contribu-
tions of the three different IOIs to the decision rather than in
the absolute magnitude of the regression coefficients, the
weights wi were normalized for each fitted model, such that
the sum of their absolute values was unity (see Kortekaas,
Buus, & Florentine, 2003), resulting in a set of relative deci-
sion weights for each listener and sequence.

Estimation of ideal weights On each trial, the three different
IOIs analyzed in the weight estimation procedure provided
information concerning the temporal position of the target
tone (early or late). Which decision weights would an observ-
er maximizing the proportion of correct responses assign to
the different IOIs? Even without the potentially detrimental
effects of stream segregation, the information concerning the
correct response in the temporal shift discrimination task
provided by a given IOI is reduced by the external variability
due to the random perturbations of the tone onsets (“external
noise”; e.g., Jesteadt, Nizami, & Schairer, 2003; Swets et al.,
1959).3 It is also compromised by internal variability, in the
sense of internal noise (e.g., Swets et al., 1959). The optimal
decision strategy would be to place the highest decision
weight on the IOI providing the most reliable information
about the temporal position of the target tone (integration
model; e.g., Green, 1958). Thus, the optimal decision weights
would depend on the individual sensitivity for temporal inter-
val discrimination, and on the external variability. For this
reason, GDDLs were measured for the different IOIs relevant
in the shift discrimination task. These individual empirical
GDDLs were used for determining the optimal decision
weights for each subject, separately for each condition in the
temporal shift discrimination task. The analysis assumed the
absence of stream segregation—that is, no difficulty in using
between-stream IOIs—apart from the effects of the frequency
difference between the two tones marking an IOI (e.g.,
Divenyi & Danner, 1977). The latter effect is already included
in our measurements of the GDDLs. It was also assumed that
presenting an IOI embedded in a longer sequence of tones
would not result in lower sensitivity for judging its duration
than if the IOI were presented in isolation, as in the gap
duration discrimination task. Thus, the ideal weights comput-
ed here reflect gap duration discrimination in the absence of
effects caused by presenting longer sequences of tones.

Although in principle the ideal weights could be derived
analytically (Berg, 1990; Oberfeld, Kuta, & Jesteadt, 2013),
the correlation between, for example, IOIAB-T and IOIBA-T—
caused by the temporal shifts of the target—makes it more

difficult to find a solution in closed form. Therefore, a Monte
Carlo method was applied. Each of the j = 1, ..., k IOIs that
were relevant for the decision (e.g., IOIAB-T) was assumed to
elicit a value Xijon the internal continuum. These values were
modeled as

X ij ¼ IOI j þ Zij; ZijeN 0;σij

� �
; i ¼ 1;…; n; ð3Þ

where IOIj is the duration of a specific IOI presented on a
given trial (e.g., IOIAB-T), Zij is a random variable representing
the effect of additive internal noise, and i indexes the n differ-
ent subjects. The Zijwere independent and normally distribut-
ed with mean 0 ms and a standard deviation σij selected on the
basis of the individual GDDL for this particular interval. The
value of σijwas set to the GDDL that had been measured for
subject i in the temporal-interval discrimination task for an IOI
with the same mean duration as IOIj and with the same
frequency difference between the two tones constituting the
interval. As an example, consider a fast ABA sequence for
which IOI1 = IOIAB-T had a mean duration of 130 ms. If now
for Subject 1 the GDDL estimated for an interval duration of
130ms and for the two tones constituting the interval differing
in frequency by nine semitones was 30 ms, then σ11 was set to
30ms/0.67449, because for a cumulative normal PMF the DL,
defined as half of the difference between the 75% and 25%
points on the PMF, is just 0.67449 . σ, where σ is the standard
deviation of the normal distribution representing internal
noise. Due to the random perturbations, the IOIs were also
normally distributed, IOIj~N(μj,σj), where μjdenotes the mean
duration of IOIj and σj its standard deviation.

For each combination of subject, rhythm, and tempo, 5,000
trials were simulated with the early target tone, and 5,000 trials
with the late target. It was not necessary to distinguish be-
tween short and long sequences, because the three IOIs con-
sidered in the simulation were generated identically for both
sequence durations. The randomly perturbed tone onsets were
computed exactly as in the experiment, and the k = 3 random
numbers Zij were recorded for each trial. In order to estimate
the optimal decision weights for a particular listener and
condition, a multiple logistic regression model was used,
relating the temporal position of the target (early or late)—
that is, the correct response—to the predictors Xij. The
resulting regression coefficients for the IOIj would maximize
the probability of a correct response, and therefore represent
ideal weights. As for the estimated decision weights, the ideal
weights were normalized so that the sum of their absolute
values was 1.0.

Sessions The data were collected in a completely within-
subjects design. Each listener participated in a total of 15
experimental sessions. In Session 1, audiometric hearing
levels were measured bilaterally. Practice blocks for all

3 The task can be viewed as a sample discrimination task (Berg &
Robinson, 1987; Lutfi, 1989; Sorkin, Robinson, & Berg, 1987).
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experimental conditions were presented in Sessions 1–3. In
Session 4, GDDLs were measured. In Sessions 5–14, the
temporal shift discrimination task was presented. Only one
rhythm (ABA or ABB) was presented per session (in alter-
nating order), to help the listeners adopt the optimal decision
strategy for one particular type of sequence. In each session,
one experimental block of 100 trials was presented for each
sequence (fast long, fast short, and slow long), in random
order. For each sequence (Rhythm × Tempo × Duration), five
blocks (and thus a total of 500 trials) were obtained, in
different sessions. In Session 15, the GDDLs were measured
for a second time. Each session had a duration of about
60 min.

Results

Gap duration discrimination limens

Figure 3 shows the mean relative GDDLs (i.e., Weber frac-
tions) as a function of base IOI and frequency separation. For
the same-frequency condition and base IOIs of 130, 260, 520,
and 1,040 ms, the average relative GDDLs were 7.5%, 6.5%,
5.1%, and 7.2%, respectively. These values are very similar to
GDDLs reported previously (Friberg & Sundberg, 1995;
Hirsh, Monahan, Grant, & Singh, 1990).4 The higher relative
GDDL at the shortest base IOI is also compatible with previ-
ous studies (Friberg & Sundberg, 1995; Hirsh et al., 1990;
Rammsayer, 2010). However, the latter experiments showed
an approximate compatibility withWeber’s law at IOIs longer
than 200 ms, whereas in the present data the Weber fraction
was higher at the 1,040-ms than at the 520-ms base IOI. This
pattern was also present for one subject in Matthews and
Grondin (2012).

To test for an effect of the frequency difference between the
two tones marking the temporal interval, a repeated measures
ANOVAwas conducted for the data obtained at the 130- and
260-ms base IOIs. As in previous studies (e.g., Divenyi &
Danner, 1977; Hirsh et al., 1990), the relative GDDL was
significantly higher if the two tones marking the temporal
interval differed in frequency (i.e., A–B rather than A–A),
F(1, 7) = 13.28, p = .008, Cohen’s (1988) dz = 1.29. Cohen
defines values of 0.2, 0.5, and 0.8 as small, medium, and large
effect sizes, respectively. Descriptively, the relative GDDL
was higher at the 130-ms than at the 260-ms base IOI, again
compatible with previous results (Friberg & Sundberg, 1995),
but the effect of base IOI was not significant, F(1, 7) = 2.57,

p= .15. The Base IOI × Frequency Difference interaction was
also not significant, F(1, 7) = 0.04.

Subjective reports of the perceptual organization

Figure 4 shows the average proportions of trials on which the
subjects reported perceiving one stream (integrated) at the end
of the sequence, termed P(one stream). As expected, the slow
sequences were predominantly perceived as integrated, and
the fast long sequences as segregated. As intended, the short
sequences were only seldom perceived as segregated. For the
fast long ABB sequences, the subjects reported a higher
amount of stream segregation than for the fast long ABA
sequences.

In our experimental design, the factors Rhythm, Tempo,
and Sequence Duration were not fully crossed, because slow
but short sequences were not presented. For this reason, here
and in the following discussion the data were analyzed with
two separate repeated measures ANOVAs, one for the fast
sequences (analyzing the effect of sequence duration), and one
for the long sequences (analyzing the effect of tempo).

For the fast sequences, a repeated measures ANOVAwith
the within-subjects factors Rhythm (ABA or ABB) and
Sequence Duration (short or long) showed a strong and sig-
nificant effect of sequence duration on the proportions of trials
perceived as integrated, F(1, 7) = 73.89, p < .001, dz = 3.04,
and a significant Rhythm × Sequence Duration interaction,
F(1, 7) = 10.35, p = .015. The effect of rhythm was not
significant, F(1, 7) = 4.03, p = .085. This analysis confirms
the expected differences in subjective organization between
the long and short fast sequences.

4 Friberg and Sundberg (1995) stated on p. 2562 that their GDDLs,
computed from an adjustment task, should be multiplied by a factor of
2 in order to be comparable with GDDLs estimated using the method of
constant stimuli.

Fig. 3 Mean relative gap duration difference limens (GDDL/IOI as a
percentage) as a function of the interonset interval (IOI) duration and the
frequency separation between the two tones marking the temporal inter-
val. Squares show same frequencies (A–A or B–B). Circles show differ-
ent frequencies (A–B; Δf= 9 semitones). Error bars show ±1 SEM of the
eight individual values
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For the long sequences, a repeated measures ANOVAwith
the within-subjects factors Rhythm and Tempo showed a
significant effect of tempo, F(1, 7) = 99.29, p < .001, dz =
3.52. Thus, the variation in tempo had the expected effect on
the probability of perceiving the sequences as integrated. The
effect of rhythmwas also significant, F(1, 7) = 21.07, p= .003,
dz = 1.62. On average, the ABB rhythm was perceived as

being segregated with a higher probability than the ABA
rhythm, presumably due to the shorter IOIs in the ABB
rhythm (Bregman, 1990). The Rhythm × Tempo interaction
was nonsignificant, p = .16.

Inspection of the individual data showed very consistent
effects of tempo and duration on the reported organization.
For all listeners and both rhythms, the probability of perceiv-
ing the sequences as integrated was higher for the fast short
than for the fast long sequences, and it was higher for the slow
long than for the fast long sequences. The actual numerical
probabilities of perceiving a given sequence as integrated
differed between subjects, however.

Sensitivity in the temporal shift discrimination task

Figure 5 shows the average sensitivity (AUC converted to d′)
in the temporal shift discrimination task. For the fast se-
quences, a repeated measures ANOVA with the within-
subjects factors Rhythm and Sequence Duration showed a
significant effect of sequence duration on d′, F(1, 7) = 27.46,
p= .001, dz = 1.82. The sensitivity was higher for the fast short
than for the fast long sequence, for both rhythms and all
listeners. The effect of rhythm and the Rhythm × Sequence
Duration interaction were not significant (both ps > .9). Thus,
for both rhythms the sensitivity in the temporal shift discrim-
ination task reflected the expected difference in sensitivity due
to stream segregation versus integration (cf. the subjective
reports in Fig. 4). Note that the IOIs and the frequency
difference between the A and B tones were constant in this
analysis, only the durations of the sequences changed.
Therefore, the observed difference in sensitivity cannot be
attributed to confounding changes in the former two
parameters.

Is it also possible to infer the differences in perceptual
organization between the fast and slow long sequences from
sensitivity? As was discussed in the introduction, the answer
isNo in this case, because the fast and slow sequences differed
in terms of the IOI durations. As a consequence, differences in
sensitivity between fast and slow sequences could be expected
to reflect the effects of the IOI duration on the one hand, and of
sequential streaming on the other hand. The former factor
should result in higher sensitivity in the fast sequences, and
the latter factor should result in higher sensitivity in the slow
sequences. It is therefore not very surprising that the sensitiv-
ities did not differ between the fast long and slow long
sequences (Fig. 5), whereas the subjective ratings (Fig. 4)
show a clear difference in perceptual organization between
these two conditions. A repeated measures ANOVAwith the
within-subjects factors Rhythm and Tempo showed no signif-
icant effect of tempo on sensitivity, F(1, 7) = 0.106, p = .76.
The effect of rhythm and the interaction were also nonsignif-
icant (both p values > .13).

Fig. 4 Subjective reports of auditory stream segregation and integration.
The figure shows the average proportion of trials on which the subjects
reported to have perceived one stream (integrated), as a function of
rhythm, tempo, and sequence duration. Upper panel: ABA rhythm.
Lower panel: ABB rhythm. Squares are long sequences and circles are
short sequences. Error bars show ±1 SEM of the eight individual values.
Lines marked by asterisks denote significant pairwise differences
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Decision weights

ABA rhythm Figure 6 shows the mean normalized decision
weights for the ABA rhythm. It also depicts the average
optimal decision weights estimated individually on the basis
of the GDDLs measured during the experiment, and assuming
the absence of stream segregation (i.e., no difficulty in using
information from between-stream IOIs).

First, the decision weights for the fast ABA sequences (Fig. 6,
upper panel) were analyzed. As expected, for the fast short
sequences (circles in Fig. 6), which were predominantly per-
ceived as integrated according to the subjective ratings
(Fig. 4), the between-stream interval IOIAB-T dominated the
decision. As the confidence intervals (CIs) in Fig. 6 show,
across subjects, the decision weights were also significantly
different from 0 for the within-stream IOIBB-T (six of the eight
individual weights were significantly greater than 0, as re-
vealed by the Wald CIs of the ML estimates). Thus, listeners
also used within-stream information, and the observed weight
was close to the ideal weight for IOIBB-T. The between-stream
interval IOIBA-T, on average, did not receive a significant
weight. This is surprising, because the fast short ABA se-
quences were mostly perceived as integrated, and the ideal
weight indicates that IOIBA-T would provide as reliable infor-
mation as IOIAB-T when streaming was assumed to be absent.
A speculative explanation for the low weight on IOIBA-T is

Fig. 5 Mean sensitivity (AUC transformed to d′) in the temporal shift
discrimination task, as a function of rhythm, tempo, and sequence dura-
tion. Upper panel: ABA rhythm. Lower panel: ABB rhythm. Squares
indicate long sequences, and circles indicate short sequences. Error bars
show ±1 SEM of the eight individual values. Lines marked by asterisks
denote significant pairwise differences

Fig. 6 ABA rhythm. Mean normalized decision weights for the three
IOIs involving the target, as a function of tempo and sequence duration.
Upper panel: Fast tempo. Lower panel: Slow tempo. Squares indicate
long sequences; circles are short sequences; and open triangles are ideal
decision weights in the absence of stream segregation, derived from the
individual gap discrimination difference limens (see the text). Error bars
show 95% confidence intervals
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that judgments of temporal shift may be biased toward posi-
tive rather than negative decision weights. The weight on
IOIAB-T was higher than would have been optimal, and the
weight on IOIBA-T was much too small. Inspection of the
individual weights revealed a considerable interindividual
variability of the weight on IOIBA-T. For example, one listener
assigned a significantly negative weight to IOIBA-T, whereas
another listener assigned a significant positive weight to
IOIBA-T, which produces a systematic bias toward the incor-
rect response.

For the fast long sequences, which the subjects often re-
ported to be perceived as segregated, the decision weight on
IOIAB-T was lower than for the short sequences, but still
significantly greater than 0 (six of the eight individual weights
were significantly greater than 0, whereas two listeners
assigned nonsignificant negative weights). The weight on
IOIBB-T was identical in magnitude to the weight observed
for the fast short sequences, but it was not significantly dif-
ferent from 0 (only three of the eight individual estimates were
significantly different from 0, and one of these three weights
was negative). This finding is incompatible with the hypoth-
esis that listeners should rely mainly on within-stream
information if they perceive the ABA rhythm as two separate
streams. The weight on IOIBA-Twas negative for the fast long
sequences, as would be the ideal weight, although across
listeners the weight was not significantly different from 0.
For four listeners, the weight on IOIBA-Twas close to the ideal
value and was significant, for three listeners it was close to 0,
and one listener assigned a significant positive weight. If one
compares the observed weights to the ideal weights estimated
under the assumption of no streaming, it is surprising that the
observed weights were closer to the ideal weights for the long
(segregated) than for the short (integrated) sequences.

The decision weights for the fast sequences were analyzed
with a repeated measures ANOVA using a univariate ap-
proach and Huynh–Feldt correction to the degrees of freedom.
The within-subjects factors were IOI (IOIAB-T, IOIBA-T, IOIBB-
T) and Sequence Duration. The effect of IOI was significant,
F(2, 14) = 12.95, p = .002, ε~ = .74, η2p = .65, confirming the
descriptive differences between the weights assigned to the
three IOIs. Even more importantly, the IOI × Sequence
Duration interaction was also significant, F(2, 14) = 4.79,
p = .028, ε~ = .95, η2p = .41. Thus, the patterns of weights
differed significantly between the two sequence durations.

For the slow long ABA sequence (Fig. 6, lower panel), the
between-stream IOIAB-T again received the highest weight, as
would be expected for these sequences perceived predomi-
nantly as integrated. The average decision weight for the
within-stream IOIBB-T was also significantly higher than 0.
Thus, listeners also used within-stream information. The
weight assigned to IOIBA-T was again nonsignificant (only
two individual weights were significantly different from 0).
Thus, the pattern of weights was generally similar to the

weights observed for the fast short sequences, which were
also predominantly perceived as integrated.

An ANOVA analyzing the weights for the long sequences
showed a significant effect of IOI, F(2, 14) = 31.49, p < .001,
ε~ = .96, η2p = .82. Importantly, a marginally significant IOI ×
Tempo interaction emerged, F(2, 14) = 3.37, p= .075, ε~ = .85,
η2p = .33: The weight on IOIAB-Twas higher for the slow long
(i.e., integrated) than for the fast long (i.e., segregated) se-
quences. Thus, the decision weights indicate at least a tenden-
cy toward an effect of tempo that is also clearly evident in the
subjective ratings (Fig. 4), but not in the analysis of sensitivity
(Fig. 5).

As was mentioned above, the patterns of weights were
rather similar for the two ABA sequences perceived as inte-
grated on most trials. Therefore, as a post-hoc analysis, the
weights assigned to the three different IOIs were compared
between the fast short and slow long sequences (integrated),
on the one hand, and the fast long sequence (segregated), on
the other. For each listener and each of the three IOIs, the
average weights in the slow long and fast short condition were
computed. The resulting weights were contrasted with the
weights for the fast long sequence. A repeated measures
ANOVA with the factors IOI and Sequence Type (integrated
vs. segregated) showed a significant IOI × Sequence Type
interaction, F(2, 14) = 3.88, p = .046, ε~ = 1.0, η2p = .36.

Taken together, whereas the patterns of decision weights
showed some significant differences between sequences pre-
dominantly perceived as integrated versus segregated, the
decision weights for the ABA rhythm showed several impor-
tant deviations from the often voiced hypothesis that listeners
make near-exclusive use of within-stream IOIs when the
sequences are perceived as segregated. On average, the deci-
sion weights on the within-stream intervals IOIBB-T did not
differ between the fast long sequence (often perceived as
segregated), on the one hand, and the fast short and slow long
sequences (predominantly perceived as integrated), on the
other. The weights assigned to the between-stream IOIAB-T
and IOIBA-T were even closer to the ideal weights, assuming
absence of stream segregation, when the sequence was pre-
dominantly perceived as segregated. Additionally, inspection
of the individual weights showed that some listeners used a
qualitatively different decision strategy that systematically
resulted in incorrect responses, assigning, for example, a
positive weight to IOIBA-T. Interindividual differences in de-
cision strategies were also reported in previous studies (Lutfi
& Liu, 2011; Oberfeld, 2009).

ABB rhythm Figure 7 shows the mean normalized decision
weights for the ABB rhythm, together with the ideal weights
assuming the absence of stream segregation. Recall that the
within-stream interval IOIBB+1-Twas rather short and identical
in duration to the between-stream IOIAB-T. Thus, the listeners
were expected to use information from this IOI in all
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conditions, and that is exactly what the decision weights show.
In fact, the weight assigned to IOIBB+1-Twas even higher than
optimal. The within-stream interval preceding the target
(IOIBB−1-T) was twice as long as IOIBB+1-T, and the ideal
weight was lower in magnitude than for IOIBB+1-T (see the
triangles in Fig. 7). In fact, this IOI was virtually ignored in the
decision. As expected, the decision weights for the
between-stream IOI showed descriptive differences be-
tween the conditions. For the fast sequences, the weight
on IOIAB-T was significantly different from 0 for the short,
but not for the long, sequence duration, which is exactly
the expected pattern (i.e., between-stream information was
not used in the condition in which the sequences were
often perceived as segregated). However, a repeated mea-
sures ANOVA for the fast sequences showed a significant
effect of IOI, F(2, 14) = 26.67, p < .001, ε~ = .82, η2p =
.79, confirming the differences in weights between the
three IOIs, but no significant IOI × Sequence Duration
interaction, F(2, 14) = 2.49, p = .13.

For the slow long ABB sequence, the CIs in the lower
panel of Fig. 7 show that listeners used information from both
within- and between-stream IOIs, as was the case for the ABA
rhythm. Descriptively, the weight assigned to the between-
stream interval IOIAB-T was higher for the slow long than for
the fast long sequence, which is compatible with the expected
effect of stream segregation. On the other hand, the patterns of
weights were rather similar between the slow long and fast
short ABB sequences, which were both predominantly per-
ceived as integrated. However, a repeated measures ANOVA
showed no significant difference between the patterns of
weights in the fast long and slow long conditions; the IOI ×
Tempo interaction was not significant,F(2, 14) = 1.26, p= .31.

Taken together, the observed decision weights deviated
from the expected patterns in several ways. First, for the
ABA rhythm, the data did not correspond to the idealized
pattern of zero weights assigned to between-stream intervals
in the segregated case often implicitly assumed for the tem-
poral shift discrimination task. Second, for the ABB rhythm,
clear differences in subjective organization (e.g., fast vs. slow
long sequences) did not correspond to significantly different
decision weights. Third, in the integrated cases, in which the
listeners should have been able to use both within- and
between-stream information, the observed weights deviated
from the ideal weights derived from the GDDLs, although the
latter weights would have maximized accuracy in this case.
Finally, inspection of the individual data revealed consider-
able interindividual differences in the patterns of weights.

Efficiency measures: Disentangling nonoptimal decision
weights and increases in internal noise

The above analyses showed that it is difficult to infer the
perceptual organization of a sequence from the decision
weights alone or from sensitivity alone. As was suggested in
the introduction, this limitation might be overcome by com-
bining the information gained from sensitivity and the deci-
sion weights (Berg, 1990). Three different efficiency mea-
sures were computed to quantify the loss in sensitivity in
comparison to a reference sensitivity representing the optimal
performance.

In the analysis, the upper reference for sensitivity was
d′GDDL, which denotes the sensitivity in the temporal shift
discrimination task that an observer using the optimal set of
decision weights and limited only by the finite sensitivity in
judging the duration of a temporal interval would obtain.
More specifically, as in the computation of the ideal weights
above, d′GDDL was determined under the assumption that the
sensitivities for judging the intervals were equivalent to the
measured GDDLs. Therefore, d′GDDL represents the perfor-
mance of a subject applying the optimal decision weights in
the absence of stream segregation. This reference sensitivity
d′GDDL could in principle be computed analytically by

Fig. 7 ABB rhythm. Mean normalized decision weights for the three
IOIs involving the target, as a function of tempo and sequence duration.
Squares are fast long sequences; circles are fast short sequences; and open
triangles are slow long sequences. Error bars show 95% confidence
intervals
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determining the expected value of the decision variable on
D(IOI) for trials with early and late target onsets, and then
dividing the difference between those two values by the
standard deviation of this difference (Green & Swets, 1966).
However, as was noted above, finding an analytic solution
was somewhat complicated for our experiment, due to the
correlations between the predictors (IOIs). Therefore, a Monte
Carlo method was applied for computing d′GDDL, following
the same rationale as for the simulations used for estimating
the ideal weights (Eq. 3). In all, 5,000 trials were simulated
with late target onsets and 5,000 trials with early target onsets,
and for each trial the value on the internal continuum (i.e., the
perceived IOI duration, which includes the external noise) was
computed as the actual IOI duration plus a random variate
(internal noise), with the standard deviation of the internal
noise being selected to match the GDDLs measured for the
respective type of IOI for a given listener. To estimate d′GDDL,
the individual ideal weights (see above) were used to compute
the value of the decision variable D(IOI) according to Eq. 1.
The difference between the average value of D(IOI) on trials
with delayed target onsets (μLate) and on trials with early target
onsets (μEarly), divided by the common standard deviation (σ=
SD[D(IOI)]) is, by definition, d′GDDL = (μLate−μEarly)/σ. Note
that our definition of d′GDDL includes internal noise corre-
sponding to the less-than-perfect gap duration discrimination
performance for isolated temporal intervals (i.e., the measured
GDDLs), rather than assuming an ideal observer without
internal noise as, for example, in Berg (2004). Thus, d′GDDL
represents the sensitivity that a given listener could obtain if
(a) his or her representation of the decision-relevant IOIs in the
sequence was as precise as for the isolated temporal intervals,
and (b)he or she applied the optimal decision weights. A
similar type of analysis was used by Alexander and Lutfi
(2008) and Oberfeld, Kuta, and Jesteadt (2013).

The molar (d′) and molecular (decision weights) mea-
sures can now be combined in order to investigate which
factor(s) affected the performance in the temporal shift
discrimination task (Berg, 1990, 2004). First, imagine that
for an ABA sequence the information about the durations
of the three relevant IOIs available at the decision stage
was as precise as if these IOIs had been presented in
isolation. In other words, combining the IOIs into the
ABA sequence did not increase the internal noise. Which
sensitivity would now result if the listener applied the
empirically estimated decision weights for the sequence,
rather than the ideal weights? This sensitivity (d′wgt) can
be estimated using the same simulation method as above,
but this time using the empirically observed rather than the
ideal weights when computing the decision variable for the
given listener and sequence. The weighting efficiency
ηwgt = (d′wgt/d′GDDL)

2 represents the loss in sensitivity
caused by the suboptimal decision weights (Berg,
1990).

If the assertion were true that streaming caused only a
change in the decision weights, but not an increase in internal
noise, then d′wgt should be equal to the observed sensitivity
(d′obs). In this case, the efficiency measure ηnoise = (d′obs/d′wgt)

2,
representing an additional loss in efficiency due to increased
internal noise (i.e., other factors besides applying suboptimal
decision weights), should be 1.0 (Berg, 1990). If, however,
stream segregation caused an increase in internal noise (i.e.,
made it difficult to use information from between-stream inter-
vals), this would be indicated by values of ηnoise smaller than
1.0. Finally, η = (d′obs/d′GDDL)

2 = ηwgt ηnoise represents the
overall loss in efficiency due to both factors. It is important
to note that Berg (1989) showed that the relative decision
weight estimates are unaffected by additive internal noise,
which is of course a prerequisite for this analysis (cf.
Oberfeld et al., 2013).

Using the two efficiency measures, ηwgt and ηnoise, it was
possible to analyze whether a higher probability of stream seg-
regation (e.g., for a fast long as compared to a fast short se-
quence) resulted only in the adoption of suboptimal weights, but
no increase in internal noise (d′wgt < d′GDDL but d′obs= d′wgt; thus,
ηwgt < 1 and ηnoise = 1), or also in higher internal noise, as is
assumed in the literature (d′obs< d′wgt, thus ηnoise < 1). For one
subject, d′wgt and d′obs were negative for the fast long
ABB sequence, because she had assigned a negative
weight to IOIBB−1-T, systematically resulting in incorrect
responses. This subject was excluded from the efficiency
analyses.

The mean efficiency is displayed in Fig. 8. First, the ABA
rhythm (upper panel) is discussed. The measure for total
efficiency, η, scored considerably below 1.0 for each sequence
type (Tempo × Duration), indicating that the observed sensi-
tivity was smaller than was predicted from the GDDLs and the
ideal decision weights derived from them. A repeated mea-
sures ANOVA showed a significant effect of sequence type
(fast long, fast short, and slow long), F(2, 14) = 9.37, p= .005,
ε~ = .83, η2p = .57. The overall sensitivity was lowest for the
fast long and highest for the slow long sequence. Pairwise
comparisons between the three levels of sequence type were
computed by means of separate paired-samples t- tests
(nonpooled error terms; Keselman, 1994) and using
Hochberg’s (1988) sequentially acceptive step-up Bonferroni
procedure, which controls the family-wise Type I error rate. At
an α level of .05, the difference between η in the fast long and
the fast short as well as the slow long sequences was
significant.

The weighting efficiency ηwgt was also smaller than
1.0 for all sequence types, showing that even in the
sequences predominantly perceived as integrated, the
listeners did not apply the optimum weights, as was
discussed above in the section on Decision Weights.
However, ηwgt did not differ significantly between the
three sequence types, F(2, 14) = 1.51, p = .26.
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In contrast, sequence type had a significant effect on ηnoise,
F(2, 14) = 7.45, p = .012, ε~ = .78, η2p = .52. Pairwise
comparisons indicated that ηnoise was significantly lower for
the fast long than for the fast short and slow long conditions.
This pattern is compatible with the assumption that stream
segregation—experienced most frequently in the fast long
sequences—impaired the representation of the IOI durations
(i.e., caused higher internal noise).

Taken together, for the ABA rhythm it can be concluded
that the weighting efficiency was not significantly influenced
by streaming. However, sequential stream segregation caused
an increase in internal noise, and the measure ηnoise clearly
differentiated between the fast long sequence (predominantly
perceived as segregated) and the other two types of sequence,
which were perceived as integrated on the majority of trials
(see Fig. 4). The overall efficiency η also differed between the

“integrated” and “segregated” sequences, but showed an ad-
ditional nonsignificant difference between the fast short and
the slow long sequence.

For the ABB rhythm, the analyses of the three efficiency
measures showed patterns of effects similar to those for the
ABA rhythm. A significant effect of sequence type on η and
ηnoise emerged, but not on ηwgt (for η, F(2, 12) = 8.92, p= .004,
ε~ = 1.0, η2p = .60; for ηnoise, F(2, 12) = 6.03, p= .015, ε~ = 1.0,
η2p = .50; for ηwgt, F(2, 12) = 2.20, p = .15). For η and ηnoise
only, the pairwise comparison between the fast long and fast
short sequences was significant, although descriptively the
two measures were smaller for the fast long (“segregated”)
than for the slow long (“integrated”) sequence.

It can thus be concluded that efficiency measures based on
a combination of molar and molecular estimates reflect differ-
ences between integrated and segregated sequences that sen-
sitivity measures like d′ fail to show. The explanation for this
finding is that efficiency, as computed here, corrects for the
opposite effects that changing the tempo of a sequence should
have on sensitivity. As was discussed above, the longer IOI
durations in a slow sequence make the temporal shift discrim-
ination task more difficult because the GDDLs are higher than
for a fast sequence. This general difference in sensitivity
between the two tempi is reflected in the reference sensitivity
d′GDDL. On the other hand, using the between-stream IOIs
should be easier in a slow than in a fast sequence, because the
latter is more frequently perceived as segregated, and our
analyses indeed provide evidence for increased internal noise
in the segregated case.

The above analyses showed that in the mean data, η and
ηnoise differed between sequences predominantly perceived as
integrated and those predominantly perceived as segregated.
Does this relation apply at the individual level? More precise-
ly, was the probability of perceiving a sequence as integrated,
P(one stream), correlated with any of the efficiency measures?
To answer this question, the data were analyzed using
random-effects models with a random intercept and slope,
taking into account the repeated measures structure of the
data. The variance–covariance matrix of the random effects
was specified as being of the “unstructured” (UN) type, cor-
responding to a random coefficient model (Wolfinger, 1996).
The degrees of freedom were computed according to the
method by Kenward and Roger (1997). For the regression of
ηnoise on P(one stream), the population estimates of the slope
of the regression line were βABA = 0.42 (SE= 0.24, two-tailed
p = .13) and βABB = 0.25 (SE = 0.10, p = .033) for the ABA
and ABB rhythm, respectively. The nonsignificant regression
coefficient for the ABA rhythm seemed to be due to a single
outlying value of ηnoise in the vicinity of 1.0. Excluding this
data point (1 out of 23) from the analysis resulted in a signif-
icant regression coefficient, βABA = 0.58, SE= 0.15, p = .002.
These results show that when a sequence was perceived as
integrated on a high proportion of trials, then the estimated

Fig. 8 Mean efficiencies for the three sequence conditions. Upper panel:
ABA rhythm. Lower panel: ABB rhythm. Squares are η; triangles are
ηwgt; circles are ηnoise. Lines marked by asterisks denote significant
pairwise differences. Error bars show ±1 SEM
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value of ηnoise also tended to be high. The coefficient of
determination computed according to Edwards, Muller,
Wolfinger, Qaqish, and Schabenberger (2008) was higher for
the ABA rhythm (R2β = .51) than for the ABA rhythm (R2β =
.37). The weighting efficiency ηwgt was not systematically
related to P(one stream): For both rhythms, the regression
coefficient was not significantly different from 0 (p values >
.17). These results confirm that the increase in internal noise
quantified by ηnoise represents a performance-based measure
of stream segregation, whereas the pattern of decision weights
indexed by ηwgt cannot be used to differentiate between se-
quences perceived as integrated or segregated. Because the
total efficiency η = ηwgt ηnoise encompasses ηnoise, η was also
correlated with P(one stream). The population estimates of the
slope of the regression line were βABA = 0.36 (SE = 0.10, p =
.004, R2β = .48) and βABB = 0.23 (SE = 0.08, p = .029, R2β =
.48) for the ABA and ABB rhythm, respectively. Without the
outlying value of η in the ABA condition, βABAwas 0.34 (SE=
0.11, p = .007).

Discussion

Here, auditory stream segregation was studied in ABA and
ABB sequences, using a combination of subjective ratings,
sensitivity in a temporal shift discrimination task, decision
weights in the latter task, and efficiency measures. This com-
bination of different methods and measures provided an un-
precedented “microscopic” look on the effects of stream seg-
regation on performance in the shift discrimination task, and
revealed several interesting issues.

As expected, the sequence tempo and the sequence dura-
tion had a strong effect on the perceptual organization of the
sequences (integrated versus segregated). Although the sensi-
tivities in the shift discrimination task differed between short
and long fast sequences, reflecting the difference in perceived
organization, the sensitivity did not differ between fast and
slow sequences, despite clearly differing perceptual organiza-
tions. This dissociation between the perception as integrated
and segregated on the one hand and sensitivity in the shift
discrimination task on the other hand was expected because a
change in sequence tempo alters the sensitivity for temporal
gap discrimination (e.g., Friberg & Sundberg, 1995), which
forms the basis of performance in the shift discrimination task.
Thus, as expected our data demonstrate a serious limitation of
sensitivity-based measures of stream segregation because the
fundamental effect of presentation rate on the perceptual or-
ganization (van Noorden, 1975) is not reflect by these
measures.

Concerning the relation between the patterns of decision
weights and the perceptual organization, our data revealed
pronounced deviations from the idealized decision strategies
often explicitly or implicitly assumed for the shift

discrimination task. It is typically presumed that it is difficult
or impossible to use between-stream information if a sequence
is perceived as segregated. Therefore, the decision weights,
which represent a direct measure for the use of different
sources of information in the shift discrimination task, should
be near zero for between-stream IOIs in the segregated case.
However, in the ABA sequences were studied, one of the
between-stream IOIs received a significant weight in the fast
long sequences that were predominantly perceived as segre-
gated (see Fig. 6). Additionally, in sequences predominantly
perceived as integrated the decision weights differed from the
optimum weights that would have maximized the accuracy in
the absence of stream segregation. It can therefore be conclud-
ed that listeners do not always apply the idealized pattern of
decisions weights typically assumed when using sensitivity-
based measures for stream segregation. As was discussed
earlier, similar results have been reported in a recent study
by Richards, Carreira, and Shen (2012), in which listeners
detected a temporal shift on one A tone in anABAB sequence,
and the frequency difference between A and B tones was
varied. Using likelihood-ratio tests, the authors compared the
goodness of fit of a model containing as predictors the onset
and offset times of both the A and the B tones (full model) and
the goodness of fit of a model containing as predictors only the
A-tone on- and offsets (restricted model). Although model
comparisons indicated that for Δfs of 17 semitones or greater
information about the onsets of the tones belonging to the
stream not containing the target did not have a substantial
influence on the decision for the majority of listeners, infor-
mation from the nontarget stream received a significant weight
in several cases. Additionally, the likelihood-ratio test favors
models with fewer degrees of freedom—that is, fewer predic-
tors (Agresti, 2002). Therefore, even if the test indicates that
the full model did not provide a significantly better fit than the
restricted model, this does not necessarily show that the B
tones were absolutely unimportant for the decision. On a more
general level, the results of the present study indicate that the
decision weights alone cannot be used for differentiating
between sequences perceived as integrated or segregated.

The present study took the molecular psychophysics ap-
proach one step further by combining decision weights and
estimates of sensitivity. One of the most important features of
the present study is that GDDLs were also measured for
isolated pairs of tones representing the different IOIs in the
ABA and ABB sequences assumed to be utilized in the
temporal shift discrimination task. This made it possible to
estimate ideal decision weights in the absence of stream
segregation, on an individual basis. The GDDLs also played
a crucial role in the computation of efficiency measures that
were used to disentangle effects of stream segregation on
internal noise and the weighting patterns. These analyses were
based on the concept that two factors can contribute to limi-
tations in sensitivity (Swets et al., 1959). Stream segregation
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could reduce the precision of the information about the
between-stream IOIs available at the decision stage, as
it is assumed when using sensitivity-based measures of
stream segregation. An impairment in performance
could also be due to nonoptimal decision strategies—
that is, suboptimal decision weights. Equally important,
the applied efficiency measures put the observed sensi-
tivity into the context of the temporal resolution under-
lying performance in the shift discrimination task. The
reference sensitivity was computed on the basis of the
individually measured GDDLs and therefore reflected
the fact that even in the absence of streaming the
sensitivity differs between a fast and a slow sequence,
as discussed above. In fact, our analyses showed that
two of the efficiency measures were capable of discrim-
inating between sequences perceived as integrated and
those perceived as segregated. In particular, the measure
ηnoise that estimates a loss in sensitivity attributable to
internal noise rather than a suboptimal decision strategy
was significantly lower for the fast long sequences
(segregated) than for the fast short or slow long se-
quences (integrated). Additionally, regression analyses
showed that ηnoise is systematically related to the prob-
ability of perceiving a sequence as integrated. Therefore,
the conclusion is that ηnoise is a useful performance-
based measure of stream segregation that avoids some
of the limitations of using sensitivity alone or decision
weights alone. On a more general level, the difference
in ηnoise between segregated and integrated sequences is
compatible with the assumption that stream segregation
causes an increase in internal noise in the sense that it
renders between-stream information less precise or even
unusable. This assumption is also the basis of
sensitivity-based measures of streaming. In principle,
the difference in ηnoise between segregated and integrat-
ed sequences might also be caused by less precise
within-stream information in the segregated as compared
to the integrated case. It remains for future research to
show whether it is possible to obtain separate estimates
of the internal noise associated with within-stream and
between-stream information. These separate estimates
would make it possible to quantify which proportions
of the change in ηnoise can be attributed to less precise
within-stream or between-stream information. It should
also be noted that in the individual data the ordering of
the probabilities of perceiving a sequence as integrated
was not always reflected by the ordering of the values
of ηnoise. Additional experiments are needed to show
whether this is merely due to imprecise estimates caused
by the rather small number of trials used, or whether
additional factors need to be considered here.

In the preceding discussion, the internal noise components
associated with each IOI were conceived as being “early” or
“sensory”; that is, they appear prior to integration (cf. Eq. 3).
An increase in an additional “central” internal noise source
located at or after integration (cf. Durlach, Braida, & Ito,
1986) might also have contributed to the observed difference
in ηnoise between integrated and segregated sequences. A
“central” noise source would equally affect the information
available from the within-stream and the between-stream
IOIs. More specifically, if the central noise dominated the
“sensory” noise, then the listeners should assign approximate-
ly uniform weights to all IOIs, regardless of the internal noise
SDs (indexed for example by the GDDLs) effective for the
different IOIs (see Oberfeld et al., 2013, for a detailed
discussion). Thus, the observed differences in the decision
weights render it unlikely that central noise dominates the
sensory noise in the shift-discrimination task. However, as
discussed above, it remains for future research to obtain
separate estimates of the different potential internal noise
components.

The present analysis was restricted to the three IOIs most
adjacent to the target. It would be interesting to investigate the
extent to which additional IOIs contribute to the decision in
future studies. This can be achieved simply by adding addi-
tional IOIs to Eq. 1. Such analyses may provide insight into
questions like whether listeners consider IOIs from earlier
parts of the sequence, using for example all previous A-B
intervals to form a representation of the average duration of
this interval and compare it to the IOIAB-T in the target triplet.
If the data show that this was the case, and if the weights
assigned to previous triplets are higher for the longer se-
quences, then the extended model including the additional
IOIs could be used to answer the question whether the esti-
mated increase in internal noise in the present analyses was
partly due to the inclusion of only the three IOIs from the
target triplet.

Another interesting generalization of the methodological
approach developed here could be to incorporate potential
nonlinear transformations of the IOIs. To this end, the IOIi
terms in Eq. 1 can be replaced by f(IOIi), where f() is a
monotonic function (cf. Richards, 2002). Whether this will
provide a better fit of the data than the linear model used in this
article is an empirical question, but does not render the general
approach invalid.

Importantly, the method here is not restricted to the
temporal shift discrimination task used as an example in
the present experiment, but can be applied to any task in
which the performance can be assumed to depend on the
perceptual organization of the sequence—as, for example,
frequency discrimination (Ma et al., 2010). The methodol-
ogy outlined in this article should also be useful for other
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domains than auditory stream segregation. For example, in
an experiment on object-based visual attention (Chen,
2012; Kahneman & Henik, 1981), the methods described
in this article could be used to quantify the amount of
selective attention to the target in different conditions, by
measuring the decision weights assigned to target and
distractor elements. In addition, a potential increase in
internal noise caused by the distractor elements could be
identified and quantified by the efficiency analyses.

In summary, using exactly the same task as in an
experiment aimed at a sensitivity-based objective measure
of auditory streaming, a rich set of behavioral measures of
streaming can be obtained, overcoming limitations of mea-
sures based only on sensitivity. In terms of the experimen-
tal method, it is only necessary to impose random varia-
tions on the IOIs, and to additionally measure the sensi-
tivity for the stimulus elements underlying the perfor-
mance in the studied task, as for example gap duration
discrimination limens for the different IOIs constituting an
ABA sequence. This will make it possible to estimate (a)
sensitivity, (b) decision weights, and (c) a measure of
internal noise, using standard data analysis techniques like
logistic regression. It should be noted, however, that in
order to obtain precise estimates of the decision weights
on an individual level, the proposed method requires a
somewhat higher number of trials than does an experiment
measuring only the sensitivity. The multimeasure molecu-
lar psychophysics approach applied in the present study
offered a detailed insight into effects of stream segregation
on the performance in a temporal shift discrimination task.
In particular, the method provides an observer efficiency
measure indexing the increase of internal noise, as com-
pared to a situation without stream segregation. Unlike
estimates of sensitivity, this measure was able to dissociate
fast from slow ABA and ABB sequences. These se-
quences clearly differed in their perceptual organization
(one vs. two streams, as revealed by subjective ratings),
but not in terms of sensitivity in the temporal shift dis-
crimination task, demonstrating the limitations of sensitiv-
ity as an objective measure of streaming.
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Appendix: Pretest

The pretest was completed before the main experiment started.
The purpose of this experiment was to select appropriate
parameter values for the temporal shift (Δt) of the target tone.

Pretest: Selection of a value of Δt for the temporal shift
discrimination task

For the random variation in the tone onsets to have an effect
on the decision, the temporal shift should not be too easy to
detect. If Δtwere so large that subjects always detect the shift
(i.e., 100% correct responses are obtained), then the random
timing perturbations would have no effect at all on the deci-
sion, and an estimation of decision weights would not be
possible. Although, as Berg (2004) noted, the optimal level
of performance for estimating decision weights has yet to be
identified, previous studies have successfully used P(C)
around .7 (e.g., Oberfeld & Plank, 2011).

Method

In the pretest, seven listeners (six female, one male; 19–
28 years of age) participated voluntarily. All reported normal
hearing. The same temporal shift discrimination task as in the
main experiment was presented, except that no no-shift trials
were presented, and no ratings of the perceptual organization
were required. Listeners indicated their confidence of “target
early” or “target late” on the four-point rating scale also used
in the main experiment. After one practice session, all listeners
participated in six experimental sessions. Only one rhythm
(ABA or ABB) and one value of Δt (15, 30, or 49 ms) was
presented per session, and one block of 110 trials for each of
the three combinations of tempo and sequence duration was
obtained in each session. The early and the late temporal
position of the target tone were presented on 55 trials each
(in random order). The sensitivity was estimated in terms of
AUC converted to d′, as in the main experiment (see the
section on “Sensitivity in the temporal shift discrimination
task”).

Results

To analyze the relation between Δt and sensitivity, the average
d′ was computed per listener, condition, and value of Δt.
Figure A1 shows the average d′ across listeners as a function
of Δt, for the different conditions. The lines are the best-fitting
linear population regression lines, which were estimated using
a subject-specific, random-effects model approach (SAS
PROC MIXED; cf. Burton, Gurrin, & Sly, 1998; Liang &
Zeger, 1993) accounting for the repeatedmeasures structure of
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the data (each subject received three different values of Δt). In
this approach, the slope is assumed to vary from subject to
subject, and the correlation structure is modeled by treating
the subjects as a random sample from a population of all
subjects. Linear regression through the origin was used be-
cause, by definition, d′ = 0 for Δt = 0. The variance–covari-
ance matrix was specified as being of the “unstructured” (UN)
type; that is, no restrictions were imposed on the variances and
covariances (Wolfinger, 1993). The degrees of freedom were
computed according to the method by Kenward and Roger
(1997), which performs favorably relative to other methods
(e.g., Fouladi & Shieh, 2004).

The population estimates of the slopes in the different
conditions are displayed in Table A1. Because the slopes did
not differ too extremely between conditions, a common value
of Δt = 26 ms was selected for all conditions of the main
experiment, so that the average expected AUC was .70, cor-
responding to an average expected d′ = 0.76. Across

conditions, the expected AUC ranged between .64 and .76.
In the main experiment, the same value ofΔt= 26mswas used
for all subjects and all experimental conditions. Using a fixed
value of Δt has the advantage that the sensitivities can be
compared directly between conditions.
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