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Abstract The effect of target probability on detection times
is well-established: Even when detection accuracy is high,
lower probability targets are detected more slowly than
higher probability ones. Although this target probability
effect on detection times has been well-studied, one aspect
of it has remained largely unexamined: How the effect
develops over the span of an experiment. Here, we investi-
gated this issue with two detection experiments that assessed
different target probability ratios. Conventional block seg-
ment analysis and linear mixed-effects modeling converged
on two key findings. First, we found that the magnitude of
the target probability effect increases as one progresses
through a block of trials. Second, we found, by examining
the trajectories of the low- and high-probability targets, that
this increase in effect magnitude was driven by the low-
probability targets. Specifically, we found that low-
probability targets were detected more slowly as a block of
trials progressed. Performance to high-probability targets,
on the other hand, was largely invariant across the block.
The latter finding is of particular interest because it cannot
be reconciled with accounts that propose that the target
probability effect is driven by the high-probability targets.
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Introduction

It has been known for some time that target probability affects
detection. In visual search paradigms, low-probability targets
are detected less accurately than higher probability counter-
parts (Rich, Kunar, Van Wert, Hidalgo-Sotelo, Horowitz &
Wolfe, 2008; Wolfe, Horowitz, Van Wert, Kenner, Place &
Kibbi, 2007). In other paradigms like the go/no-go or simple

detection ones, detection accuracy is often close to perfect.
Nevertheless, even with such paradigms, there is still a behav-
ioral cost associated with rare targets: They are detected more
slowly than frequent ones (Laberge& Tweedy, 1964;Miller &
Pachella, 1973). In this study, we were particularly interested
in the effect of target probability (TPe) on detection times
when accuracy is high. Accordingly, we used the simple
detection paradigm exclusively in the present study.

Various accounts of the TPe have proposed that the effect
is driven by advantages associated with the high-probability
targets. For example, one specific view is that the TPe
occurs because higher probability targets enjoy a perceptual
advantage over lower probability ones (Biederman &
Zachary, 1970; Dykes & Pascal, 1981; Lau & Huang,
2010; Miller & Pachella, 1973; Orenstein, 1970). An alter-
native proposal is that the TPe is caused by response prep-
aration differences, with observers being more prepared to
make responses associated with the high-probability targets
because these are more expected and/or occur more fre-
quently (Gehring, Gratton, Coles & Donchin, 1992;
Hawkins, Mackay, Holley, Friedin & Cohen, 1973).1 At this
point, we do not attempt to arbitrate between the various
views. Rather, we simply highlight the fact that a number of
theoretical perspectives point to the high-probability targets
as being central to the TPe. This is consistent with the
general idea that there is an advantage enjoyed by things
that are expected or more frequently experienced.

The TPe is typically computed by comparing the mean
response time (RT) associated with low-probability targets
with that associated with high-probability ones (i.e.,
MeanRTlow probability − MeanRThigh probability). This reliance
on single values summarizing performance across the span
of an experiment necessarily obscures an important issue:

1 This proposal typically assumes a scenario in which low- and high-
probability targets are associated with different responses, or when
probability is manipulated in a blocked fashion. It is less able to
account for situations in which low- and high-probability targets are
presented within the same block and share the same response.
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How the TPe develops over the course of the experiment.
The trajectory of the TPe is a particularly important theoret-
ical issue because, although it can occur without much
mental effort (Estes, 1964; Hasher & Zacks, 1984), infor-
mation about stimulus probability cannot be accrued instan-
taneously. In other words, information about target
probabilities will take time to build up within mental task
representations. The implication of this is that the TPe
should take time to be fully established and is, therefore,
unlikely to be of fixed magnitude throughout the course of
an experiment. Accordingly, we might expect that TPe
magnitude would increase as an experiment progresses,
plausibly reaching a stable level when information about
stimulus probabilities has been fully acquired and integrated
into mental representations of the task at hand.

Of greater importance, the trajectory of the TPe can be
decomposed into the trajectories of the low- and high-
probability targets. This would allow for an assessment of
the respective contributions of these targets to the overall
trajectory of the effect. Additionally, examining the low-
and high-probability trajectories would offer insight into
the locus of the effect. Taking into consideration the two
key theoretical points raised earlier—that the TPe is driven
by an advantage enjoyed by high-probability targets and that
this advantage takes time to be fully established—we might
expect the following pattern when assessing these trajecto-
ries: Performance to the high-probability targets improves
across the span of the experiment (reaching a stable level at
some point), while performance to the low-probability tar-
gets remains largely invariant. Evidence for such a pattern
would support the general idea that the TPe is driven by the
high-probability targets.

Although of clear theoretical importance, the issue of the
trajectories of the TPe and its constituent components has
been largely ignored by the field. To the best of our knowl-
edge, only one other study has assessed, albeit peripherally,
the effect of target probability on RTs over the course of a
block of trials (Laberge & Tweedy, 1964).2 Here, we direct-
ly examined this issue with two different target probability
ratios and adopting two different analytical methods.

Method

Participants

Forty-four undergraduate students from the National
University of Singapore participated in this experiment.
All participants had normal or corrected-to-normal vision.

Stimuli

Letter stimuli were utilized for this study. These were pre-
sented in white on a black background. Each letter was
presented in 24-point Courier New font, which, when
viewed from a distance of 50 cm, subtended approximately
1.4° of visual angle both vertically and horizontally.

In both experiments, all letters of the alphabet were
used. For the experimental blocks of both Experiments
1 and 2, the letters “W” and “T” were designated as
targets, with high–low probability assignment being
counterbalanced across participants. The letters “H”
and “G” were used as targets in the practice session
that preceded the experiments proper. The remaining 22
letters of the alphabet formed the distractor set. The
letters designated as targets were never included in the
distractor sets.

Procedure

Experiment 1

Twenty-two participants observed a single 300-trial ex-
perimental block, with trials being equally distributed
between targets and distractors as a whole. Two letters
were designated targets; that is, participants attempted to
detect, within the same block, the occurrence of either
member of a two-letter target set. Critically, one target
letter accounted for 10 % of all trials in the block (low-
probability target), while the other accounted for 40 %
(high-probability target). All stimuli, whether targets or
distractors, were presented for 1,000 ms, followed by a
blank frame presented for another 800 ms, and then by
the presentation of the next stimulus. The same response
(index finger button-press of the “/” key) was made to
both targets. Since this was a simple detection task, no
response was required for distractors. Trial order was
randomized for each participant.

Experiment 2

An additional 22 participants performed this experiment,
which was identical to Experiment 1, except that, here, the
low- and high-probability targets accounted for 5 % and
45 % of all trials, respectively.

In both experiments, participants were not informed of
the target probabilities. To familiarize participants with the
paradigm, both experiments began with a short practice
session of 10 trials, with targets and distractors occurring
equally often.

Both experiments were controlled by a PC running the E-
Prime software, with the stimuli being presented on a 24-in.
LCD monitor.

2 It is worth noting, though, that other studies have examined how the
(visual) search for rare targets changes across the span of an experi-
ment (e.g., Menneer et al., 2010; Wolfe et al., 2007).
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Results

To begin with, detection accuracy was near ceiling for both
these experiments (Table 1). This was important given our
interest in the effect of target probability on RTs when
detection accuracy is high. We now turn our attention to
the critical RT data.3

Experiment 1

For our conventional block segment analysis, the experi-
mental block was partitioned into three contiguous seg-
ments, each comprising 100 trials. Global probabilities
were maintained in all three segments: Low- and high-
probability targets and distractors accounted for 10 %,
40 %, and 50 % of trials in each segment, respectively.

Figure 1 depicts the trajectory of the TPe through the
different segments of the experiment. Following general
convention, we computed the TPe in the following way:
RTlow probability − RThigh probability. Separate TPes were com-
puted for each of the three segments. A one-way ANOVA
conducted on these data revealed a reliable effect of seg-
ment, F(2, 42) = 6.11, p = .005. Post hoc Tukey’s tests
revealed that, while the magnitude of the TPe was smaller
in the first segment than in the second (p = .009), there was
no difference in TPe magnitude across the second and third
(p = .99). This indicates that TPe magnitude initially in-
creased before reaching a stable level.

To determine what underpinned the pattern observed in
Fig. 1, we independently examined the trajectories of the
low- and high-probability targets. Figure 2 depicts the RT data
for the different probability targets as a function of block
segment. We subjected the data to a 2 (probability: high,
low) × 3 (segment: first, second, third) ANOVA. This analysis
revealed significant effects of probability, F(1, 21) = 38.16,
p < .001, and segment, F(2, 42) = 10.43, p < .001. More
critically, the probability × segment interaction was also sig-
nificant, F(2, 42) = 6.11, p = .005.

Because we were interested in the respective trajectories
of the different targets, we performed two separate one-way
ANOVAs on the high- and low-probability data. For the
low-probability targets, we found a significant effect of
segment, F(2, 42) = 12.46, p < .001. For the high-
probability targets, on the other hand, there was no such
significant effect, F(2, 42) = 1.89, p = .163. Post hoc
Tukey’s tests performed on the low-probability targets
revealed that detection of these targets became progressively
slower from the first to the second segment (p = .003) but
remained constant across the second and third (p = .443).
Taken together, this suggests that, while performance to the
high-probability targets remained largely invariant across

the block, performance to the low-probability targets wors-
ened gradually before reaching a stable level. Note that this
pattern runs contrary to what would be predicted if the high-
probability targets were the primary determinants of the TPe
(see the Introduction).

One might argue that partitioning the experimental block
into three segments is arbitrary and that our results might be
an artifact of this decision. To address these concerns, we
also subjected our data to linear mixed-effects modeling (see
Baayen, Davidson & Bates, 2008). These analyses allow us
to examine the effect of trial order in a continuous manner,
while generalizing the effect across both participants and
items. Using R (R Development Core Team, 2011), we
fitted a linear mixed-effects model to our RT data, using
the lme4 package (Bates, Maechler & Dai, 2012), with p-
values for fixed effects computed using the languageR
package (Baayen, 2012). The influences of target probabil-
ity and trial order (both linear and quadratic) and the target
probability × trial order (linear and quadratic) interaction
were treated as fixed effects, while participants and items
were treated as random variables. Critically, our analyses
revealed a significant interaction between target probability
and both linear (p < .001) and quadratic (p = .006) trial
order. To make our results clearer, we have plotted the
interaction in Fig. 3. As can be clearly seen, although there

3 These data were trimmed to exclude outlier trials (>2.5 SDs).

Table 1 Accuracy data for the two experiments

Experiment 1 Experiment 2

10 % 40 % 5 % 45 %

Hits 99.1 99.8 98.8 99.8

FAs 1.4 0.7

Note. The hit and false alarm (FA) rates are given as percentages
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Fig. 1 Target probability effect (RTlow probability − RThigh probability) as a
function of block segment. Error bars indicate 1 SEM
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was variation in performance to low-probability targets as a
function of where one was in the block, there was relatively
little change in performance to the high-probability targets.
In sum, these results converge nicely with the simpler block
segment analyses reported earlier.

Experiment 2

In Experiment 1, changes to the TPe were driven by the low-
probability targets. In this second experiment, we tested the
generality of this finding by assessing a different low-to-

high-probability ratio. In Experiment 1, the ratio was 1:4.
Here, we used a low-to-high ratio of 1:9; specifically, in this
experiment, low- and high-probability targets accounted for
5 % and 45 % of all trials, respectively.

Figure 4 depicts the trajectories of the low- and high-
probability targets in Experiment 2. Consistent with
Experiment 1, we found that the main effects of probability,
F(1, 42) = 157.42, p < .001, and segment, F(4, 168) = 6.71,
p = .003, as well as the critical probability × segment
interaction, F(2, 42) = 7.18, p = .002, were significant.
Likewise, independent one-way ANOVAs revealed a reli-
able effect of segment for the low-probability targets,
F(2, 42) = 7.70, p = .001, but not the high, F < 1, n.s.. Post
hoc tests performed on the low-probability target data
revealed that there was a difference between the second and
third segments (p = .016), but not between the first and second
(p = .185). A similar picture emerged with mixed effects
modeling (Fig. 5). Specifically, the interaction between target
probability and linear trial order was significant (p < .001).

Although we replicated the general finding that changes
to TPe magnitude across a block were driven by the low-
probability targets, the specific pattern we observed here is
somewhat different from that in Experiment 1 in that we did
not observe a clear asymptoting of the low-probability line.
What might account for this difference? Here, our low-
probability targets were half as likely to occur as in
Experiment 1, accounting for only 5 % of trials. We specu-
late that, when targets are particularly infrequent, as they
were here, longer experience may be required for probabil-
ity information to stabilize within-task representations. The
finding that the initial worsening of performance occurred
later in this experiment (between the second and third seg-
ments) than in Experiment 1 (between the first and second
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Fig. 2 Mean correct response times to low- and high-probability
targets from Experiment 1 as a function of block segment. Error bars
indicate 1 SEM

Fig. 3 Partial effect plots for the trial order effect in Experiment 1, as a
function of target probability. RT, response time
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Fig. 4 Mean correct response times to low- and high-probability
targets from Experiment 2 as a function of block segment. Error bars
indicate 1 SEM
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segments) is consistent with this idea.4 Plausibly, our 300-
trial blocks may not have been long enough for a clear
asymptote to be observed. Critically, though, the results of
both this experiment and Experiment 1 point to the idea that
the TPe is driven by the low-probability targets.

Discussion

Our data speak to several important issues. First, the mag-
nitude of the TPe is not constant across an experiment.
Rather, it changes as one gains more experience with the
probabilities associated with the different targets. This is
unsurprising given that target probability information is
necessarily acquired gradually, especially when participants
are not informed of the specifics of the probability differ-
ences to begin with.

Second, and of greater importance, our data present a
genuine challenge to the idea that the TPe is driven by the
high-probability targets. Here, we found that it was the low-
probability targets that drove the changes in TPe magnitude.
Performance to the high-probability targets remained largely
constant over the course of a block. Performance to the low-
probability targets, on the other hand, became worse as a
block wore on. As was noted earlier, various accounts of the

TPe are built around the idea that what is expected enjoys an
advantage, while that which is unexpected suffers no ad-
verse consequence. Our data dispute this idea by demon-
strating that the TPe is caused predominantly by a
deleterious effect associated with having to detect less
expected task-relevant stimuli. Our findings thus distinguish
the TPe from other cognitive phenomena in which perfor-
mance advantages are associated with more frequently ex-
perienced or expected stimuli (Maljkovic & Nakayama,
1994; Summerfield & Egner, 2009).

Our data are consistent with the idea that perceptual
templates of both low- and high-probability targets are ini-
tially activated to the same level. As one begins to learn that
the low-probability targets occur only infrequently or con-
trary to initial expectation, the default level of activation of
templates associated with these targets falls.5 A conse-
quence of this is that, when low-probability targets appear,
greater perceptual evidence is needed in order for threshold
to be reached, thus accounting for the increased time re-
quired for accurate detection of such targets. Alternatively,
our data might also be accounted for by liberal-to-
conservative changes to the criterion associated with low-
probability targets (Menneer, Donnelly, Godwin & Cave,
2010; Wolfe et al., 2007). Such criterion changes would
reasonably result in the requirement for more perceptual
evidence to be accumulated before decisions can be made.
Distinguishing these two accounts would be a worthy direc-
tion for future research.

As was noted earlier, to the best of our knowledge, only
one other study has considered how the TPe develops across
a block of trials (Laberge & Tweedy, 1964). Partitioning
their blocks into 40-trial bins, those authors found, as we
did, that performance to the low-probability targets became
worse as a block wore on, while performance to the high-
probability targets remained largely invariant. Like ours,
that study utilized a setup in which different probability
targets were presented within the same block; however, it
is worth noting that that study was complicated by stimulus–
response mapping and stimulus probability switches. Our
study, then, can be seen as an in-principle replication of that
early work, producing the same pattern of results even when
the extraneous elements of that task were removed and
when different target probability ratios are observed.
Additionally, our use of mixed-effects modeling allowed
us to demonstrate that this pattern of results is not an artifact
of arbitrary binning strategies.

Fig. 5 Partial effect plots for the trial order effect in Experiment 2, as a
function of target probability. RT, response time

4 It is also interesting to note that the initial worsening of performance
was produced after experience with a similar number of low-
probability target trials in both experiments. In Experiment 1, each
segment comprised 10 low-probability target trials. In Experiment 2,
each segment contained only 5 low-probability target trials. In other
words, the initial worsening of performance occurred after exposure to
approximately 10 low-probability target trials in both experiments.

5 It may be that observers initially expect targets and distractors to be
equiprobable (i.e., each accounting for 50 % of all trials). This provides
an interesting explanation for why performance to our high-probability
targets remains largely invariant across the block. Here, the high-
probability targets in Experiments 1 and 2 accounted for 40 % and
45 % of all trials, respectively. Possibly, these values are close enough
to 50 % that these targets do not violate initial expectations.
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In summary, we examined how the TPe develops within
the span of a single experiment. In addition to enlightening
on this issue, our data also speak to the issue of the locus of
the TPe. Specifically, our data are inconsistent with the view
that the TPe is driven by the high-probability targets. Here,
we found that changes in the magnitude of the TPe were
determined by the low-probability targets.
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