
In the behavioral sciences, many constructs that are 
of theoretical or practical interest cannot be observed di-
rectly. The basic procedure for measuring such constructs 
involves gathering observable variables, which ought to 
provide indirect evidence for the construct of interest. 
Usually, this means that a test is developed by creating 
items on which the responses function as indicators for 
the construct of interest.

The current standard to ground and support this type of 
inference is item response theory (IRT). Whereas classical 
test theory merely has a descriptive nature (see, e.g., Nun-
nally & Bernstein, 1994), IRT posits a mathematical model 
to explain the pattern of observed item responses on a test 
(see, e.g., Birnbaum, 1968, or, for a recent introduction, 
Embretson & Reise, 2000). The key idea is that tests are de-
signed to measure an unobservable variable of interest, a la-
tent trait. IRT assumes that both persons and test items have 
a position on this latent trait. A well-known item response 
model is the two-parameter logistic model (2PL; Birnbaum, 
1968), in which the probability of a binary response Ypi of 
person p ( p  1, 2, . . . , P) on item i (i  1, 2, . . . , I) is char-
acterized as a function of three parameters p, i, and i:

 Pr Y y
y

pi pi p
pi i p i

i p

|
exp
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The parameters p and i are exactly the positions of person p 
and of item i, respectively. Note that the value of i, often 
called the item difficulty, corresponds to the location on the 
latent trait where a person would have a chance of .5 to an-
swer the item correctly [i.e., Pr(Ypi ypi| p i), the point 
of inflection of the logistic S-shaped curve]. For an item with 
a larger i, a larger proficiency p is needed to answer it cor-
rectly, and vice versa: The presence of a larger p means that 
one has more chance of answering an item correctly. The pa-
rameter i controls the steepness of the logistic curve and is 
often called the item discrimination. The higher the i value, 
the better the item is able to differentiate between high- and 
low-proficiency persons. Thus, the logistic shape of the prob-
ability function Pr(Ypi ypi| p) is determined by two fixed 
item parameters, i and i, hence the name 2PL.

In relating persons and items to the latent trait, re-
strictions are imposed on the probability model for the 
whole test. For instance, a common assumption of the 
2PL model (and most other item response models) is con-
ditional independence or local stochastic independence, 
which would imply that the latent trait accounts for all 
the dependencies among a person’s responses on the test. 
Thus, the latent proficiency explains why there are per-
formance differences among persons and why a given 
person’s item responses interrelate. Hence, given the pro-
ficiency of a person p, the joint (conditional) probability 
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Model Building With Design Matrices
The purpose of design matrices is to support the use of 

both very general models and models that further constrain 
parameter sets. This provides additional flexibility in mod-
eling and allows researchers to build models that go beyond 
standard IRT models. In the present article, we first illus-
trate the main idea by putting the 2PL model within the pro-
posed framework of design matrices. Then we show how to 
modify this framework to further restrict or generalize the 
model, depending on the exact research question and on in-
formation provided by the study in which the test is used.

The 2PL Model
Consider a small test (I  6) in which an item can be 

answered correctly (Ypi 1) or incorrectly (Ypi 0) and 
is assumed to reflect a given skill p. A 2PL model is ap-
plied to capture a person’s behavior on the test. Assuming 
that the skill is normally distributed in the population with 
a mean μ and variance 2, the model likelihood given the 
gathered data is
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Because no information is present about the scale of this 
latent skill, it has to be fixed a priori in order to identify 
the model. A common convention is to assume a standard 
normal distribution  ( μ  0 and 2  1).

The model specification of each theoretical parameter is 
summarized in a corresponding set of design matrices. IRTm 
makes a distinction between a general design matrix D, a re-
striction matrix R, and an offset matrix O. The actual value V 
for the theoretical model parameter M is then constructed as 
M  D  [diag(R)  parameter estimate  O]  V.

For instance, the vector of item difficulties  
( 1, . . . , I) is modeled as
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of the item response pattern of person p on the full test 
[ yp  ( yp1, . . . , ypI)] can be written as

 Pr PrY yp p p pi pi p
i

I

Y y| | .
1

 (2)

Item responses are assumed to be independent, given the 
proficiency of the person p on the latent trait.

Furthermore, it is often assumed that the latent profi-
ciency p is a draw from a normal population distribution 
with a given mean μ and variance 2:

 p : N , .2  (3)

This normality assumption is also used in the multilevel 
literature (e.g., Snijders & Bosker, 1999), and, in fact, 
item response models can be shown to belong to the class 
of generalized or nonlinear multilevel (or mixed) models 
(see, e.g., Agresti, Booth, Hobert, & Caffo, 2000; Rijmen, 
Tuerlinckx, De Boeck, & Kuppens, 2003).

Established commercial IRT software packages, such as 
BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003) 
and MULTILOG (Thissen, Chen, & Bock, 2003), can per-
form large-scale assessment using standard item response 
models. Various researchers have contributed research-
specific custom-made software (see, e.g., de Leeuw & 
Mair, 2007), and most general-purpose statistical software 
can now fit item response models as a result of the con-
nection with multilevel models.

We developed an IRT modeling (IRTm) toolbox for 
 MATLAB, which can be downloaded without cost at 
http://ppw.kuleuven.be/okp/software/IRTm. MATLAB 
is a general- purpose matrix programming language with 
a large research and business user base. The toolbox can 
both fit and simulate a wide variety of unidimensional1 
item response models for binary test data. Full- information 
marginal maximum likelihood (MML; Bock & Lieberman, 
1970) provides the means for model estimation.

Furthermore, IRTm follows an explicit design matrix ap-
proach (see, e.g., De Boeck & Wilson, 2004), giving the end 
user control and flexibility in building a model that goes be-
yond standard models, such as the 2PL model. To handle de-
viations from the conditional independence assumption, the 
toolbox includes recent copula IRT models (Braeken, Tuer-
linckx, & De Boeck, 2007), which are not yet implemented 
elsewhere. With IRTm, we offer practitioners a small, inte-
grated IRT toolbox for explanatory research and for explor-
ing the potential of the copula approach within IRT.

In the present article, we show (1) how standard item 
response theory models can be modified within a design 
matrix framework to accommodate research questions 
involving additional information on test items (e.g., an 
experimental design) and on test takers (e.g., person group 
differences) and (2) how one can account for deviations of 
the two common IRT model assumptions (see Equations 2 
and 3). We provide example code for how to conduct such 
applications in the IRTm toolbox. Note that the applica-
tions are brief and concise, serving as appetizers for what 
IRT can offer for researching latent constructs. Finally, in 
a short discussion section, we point out the direction of the 
potential development of the IRTm toolbox.
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and the design matrices for   ( , . . . ,  change to
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Note that this latter model is, in fact, an equivalent formu-
lation of the well-known Rasch model (Rasch, 1960; the 
regular formulation differs in measurement scale and sets 

  1, freeing 2 to be estimated).
Because IRT models can be fitted within a likelihood 

framework (see, e.g., Severini, 2000), common statistical 
methodology, such as likelihood-ratio tests and model se-
lection criteria, can be used to compare these two models. 
In this way, it can be tested whether the implicit assump-
tion that every item is an equally good indicator of the 
latent trait holds for a given test. This also illustrates that, 
unlike the descriptive summary provided by classical test 
theory, IRT follows a constructive theory-driven scientific 
strategy, in that the test can be revised to fit the model 
restrictions (see Rasch model properties) or, alternatively, 
both theory and model can be adapted to better fit the 
features of the data.

Example. Appendix I of the supplemental materials 
includes code to fit and compare the two models by means 
of the IRTm toolbox. The model results for an example 
data set are shown in Table 1. The likelihood-ratio test fa-
vors the Rasch model over the more general 2PL model. 
Hence, for this example, the use of a raw sum as scoring 
rule is supported. Notice that the common discrimination 
parameter  is about the mean of the unique item discrimi-
nations i in the 2PL model. Figure 1 shows the standard 
error of p and illustrates that the test is more precise for 
those positions of the measurement scale where more 
items are located and, hence, where more information is 
present about p.

Incorporating Information on the Item Side
Consider that the six items in the example below are 

realizations from an experiment in which the accuracy 
of hitting a target is measured in three conditions and 
in which each participant must run through two trials of 
these conditions. In the first condition (Items 1 and 4), 
a loud noise is added to the environment; in the second 
(Items 2 and 5), the light in the room switches off and on; 
and in the third (Items 3 and 6), both disturbing effects 
are added. Hence, for each person, six recordings (item 
responses) are made, regardless of whether the target is 

The general design matrix D takes the form of a logical 
matrix, number of items I  number of item parameters K, 
with 1 indicating that the parameter k needs to be included 
for item i. Restrictions on the parameters are imposed by 
the logical vector R, which contains the diagonal elements 
of a matrix and indicates which parameters are free (1) and 
which are fixed (0). The offset O is a vector with K rows, 
consisting of values that need to be added to the model 
parameters (here, all offsets are 0). This results in each of 
the item difficulties i in the model being parameterized 
by a unique difficulty parameter i

est. However, note that 
in the next sections, we show how it is possible to structure 
parameterizations more parsimoniously within this design 
matrix framework.

An equivalent set of design matrices exists for the vec-
tor of item discriminations   ( , . . . , 

 

1

2

3

4

5

6

1 0 0 0 0 0

0 1 0 0 00 0

0 0 1 0 0 0

0

0

0

0

0

0

0

0

0

1 0 0

0 1 0

0 0 1

diag

es

( )

1

1

1

1

1

1

1
tt

est

est

est

est

est

2

3

4

5

6

0

0

0

0

0

0

1

2

3

4

5

est

est

est

est

est

66
est

.

 
The model for the mean and variance of the latent distribu-
tion are constructed as   [1]  ([0]  est  [0])  [0] 
and 2  [1]  ([0]  2

est  [1])  [1].
The design matrix contains one column, indicating that 

the mean (/variance) of the latent distribution is modeled 
by one parameter. The restriction matrix R is set at 0, in-
dicating that the parameter does not have to be estimated. 
The fixed value of the model parameter is given in the 
offset matrix O.

It can be shown that the sufficient statistic for p in the 
2PL model is a weighted sum score, in which i values 
function as weights. In other words, this model estimates 
the optimal scoring rule to be used for the test, because the 

i value indicates the relative value of item i for determin-
ing a person’s latent proficiency p. This allows us to test 
the common convention of taking the raw (unweighted) 
sum score over items as a summary measure for a per-
son’s latent proficiency and to formulate explicitly the 
hidden assumption behind this practice. In the raw sum, 
each element has the same relative weight, and hence, in 
a mathematical model formulation, this would imply a 
rather restrictive assumption corresponding to a model 
with equal i values over items, such that the model likeli-
hood reduces to
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experimental design, leading to a model that is both more 
parsimonious and more restrictive.

Example. Code to fit the LLTM is provided in Appen-
dix I of the supplemental materials. Table 1 contains the 
model results of this LLTM for the example data. Statis-
tically significant evidence was found only for the joint 
experimental effect and the rerun effect. For instance, the 
value of 5 is 0.628, which means that there is a negative 
training effect: The difficulty of a condition increases on 
the second trial compared with the first. An effect size mea-
sure interpretation is that the odds of being accurate at a 
rerun are twice (i.e., e0.628  1.874) as low compared with 
the first trial (perhaps the individuals tire or lose concentra-
tion). Compared with the less restrictive Rasch model, the 
Rasch model again receives support from the likelihood-
 ratio test. However, it is fairly obvious that the experiment-
er’s interests are better served and research questions are 
better answered by the latter LTTM model alternative.

missed. This experimental design can be reflected in the 
model design of the difficulty parameters using a linear 
logistic test model (LLTM; Fischer, 1973) formulation: 
M  D  [diag(R)  parameter estimate  O]  V
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The first parameter 1
est is the intercept constant or av-

erage item difficulty, 2
est is the item difficulty due to the 

loud noise, 3
est is the difficulty corresponding to the light 

flashes, 4
est is the added difficulty when these effects are 

jointly present, and 5
est is the training effect of having a 

rerun in Trial 2. So, in fact, the difficulty of the individual 
items is decomposed into common difficulties due to the 

Table 1 
Model Results for the First Example

Two-Parameter Logistic Model (2PL) Rasch Linear Logistic Test Model (LLTM)

Parameter  Estimate  SE  Parameter  Estimate  SE  Parameter  Estimate  SE

1  1.386 0.232
2  1.199 0.220
3  1.320 0.220
4  1.548 0.258
5  1.101 0.187
6  1.163 0.196   1.284 0.084  1.276 0.083
1 0.181 0.088 1 0.190 0.086 1 0.819 0.506
2 1.432 0.199 2 1.372 0.117 2  0.522 0.503
3  0.049 0.087 3  0.049 0.085 3 0.598 0.503
4  0.201 0.084 4  0.223 0.087 4  1.077 0.506
5 0.900 0.140 5 0.817 0.103 5  0.628 0.072
6  1.022 0.139 6  0.961 0.107 

Log likelihood 1,771.39 1,772.68 1,777.5 
No. parameters 12 7 6

Note—Likelihood-ratio tests: 2PL vs. Rasch, 2(5)  2.58, p  .765; Rasch vs. LLTM, 2(1)  4.82, p  .002.

SE

.58

.6

.56

.62

.64

.66

.68

.7

–2 –1.5 –1 –0.5 0 0.5 1 1.5

p

Figure 1. Precision of the test over the measurement scale.
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this case, the country the pupil lives in. This corresponds 
to a set of design matrices similar to those for unique 
item difficulties: M  D  [diag(R)  parameter esti-
mate  O]  V
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It is clear that, if one considers the country effect to be 
constant over items, this essentially reduces the model to 
an LRM
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with the following equivalent model likelihood:
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This result can be seen as the decomposition of the geo-
metric knowledge in a fixed part Zpj j due to the coun-
try effect and a random residual part p. This model is an 
equivalent formulation of the LRM and shows that it is, in 
fact, the person-side analogue of the LLTM (i.e., instead 
of the item parameter, the person parameter is decom-
posed). Differentiating between such a general country 
effect, called impact, and an item-specific country effect 
(i.e., DIF) can be done by sequentially checking whether 
an item functions differently by adding an item-covariate 
interaction parameter ji to the LRM. The parameter ji 
can then be interpreted as indicating the item-specific de-
viation from the general country effect j, and the DIF 
hypothesis can be tested by means of a likelihood-ratio 
test between this model and a regular LRM.

Incorporating Information on the Person Side
Consider a 15-problem mathematics test that is de-

signed for an international study on geometric knowl-
edge. A researcher might be interested in individual dif-
ferences in geometric knowledge and how they relate to 
the background information available about the pupils 
taking the test. This requires the availability of J variables 
Zpj ( j  1, . . . , J ) containing this covariate informa-
tion. For instance, for each pupil (N  1,000) it is known 
whether they live in Country E (Zpj  1, n  600), a highly 
developed and industrial country, or in Country F (Zpj  0, 
n  400), a third-world country.

In our first example, we assumed that the latent trait fol-
lowed a normal distribution in the population with a given 
mean and variance. In this case, it is not unreasonable to 
think that pupils from Country E would, on average, have 
a higher geometric knowledge (i.e., the latent trait the test 
is measuring), such that p ~ Zpj j, 2), where j 
is a person-covariate parameter indicating this expected 
change in geometry knowledge p depending on a per-
son’s ( p’s) country Zpj. This type of model is often referred 
to as a latent regression model (LRM; see Andersen & 
Madsen, 1977), and the model likelihood is
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In practice, the issue of such country effects is a sensi-
tive one and is a topic of much discussion (cf., culture-free 
tests). Perhaps pupils with the same ability, but from a 
different country, do not have an equally fair chance of an-
swering correctly on a particular item due to some contex-
tual or culture-specific information in that item. This type 
of phenomenon is commonly referred to as differential 
item functioning (DIF; Holland & Wainer, 1993), because 
how the item works depends on the group to which it is 
presented.

To accommodate for DIF, a new parameter set  
can be introduced, leading to the following new model 
likelihood: 
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The parameter ji represents the change in item difficulty 
on the basis of the value of the person covariate Zpj—in 
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A Finite Mixture Population Distribution  
and Latent Groups

For many human skills and properties, it is quite rea-
sonable to assume that the latent trait p is distributed 
normally in the population. However, in some cases, this 
might still not hold true, and this assumption would put too 
stringent a constraint on the shape of the distribution of the 
latent trait. A serious misspecification of the distribution 
can lead to biased parameter estimates in the model (see 
e.g., Agresti, Caffo, & Ohman-Strickland, 2004; Neuhaus, 
Hauck, & Kalbfleisch, 1992). For instance, with respect 
to depression, only a few people would be expected to be 
strongly affected, and most people would feel relatively 
unaffected. This would resemble a nonnormal, highly 
skewed population distribution for p.

Instead of assuming that the latent trait is distributed 
normally with a given mean and variance, it is possible 
to assume that the latent trait is, for instance, a combina-
tion of two component distributions, p 1N( 1, 1

2)  
2N( 2, 2

2), in which the component weights g nec-
essarily sum to 1 and are each restricted to the interval 
[0,1]. This type of distribution is called a finite mixture 
(McLachlan & Peel, 2000), and the new model likelihood 
is formulated as
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A finite mixture distribution has two advantages. First, 
from a technical point of view, the latent trait need not 
be restricted to a simple normal distribution, and nonnor-
mal distributions can be considered instead, because these 
mixtures can, for instance, give rise to skewed or multi-
modal distributions. Second, from a substantive point of 
view, the mixture suggests two subpopulations of persons 
(i.e., latent groups). For instance, an alternative hypoth-
esis for the positively skewed distribution of depression is 
that there are two subpopulations—a small clinically de-
pressed group and a larger nondepressed group—instead 
of one homogeneous population. When such a subpopula-
tion effect is hypothesized and membership of these sub-
populations is known, an LRM can be applied. However, 
when membership information is not a priori available or 
the groups are unknown, a finite mixture analysis might 
provide suggestive evidence for the existence of subpopu-
lations. The existence of the two subpopulations should 
then be reflected in the posterior allocation of persons 
among the mixture components and in the component 
means for these latent groups.

Estimation of this type of model is a bit more involved 
and is done using a generalized expectation–maximization 
algorithm (EM; McLachlan & Krishnan, 1997). A multi-
start procedure is advisable for this algorithm, because it 
only guarantees to find at least a local maximum. Thus, 
unfortunately, the advantages of the mixture approach are 

Example code illustrating the equivalence of the models 
discussed above is included in Appendix I of the supple-
mental materials. The summary of the models in Table 2 
shows that the LRM and the LRM formulated as common 
DIF have the same log likelihood and that there is a one-
to-one relationship between their parameters. The results 
show that pupils of the industrial Country E have more 
chance of answering an item correctly than do pupils of 
the third-world Country F. The difference is 2.755 on the 
latent trait scale, which is an increase in the odds of 16 
times (i.e., e2.755). Hence, the unexplained variance 2 
in geometry proficiency differences decreased severely, 
with the country effect accounting for 63% of the total 
variance (i.e., the sum of the variance of the fixed country 
effect and the residual latent trait variance: The former 
can be computed as the variance of Zj multiplied by its 
squared effect j

2; the latter is simply 2). To interpret the 
item-difficulty parameters of the LRM, the mean of the 
person effects has to be used as reference, which here is 
the sum of the average μ of the residual part and the aver-
age of the fixed country indicator Zj. Adding this constant 
to the item difficulties brings them back on a range close 
to the original Rasch scale. The results show that there 
is no real indication of DIF. The increase in goodness-
of-fit is only marginal, and the unique DIF parameters 

ji fluctuate closely around the common country effect 
j. However, there is one exception: The parameter j1 

has an extreme high value. This is, in fact, a result of 
an empirical underidentification, because, in the current 
data sample, every pupil of Country E responds correctly 
on this item; hence, little information is present to locate 
exactly the relative position of the unique DIF parameter. 
A more specific DIF analysis, in which a sequence of 
likelihood-ratio tests (see above) is performed, confirms 
these observations, because none of the tests were sig-
nificant (see Table 3). Note that, as a result of multiple 
testing, a Bonferroni correction was applied to control 
the Type I error.

Accounting for Deviations of  
Common Assumptions

From a scientific point of view, formalizing a test in 
terms of a mathematical model helps to clarify exactly 
what is being measured. The test can be revised to fit the 
model restrictions (thereby obtaining specific measure-
ment properties, e.g., the Rasch model), and the theory 
and corresponding model can be adapted to better fit the 
features of the data. The latter option has the logical im-
plication that even the common main assumptions of nor-
mality of the latent trait population distribution (see Equa-
tion 3) and conditional independence (see Equation 2) are 
not always plausible for every application. First, we show 
how to account for deviations from the normality assump-
tion by means of a finite mixture and how this can be 
used to investigate the potential existence of person sub-
groups in the sample. Then we show how to account for 
deviations of the conditional independence assumption by 
using copula functions.
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However, in practice, some subsets of items might 
be more interrelated than can be explained by the gen-
eral latent trait p underlying the test. Examples include 
item subsets that appeal to the same specific background 
knowledge, such as subquestions of the same problematic 
case or items with the same question format. These item 
subsets are sometimes called item bundles or testlets in the 
literature, and the prototypical examples here are items 
relating to the same reading passage.

These residual local item dependencies (LIDs) are not 
relevant for the construct being measured, but do imply 
that conditional independence does not hold for all items 
in the test, and, hence, that model estimates and inferences 
will be distorted if ignored (see, e.g., Chen & Thissen, 
1997; Ip, Wang, De Boeck, & Meulders, 2004; Junker, 
1991; Sireci, Thissen, & Wainer, 1991; Tuerlinckx & De 
Boeck, 2001). In other words, another, more adequate 
formulation of Pr(Yp  yp| p), the joint probability of a 
person’s response vector, is needed.

Copula functions. A convenient way of accounting 
for these residual dependencies within an item subset can 
be found in the use of copula functions (Braeken et al., 
2007). A copula is a type of function that is able to con-
nect sets of marginal distributions to form a multivariate 
distribution that preserves these margins (for reference 
works on copula theory, see Joe, 1997, and Nelsen, 1999). 
The main idea here is that, instead of making use of the 
product function C  to couple the marginal distributions 
F(Ypi ypi| p)  Pr(Ypi ypi| p), forming the multivari-
ate distribution under conditional independence, 

 F C F F y
p p p p pi pp p Y pi

i
Y Yy y| | |

1

I

,  

a different function C is applied to form a multivariate dis-
tribution that does allow for a residual dependency struc-
ture between the different margins (i.e., items): 

 F C F y F y
p p p p pI pp Y p Y pIY y| | |, . . . ,

1 1 .  

This function C is, in fact, a copula function, making the 
regular independence case a specific instance of the larger 
class of copula functions. The biggest advantage of the ap-
proach is that it does not require changing the formulation 
of the model for an individual item (see Equation 1).

In practice, this means that we will consider the total 
set of items J  {1,2, . . . , I} to consist of mutually ex-
clusive item subsets Js (s  1, . . . , S), for which condi-
tional independence holds between the different subsets, 
but where the joint probability of the responses in subset s 
Prs(Yp

(s)  yp
(s) | p) is evaluated from a copula function 

Cs (when subset size Is  1), allowing for LIDs within 
the subset:

 Pr PrY y Y yp p p s p
s

p
s

p
s

S

| | .( ) ( )

1
 

Note that, when S  I (i.e., Is  1 s) and, thus, each item 
is its own subset, this formulation reduces to the regular 
model formulation under conditional independence. In 
Table AII.3 (see the supplemental materials), the imple-

slightly counterbalanced by its lesser convergence behav-
ior (speed and local optima).

Example. To illustrate the approach, a finite mixture 
was fitted on the geometry example, ignoring the country 
information. Given that there are subpopulations present 
in the data set, the mixture should be able to retrieve this 
grouping, even without the membership information oth-
erwise present in Zpj. Example code is given in Appendix I 
of the supplemental materials, and the model results are 
displayed in Table 2. Note that the following restrictions 
are set to identify the finite mixture in a Rasch model 
context: 1  0 (i.e., Component 1 is the reference) and 

1
2  2

2 (i.e., homoscedasticity).
Allocating pupils on the basis of their maximum pos-

terior component probability performed remarkably well, 
as can be seen when comparing the known classification 
Zpj with the retrieved classification in the following con-
fusion matrix:

 

. .

. .

.

.

33 07

06 54

0 4

0 6

F

E
known country

.. .39 61

1=F 2=E
component inferred country. 

The outer matrix contains the marginal totals, and the inner 
matrix contains the four possible allocation combinations. 
For instance, the correct classification rate of the finite 
mixture is 87% (i.e., 33%  54%), and 10% of the pupils 
of Country E are misclassified in Country F (i.e., .06/.6). 
Relative to the LRM model, the finite mixture results in 
a slightly smaller average group difference and a larger 
latent trait variance. Note that standard errors in the finite 
mixture model are quite large, partly because the conver-
gence criterion was set low to spare computation time, 
since interest merely went out to the group retrieval and 
not to the accurate estimation of the item parameters.

Copula Functions for Locally Dependent Items
In the previous sections, the latent trait was considered 

to account for all the dependency between a person’s re-
sponses on the test: This is referred to as the conditional 
independence assumption. This assumption allows for the 
convenient formulation of the joint probability of the item 
responses on the full test for a person p as the product of 
the marginal item probabilities:

 Pr PrY yp p p pi pi p
i

I

Y y| | .
1

 

Table 3 
Likelihood-Ratio Test Sequence  

for DIF Detection in the Geometry Example

i  2(1)  p  i  2(1)  p  i  2(1)  p

1 6.559 .010  6 0.260 .611 11 0.000 .996
2 1.248 .264  7 0.039 .844 12 0.043 .836
3 0.121 .728  8 1.048 .306 13 0.665 .415
4 0.362 .547  9 0.264 .607 14 1.364 .243
5 0.013 .909 10 3.780 .052 15 0.983 .322

Note—Bonferroni correction: Type I error alpha  .05/15  .003.
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combination, for which the usual restrictions for mixture-
like models hold: 

 k
k

K

k, ,, , .2 21 0 1  

Hence, a constrained estimation algorithm is required. For 
such a convex combination copula, model identification 
is an issue. A subtle trade-off exists between the degree of 
association, as is indicated by the parameter k,1 and the 
component weight k,2: An increase in either increases the 
relative importance of the copula Cs,k in the convex linear 
combination and may give rise to similar association pat-
terns. Therefore, in practice, the application of this con-
struction limits itself to combinations of nonparametric 
copulas or copulas with fixed values for k,1.

Exploration. The IRTm toolbox offers a rough tool to 
assist in exploring the structure of the test, based on the 
comparison of Mantel–Haenszel (MH; Holland & Rosen-
baum, 1986; Mantel & Haenszel, 1959) statistics for each 
pair of items (for a review of other approaches, see Tate, 
2003). This MH statistic essentially measures whether the 
odds ratio for two items is equal over the different lev-
els of the latent trait, which is implied by the conditional 
independence assumption. Hence, a large value for this 
statistic is an indication of LID for the specific item pair. 
A figure containing the matrix of MH statistics for all item 
pair combinations and a dendrogram of a rough hierar-
chical clustering on the basis of these MH statistics can 
be obtained. Both can assist in determining whether and 
where one must account for residual dependency issues in 
the data set. To calculate the MH statistics, the sum score 
over items for each person can be used as a temporary 
proxy for the latent trait for the division in latent trait level 
groups.

Example. Consider a 10-item reading-comprehension 
test, taken by 1,000 students applying to a university. Some 
of the questions refer to similar parts in the main text that 
the students had to read; hence, there may be some con-
cern regarding the potential presence of LIDs. First, to 

mented copula functions in IRTm are listed with a de-
scription of the type of LID they imply. Note that a new 
copula Cs can be composed as a convex linear combina-
tion of copula functions,

 

F

C F Y F Y

p
s

p
s

p

s p p pI ps

Y y( ) ( ) |

| , . . . , |1 ;

| , . . . ,

, ,

s

s

pi p p pi

C

F Y y F Y y

1 2 1

1 ppI p

s

pi p p

s

C

F Y y

| ;

| , .

,

, ,

1 1

2 2 2

1 .. . , | ; ,,F Y ypi pI ps 2 1  

with k,1, a dependency parameter specific to the k th 
copula in the linear combination, and k,2, a parameter 
indicating the weight of the k th component, within this 

–M
H

T 
+

50

42

40

44

46

48

50

52

6 7 8 1 3 4 5 2 9 10

Items

Figure 2. A dendrogram of the item dependency structure.

Table 4 
Model Results for the Reading Comprehension Example

Rasch Copula 

Parameter  Estimate  SE  Parameter  Estimate  SE

1 2.165 0.106 1 2.072 0.105
2 1.690 0.097 2 1.613 0.089
3 1.125 0.088 3 1.069 0.086
4 0.511 0.084 4 0.484 0.082
5  0.096 0.083 5  0.098 0.081
6 0.103 0.083 6 0.099 0.079
7  0.616 0.085 7  0.603 0.080
8  1.024 0.088 8  0.972 0.081
9  1.820 0.099 9  1.738 0.090
10 2.071 0.104 10 1.978 0.101

1  1.405 0.072
2  2.036 0.207

2
  1.582 0.119 2  1.219 0.108

Log likelihood 5,371.94 5,179.81
No. parameters 11 12
R ,  .774      .722   
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ditional interaction models (Hoskens & De Boeck, 1997) 
and testlet models (Wainer, Bradlow, & Wang, 2007).
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have a base of reference, a Rasch model is formulated 
under conditional independence and the item dependency 
structure of the test is explored. The example code to per-
form these actions in IRTm is provided in Appendix I of 
the supplemental materials, and a dendrogram of the item 
dependency structure is shown in Figure 2. On the basis 
of the lowest level clusters in the dendrogram, one can 
distinguish two subsets that show the presence of a LID 
issue, J1  {4,5} and J2  {6,7,8}. Thus, the items within 
each subset are joined by means of a copula, thereby cor-
recting for the excess item interdependency, which should 
result in a more appropriate joint probability of the item 
responses and in a better model for our test.

A summary of the model results can be found in Table 4. 
Both copula parameters appear to be significant ( p  
.0001), indicating that there is indeed a LID issue in the 
data set. Furthermore, when the regular conditional inde-
pendence Rasch model is compared with the copula Rasch 
alternative, the latter model outperforms the former by far. 
Hence, the suspicions of LID are formally confirmed and 
are even taken into account by the new model.

Ignoring LID would mean that the set of items are as-
sumed to provide more information on the latent trait 
than they actually do. Hence, the reliability of the test in-
strument would be overestimated. A summary measure 
of reliability is the ratio of the true variance to the total 
variance (true  error variance), which can be computed 
as the latent trait population variance 2 divided by the 
sum of 2 and the mean squared error of the p estimates 
in the sample data. The resulting statistics, R ,  2/
(MSE( p) 2), can be found in Table 4. As is expected, 
compared with the regular Rasch model, the reliability 
decreases, in this case with about 7% (i.e., comparable to 
one item) when accounting for the LID issues by means 
of the copula model.

DISCUSSION

With the presentation of the IRTm toolbox, we pro-
vide a small integrated IRT toolbox for practitioners who 
wish to make use of IRT for exploratory and explanatory 
research purposes. Note that IRTm can not only model, 
but can also simulate, data. The adopted design matrix 
approach allows for control and flexibility in the model-
building stage, and the MATLAB environment allows for 
convenient postprocessing and graphical presentation of 
model results. The most general model formulation that 
the IRTm toolbox can fit is presented in Appendix II of 
the supplemental materials, together with the basic proce-
dures behind the toolbox. Furthermore, we offer a means 
of exploring, in practice, the potential of the copula ap-
proach to LID, which has rich theoretical and mathemati-
cal properties.

Some enhancements can be made to the toolbox: further 
optimization of speed and memory use, for instance by 
accelerating the implemented EM algorithm; allowance 
for data missing completely at random; additional utility 
functions for standard IRT test statistics; and support for 
plotting. Some ongoing developments include polytomous 
item responses and alternative LID models, such as the con-
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NOTE

1. A single underlying latent trait is assumed, in contrast to multi-
dimensional extensions, similar to factor analysis.
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