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Avoidance behavior is behavior that results in the omis-
sion of an aversive event that would otherwise occur. Sev-
eral theories of avoidance have been proposed (e.g., Bolles, 
1970, 1972a, 1972b; Herrnstein, 1969; Mowrer, 1947,
1951, 1956, 1960; Seligman & Johnston, 1973). Of these, 
Mowrer’s (1947, 1951, 1956) two-factor theory was, and 
arguably still is, the most influential (see, e.g., Domjan, 
2003; Levis & Brewer, 2001; McAllister & McAllister, 
1995). Two-factor theory had its origins in Hull’s (1943) 
suggestion that all conditioned responses are established 
via drive reduction. For Hull, drives were states such as
hunger, the reduction of which acts as a reward. Mowrer 
(1947, 1951, 1956) proposed that fear is also a drive and 
that reductions in fear are therefore also rewarding. Ac-
cording to Mowrer (1947, 1951, 1956), however, fear itself 
is learned not by drive reduction but by Pavlovian pairing 
of conditioned stimuli (CSs) and aversive unconditioned 
stimuli (USs). The name two-factor theory highlights thisy
use of two learning principles.

Figure 1 illustrates one of the most common experi-
mental paradigms in the study of avoidance: the so-called 
discriminated avoidance procedure, which will be the
focus of this article. In this paradigm, a trial starts with 
the presentation of a warning stimulus (often called a CS).
An aversive US is scheduled to occur a certain time after 
the onset of the CS, but animals can avoid the US if they 
pperform a predetermined response (e.g., crossing to the 
other side of a shuttle box) before that time. Typically, that 
response also terminates the CS. Mowrer (1947, 1951,
1956) attributed the learning of the avoidance response in 
this paradigm to the termination of the CS rather than to
the actual avoidance of the US. He proposed that the CS 
comes to elicit fear because early in training, before the 

davoidance response is learned, the CS is often followed 
by the US. When the animal subsequently performs a re-

 sponse that terminates the CS, fear is reduced, thereby
strengthening the response.

The present article shows that the actor–critic model
(Barto, 1995; Barto, Sutton, & Anderson, 1983), which 
has previously been used to account for a wealth of be-
havioral and neural findings in conditioning (Daw, 2003; 
Houk, Adams, & Barto, 1995; Joel, Niv, & Ruppin, 2002; 
Maia, 2009; O’Doherty et  al., 2004; Suri, Bargas, & Arbib,
2001; Takahashi, Schoenbaum, & Niv, 2008; Z. M. Wil-
liams & Eskandar, 2006), provides a natural computa-

rtional implementation of the main ideas of two-factor 
theory. The article further shows that there are subtle but
important differences between the actor–critic and two-
factor theory that allow the actor–critic to explain several

t empirical findings in discriminated avoidance that are at
odds with two-factor theory.

The ideas, model, and simulations in this article were
 first presented in my doctoral dissertation (Maia, 2007). A

related model was later proposed by Moutoussis, Bentall, 
Williams, and Dayan (2008). Their model, however, was
based on advantage learning (Baird, 1993; Dayan & Bal-

d leine, 2002), whereas the model presented here is based
on the standard actor–critic (Barto, 1995; Barto et al., 
1983; Sutton & Barto, 1998). In addition, their main em-
phasis was on the effects of dopaminergic manipulations,

–whereas the emphasis here is on the relation of the actor–
critic to two-factor theory. Other computational models
of avoidance learning that bear close resemblance to two-
factor theory have been proposed (Grossberg, 1972; John-
son, Li, Li, & Klopf, 2002; Schmajuk & Zanutto, 1997).
Of these, the model with the closest resemblances to the
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represent the current state of the external or internal
world. For example, being on the left side of a shuttle box 
may be represented as one state and being on the right side 
as another. When the agent is in a given state, it selects
an action (e.g., jumping over the barrier on a shuttle box) 
from among those available in that state. Partly as a result 
of that action, the agent may then transition to a new state 
(e.g., the other side of the shuttle box). Different states 
may be associated with different reinforcements (e.g.,
shock on one side of the shuttle box and no reinforcement 
on the other). I will represent the reinforcement associated 
with state s as a scalar R(s).

The value V(VV s) of state s is the expected sum of future
reinforcements when the agent starts in state s. If we rep-
resent the reinforcement received at time t ast rt and the 
current time as , then

V s E r s st
t

t

( ) | ,

where is a discount factor that makes reinforcements that 
happen farther in the future count less than more proxi-
mate reinforcements, s represents the state at time , and 
E is the expected value operator.E

A powerful method for learning the values of states is 
the method of temporal differences (Sutton, 1988). Sup-
pose that the agent is in state s and performs some action a
that takes it to state s , where it receives reinforcement 
R(s ). Before the action, the agent’s estimate of the value
of s is V(VV s). After the action, the agent’s new estimate of the
value of s is the sum of the reinforcement that it actually 
received and the value of s (where the latter is discounted 
by ). Formally, the agent’s new estimate of the value of 
s is R(s ) V(VV s ). At first sight, the agent could then
simply update its prior estimate of V(VV s) to R(s ) V(VV s ).
However, because the action selection, the transitions be-
tween states, and the reinforcements may all be stochastic,
it is best to treat R(s ) V(VV s ) as a sample and to update 
V(VV s) just a little in the direction of that sample. This is
done using the prediction error , which is the difference
between the estimated value of V(VV s) given by this one sam-
ple and the prior estimate of V(VV s):

R(s ) V(VV s ) V(VV s). (1)

The agent then updates its estimate of V(VV s) so as to re-
duce this error in the future:

V(VV s) V(VV s) , (2)

where is a learning-rate parameter.
Prediction errors indicate how things turned out relative 

to what was expected: Positive prediction errors indicate 
that things turned out better than expected, and negative 
prediction errors indicate that things turned out worse
than expected. Prediction errors can therefore also be used 
to learn which actions are advantageous. Let p(s,a) rep-
resent the strength of the S–R association between state 
(or stimulus) s and action (or response) a. If the agent
performs action a in state s and things turn out better than 
it expected, it should strengthen the association between 
s and a—that is, increase p(s,a). If things turn out worse 

one presented here is that by Johnson et al. (2002), which
was based on Klopf, Morgan, and Weaver’s (1993) asso-
ciative control process (ACP) framework. The ACP frame-
work is closely related to two-factor theory (Klopf et al.,
1993) and to the actor–critic (Johnson et al., 2002), but the 
use of standard reinforcement learning machinery in the
present article has the advantage of linking more directly
to the extensive work on reinforcement learning models 
of conditioning and to the well-developed computational
theory of reinforcement learning. The models of Gross-
berg (1972) and Schmajuk and Zanutto (1997), while 
capturing several empirical findings and being sources 
of important insights, were more exclusively motivated 
by the behavioral findings, without independent compu-
tational motivation, and without connecting to the known
neural bases of conditioning.

THE ACTOR–CRITIC MODEL

The building blocks of any reinforcement learning
problem are states, actions, and reinforcements. States

CS:

US: 

Resp: 

No Response 

CS:

US: 

Escape Response 

CS:

US: 

Avoidance Response 

Resp: 

Resp: 

Figure 1. The discriminated avoidance paradigm. Top: No re-
sponse. At the start of each trial, a warning stimulus (often called a 
CS) is presented and remains on. If the animal does not perform a
predetermined response (e.g., crossing to the other side of a shuttle
box), after a predetermined period of time an aversive US (e.g., a
shock) comes on. If the animal still does not perform the response,
the CS and US stay on for a predetermined period of time, after 
which they both terminate. Middle: Escape response. If the animal
performs the response after the US comes on, both the CS and
the US are immediately terminated. Such trials are called escape
trials, because by performing the response the animal escapes the 
US. Bottom: Avoidance response. If the animal responds after the
CS comes on but before the US starts, the CS is terminated and the
US is not presented. Such trials are called avoidance trials, because 
by performing the response the animal avoids the US.
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lect an action, these activations are first transformed into 
a probability distribution by application of a softmax rule. 
The softmax is a generalization of the maximum operator:
Instead of simply selecting the most active action unit, the 
softmax gives each unit a probability of being selected that
preserves the rank order of the activations (Bridle, 1990). In 
other words, actions whose action units are more activated 
have a higher probability of being selected. Specifically, the 
probability (s,a) of taking action a in state s is given by

( , ) ,
( , )/

( , )/

( )

s a e
e

p s a

p s b

b A s

(4)

where b ranges over all actions available in state s [repre-
sented by A(s)] and is a temperature parameter. Applica-
tion of Equation 4 to all actions available in state s gives 
a probability distribution over those actions. An action
is then chosen stochastically from that distribution. The 
temperature controls the degree of randomness in action 
selection. When  is large, the actions are more equiprob-
able, so action selection is more random; when  is small, 
the difference in probability between actions with differ-
ent values of p(s,a) is sharpened, so action selection is
more deterministic.

RELRR ATION OF THE ACTOR–CRITIC
TO TWO-FAFF CAA TOR THEORY

Two-factor theory proposed two learning mechanisms:
classical conditioning, based on the Pavlovian pairing
of CSs and USs, and instrumental conditioning, based 
on drive reduction. These two mechanisms correspond 
closely to the critic and the actor, respectively.

We saw that the critic uses temporal-difference learning
to learn the values of states—that is, to learn to predict
the reinforcement that is signaled by the different states. 

than expected, p(s,a) should be decreased. This can be 
accomplished with the following equation:

p(s,a) p(s,a) , (3)

where  is a learning-rate parameter.
Prediction errors can therefore be used to simultane-

ously learn the values of states and the preferences for 
actions. The actor–critic is a connectionist architecture
that implements these ideas. The architecture consists of 
three main components: the state, the critic, and the actor 
(Figure 2). The units in the state layer represent the cur-
rent state. All of the simulations in this article use a local-
ist representation in which there is one unit per state. To 
represent a given state, the corresponding unit is on and 
all other units are off. I will refer to the unit that represents
state s simply as state unit s.

The critic learns the values of states and calculates pre-
diction errors. It consists of two units: the value prediction
unit (represented by a circle in Figure 2), whose output
is V(VV s), and the prediction-error calculation unit (repre-
sented by a square in Figure 2), whose output is . The
prediction-error calculation unit calculates the prediction
error using Equation 1. With a localist representation for 
the state and with linear activation functions, as were used 
here, the synaptic weight from state unit s to the value
prediction unit represents V(VV s) (see, e.g., Maia, 2009). The 
weights between the state units and the value prediction
unit are therefore learned according to Equation 2.

The actor learns the preferences for actions and selects 
actions accordingly. It consists of a layer of action units. 
With a localist representation for states and actions and with 
linear activation functions, as were used here, the synaptic 
weight from state unit s to action unit a t represents p(s,a)
(see, e.g., Maia, 2009). These weights are therefore learned 
according to Equation 3. When the system is in state s, each
action unit becomes activated with activity p(s,a). To se-

State

Actor

Critic

Primary
reinforcement

Figure 2. The actor–critic architecture. See the text for details. From “Reinforcement 
Learning, Conditioning, and the Brain: Successes and Challenges,” by T.V. Maia, 2009, Cog-gg
nitive, Affective, & Behavioral Neuroscience, 9, p. 348. Copyright 2009 by the Psychonomic
Society. Reprinted with permission.
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SIMULATIONS USING THE
ACTOR–CRITIC MODEL

Actor–Critic Model for 
One-Way Avoidance WW Experiments

For simplicity, all of the simulations in this article are
focused on one-way avoidance, which is an instance of 
the discriminated avoidance procedure described above.
Its particular characteristics are that at the beginning of 
each trial the animal is always put in the same side of a 
shuttle box, and the avoidance or escape response consists
of crossing to the other side of the box. Figure 3 shows a
Markov decision process (MDP) representation of one-way
avoidance (see also Smith, Li, Becker, & Kapur, 2004).

Although intuitive, the representation in Figure 3 suf-ff
fers from an important limitation: It does not represent the 
passage of time within each state. This is problematic be-
cause some experimental data deal with response latencies.
Another limitation of the MDP in Figure 3 is that its only
terminal state is the one labeled “Safe side; CS off; US 
off.” Thus, a trial must continue until the animal crosses to 
the safe side. In many experiments, however, if the animal 
does not cross to the safe side after a certain time of being 
shocked, the trial is terminated. Implementing this also re-
quires representing the passage of time within a state.

A common approach to keeping track of time is to use
a tapped delay line (Daw, Courville, & Touretzky, 2006; 
Daw & Touretzky, 2002; Johnson et al., 2002; Montague,
Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague, 
1997; Smith et al., 2004; Sutton & Barto, 1990). The idea
is to “unfold” a state into multiple substates that represent
the passage of time within the original state. Applying
this technique to the MDP in Figure 3 gives the MDP in
Figure 4. The MDP in Figure 4 also includes a new state
(“End”), which represents the end of the trial if the animal
has failed to cross to the safe side after being shocked for 
a prespecified period of time.

The actor–critic corresponding to the MDP in Figure 4
is shown in Figure 5. Note that each state has been split
into n substates. (Different states do not necessarily have 
to be split into the same number of substates; I use n for all
for simplicity.) All of the simulations in this article use the 
actor–critic architecture from Figure 5, with n 4.

Simulations
I conducted two simulations. Simulation 1 consisted 

of 60 acquisition trials. Simulation 2 consisted of 15 ac-
quisition trials followed by 510 extinction trials. In one 
of the early experiments on avoidance, Solomon, Kamin,
and Wynne (1953) ran one of their dogs for 490 extinc-
tion trials and found no signs of extinction. The use of a 
very large number of extinction trials in Simulation 2 is 
intended to show that the model also does not exhibit any
signs of extinction, even with more than 490 extinction 
trials.

Results
This section presents the results of the two simulations. 

Rather than being organized by simulation, however, the 

Virtually all quantitative theories of classical conditioning
suggest that classical conditioning corresponds precisely 
to learning to predict future reinforcements (the USs) on 
the basis of the CSs (e.g., Dayan, Kakade, & Montague, 
2000; Mackintosh, 1975; Pearce & Hall, 1980; Rescorla 
& Wagner, 1972; Sutton & Barto, 1990). It is therefore 
natural to use temporal-difference learning (i.e., the critic)
to model classical conditioning (e.g., Schultz, 1998; Sut-
ton & Barto, 1990). In fear conditioning, the idea is that 
fear corresponds to the prediction of an aversive outcome. 
If we represent aversive outcomes with a negative scalar,
fear will correspond to a negative value. For example, sup-
pose that in state s1 there is an aversive US, such as shock, 
so R(s1) 0. Now, suppose that state s2 is a CS that pre-
dicts this US. As we will see below, through pairings of the
CS and the US, V(VV s2) will become negative. We can take 
that negative value to correspond to fear.

In short, the critic essentially implements the classical 
conditioning component of two-factor theory. The other 
factor in two-factor theory is instrumental conditioning 
via drive reduction. Two-factor theory suggests that ac-
tions are reinforced when they result in an immediate
reduction in a drive; for example, avoidance actions are
reinforced because, by terminating the CS, they result in
an immediate reduction in fear. The same thing happens
with the actor, as we will now see.

An action in the actor is strengthened (weakened) if 
it results in an immediate positive (negative) prediction
error (see Equation 3). The actor therefore implements
Thorndike’s (1911) law of effect, but with an important
difference: Instead of strengthening or weakening ac-
tions on the basis of the primary reward or punishment
that immediately follows them, it strengthens or weak-
ens actions on the basis of the prediction error that im-
mediately follows them. Now, going back to Equation 1, 
we can see that the prediction error corresponds to the 
sum of the primary reinforcement, R(s ), with a differ-
ence between values, V(VV s ) V(VV s). In the context of fear 
and avoidance conditioning, the values reflect fear, which
in two-factor theory is considered an acquired drive. The
difference V(VV s ) V(VV s) therefore reflects the change in
that acquired drive. In the context of fear and avoidance 
conditioning (and ignoring the discount factor , for sim-
plicity), if this difference is positive it means that we went
from a negative state s to a less negative state s —in other 
words, from a state that elicited more fear to a state that
elicited less fear. Thus, a reduction in fear results in a posi-
tive prediction error, which strengthens the response, just 
as proposed by two-factor theory.

In summary, there are deep similarities between the
actor–critic and two-factor theory. The critic learns the 
values of states, which correspond to acquired drives, 
and the actor learns which actions to perform on the basis 
of the immediate prediction error, which partly reflects 
changes in drive strength. In the context of fear and avoid-
ance conditioning, the values of states learned by the critic 
correspond to fear; a reduction in fear leads to a positive
prediction error, which reinforces the preceding response
in the actor.
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 Safe side
 CS off; US off

Dangerous side
CS off; US off

Dangerous side
CS on; US off

Dangerous side
CS on; US on

other actions other actions

cross
(escape)

cross
(avoidance)

other
actions

Figure 3. Markov decision process representation of the one-way avoid-
ance paradigm. At the beginning of each trial, the animal is put on the
dangerous side (the side in which it can get shocked). Often, at this stage
the passage to the other side of the shuttle box is blocked by a closed 
gate (e.g., Solomon & Wynne, 1953), so the animal cannot cross. After aWW
prespecified interval, regardless of what the animal does, the CS comes
on. At this point, there are two possibilities: Either the animal crosses to
the safe side (which would make this an avoidance trial) or it does not. 
In the latter case, after a prespecified interval, the US (typically a shock)
begins. Again, there are two possibilities: Either the animal crosses to the
safe side (which would make this an escape trial) or it does not. In the lat-
ter case, both the CS and the US stay on. Remaining in the state in which
the US is on leads to continuing punishment; the animal will therefore 
want to escape from that state as soon as possible. Regardless of when the
animal crosses to the safe side, the gate is typically closed immediately
thereafter (e.g., Solomon & Wynne, 1953), so the animal cannot return WW
to the dangerous side. Note that “other actions” means all actions except
crossing to the other side of the shuttle box. The reinforcement R(s(( ) asso-
ciated with state s is written inside the circle that represents that state.

other other
0

other

cross
(avoidance)

0 0 0 –1 –1 
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otherotherother other other

Dangerous side
CS off; US off

Dangerous side
CS on; US off
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(escape)

Safe side
CS off; US off

… … …

Figure 4. Markov decision process representation of the one-way avoidance paradigm, with substates to represent the time spent
in each state. Both the state labeled “Safe side; CS off; US off” and the state labeled “End” are terminal states. The label “other” is
shorthand for “other actions.”
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strengthens the crossing response. To see the similarity to
two-factor theory, note that the positive prediction error 
occurs because the model goes from a state that evokes
fear (a state with a negative value) to a state that does not 
(a state with a value of 0). Escape responses are learned by 
a similar mechanism: The d/on/on states have a negative 
value, so when the model crosses to the safe state from one
of the d/on/on states, there is a positive prediction error,
which reinforces the response.

Finding 2: Escapes occur before avoidances. Early 
in training, animals perform mostly escape responses, 
whereas later in training, they nearly exclusively perform
avoidance responses (Beninger, Mason, Phillips, & Fibiger, 
1980; Mowrer, 1960; Solomon & Wynne, 1953). This is
consistent with two-factor theory. According to two-factor 
theory, for the avoidance response to be learned, the CS
must first elicit fear (so that the termination of the CS is 
reinforcing). Fear of the CS must itself be learned, so in 
the early trials there is little or no reinforcement for avoid-
ance responses. Escape responses, in contrast, terminate 
an aversive US, which is a primary drive, so they are re-
inforced right from the start of the experiment. The same 
thing occurs in the model. For the avoidance response to 
be learned, the states representing the CS must first ac-
quire a negative value. In the model, escapes are therefore
also more prevalent in the beginning, whereas avoidances
become predominant later in training (Figure 7).

Finding 3: During avoidance training, fear first in-
creases and then decreases. Fear of the CS typically in-

presentation is organized by empirical finding. The find-
ings that can be explained by two-factor theory are pre-
sented before those that cannot.

Findings Consistent With Two-Factor TheoryWW
Finding 1: Avoidance responses are learned. In the 

early trials of avoidance conditioning, the animal often gets 
shocked, because it has not yet learned to avoid the shock.
According to two-factor theory, this results in fear of the 
shock. The same thing occurs in the model. When, in the 
early trials, the model receives shocks, the states in the top
row of Figure 4 come to predict an aversive outcome; that 
is, they acquire a negative value V. This is illustrated inVV
Figure 6, which shows the values of the states (left column)
and the probability of crossing (right column) at several
time points in Simulation 1. For now, note only that the
states that represent the CS being on (d/on/off/1 through 
d/on/off/4) acquire a negative value early in training (e.g., 
after 10 trials); this corresponds to fear of the CS. We will 
return to the other aspects of this figure below.

According to two-factor theory, once fear of the CS is in 
place, a response that terminates the CS reduces fear and is 
therefore reinforced. The same thing occurs in the model. 
Note in Figure 6 that whereas the d/on/off states acquire a 
negative value early in training, the safe state always main-
tains a value of 0. When the model is in one of the d/on/
off states and performs the crossing response, it therefore 
moves from a state with a negative value to a state with a
value of 0; this results in a positive prediction error, which

d/off/off/1 d/on/off/1 d/on/on/1 

other actions cross

s/off/off

… …

  d/on/off/n 

…

d/on/on/n endd/off/off/n

Critic

Primary
reinforcement

Actor

State

Figure 5. Actor–critic architecture for the one-way avoidance paradigm, with substates to represent the time spent in each state. The 
names of the states (except for the state “end”) consist of three or four components separated by slashes, according to the following
conventions: The first component represents the location (d, dangerous side; s, safe side); the second represents whether the CS was 
on or off; the third represents whether the US was on or off; and the fourth, when present, represents the substate number. Thus, for 
example, d/on/off/1 represents the first substate of the state that corresponds to the dangerous side with the CS on and the US off. For 
simplicity, only one unit is shown to represent other actions, but in the simulations 10 such units were present to represent the fact that 
there were multiple alternative actions. The link between the d/off/off substates and the “cross” action unit is absent because the gate
is closed before the CS comes on, so the animal cannot cross in those substates.
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Figure 6. Values of states and probabilities of performing the crossing response over 
the course of acquisition in Simulation 1. Recall that each of the larger states d/off/
off, d/on/off/, and d/on/on is split into four states. States are represented in the x-axis, 
following the same order in which they are presented in Figure 5: d/off/off/1 through
d/off/off/4 (labeled 1–4), d/on/off/1 through d/on/off/4 (the second set labeled 1–4),
d/on/on/1 through d/on/on/4 (the third set labeled 1–4), s/off /off (labeled “S”), and
end (labeled “E”). The probabilities of performing the crossing response are obtained 
using Equation 4.
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7. Learning in the model. The graph shows the num-
ber of failures to respond (“No crossing”), escape responses,
and avoidance responses, per blocks of 10 trials, in Simulation 1. 
Early in training, failures to respond and escapes predominate; 
as training proceeds, avoidance responses become more predomi-
nant. Starting on the third block, the model always successfully 
avoids the shock.
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“fear has never been demonstrated to extinguish com-
pletely . . . even with extensive training” (p. 993). Ac-
cording to two-factor theorists, this is because when the 
animal performs an avoidance response, only the fear of 
that part of the CS that the animal is actually exposed to
extinguishes (Levis & Brewer, 2001). If, as is found em-
pirically (Solomon & Wynne, 1953), the animal performs 
the avoidance response with short latencies, the fear to the 
later part of the CS does not extinguish. The techniques 
used to assess fear of the CS during avoidance condition-
ing (e.g., conditioned suppression; Estes & Skinner, 1941) 
typically present the CS for its entire duration, so they 
measure fear of the entire CS. According to two-factor 
theory, the fear measured by these techniques reflects fear 
of the later, unextinguished part of the CS. The model’s
explanation is the same.

Note in Figure 8 that fear of the CS does not return to
baseline. To demonstrate that fear in the model does not 
fully extinguish even with many more consecutive avoid-
ances, I ran an additional simulation with 700 acquisition
trials. Starting on Trial 12, the model successfully avoided 
on every trial. Fear decreased substantially until around 
Trial 30, then fairly slowly until around Trial 175, then 
only marginally until around Trial 350, and then remained 
approximately constant, never returning to baseline, de-
spite the continuing consecutive avoidances.

To understand why fear does not fully extinguish in the 
model, it is helpful to go back to Figure 6. The left col-
umn of Figure 6 shows the value (fear) for each state.1
The right column shows the probability of performing the
avoidance response in each state. As expected, the prob-
ability of performing the avoidance response increases
with training. Now, consider the situation by Trial 30. The
probability of performing the avoidance response in state
d/on/off /1 is nearly 1; thus, the model will perform the
avoidance response as soon as it reaches this state on vir-
tually every trial. Note, however, that by Trial 30, fear of 
the subsequent d/on/off states (d/on/off /2 through d/on/
off /4) has not fully extinguished. Given that the modelt
will perform the avoidance response on the d/on/off /1 
state in virtually every trial, there will be little opportu-
nity for further extinction of the fear in states d/on/off /2 
through d/on/off /4. This is the reason that by Trial 60 fear 
for those states has diminished very little. Furthermore,
by Trial 60 the probability of performing the avoidance 
response in state d/on/off /1 is even higher, so there will 
be even less opportunity for fear of the states d/on/off /2 
through d/on/off /4 to extinguish. Thus, fear of those states
will tend to persist.

Finding 5: Fear reemerges when the avoidance 
response is blocked and when the animal responds 
with a longer latency. We saw above that with extended 
training, fear of the CS is greatly reduced. However, if the 
response is blocked, animals exhibit increased fear (e.g., 
Solomon et al., 1953). Two-factor theory’s explanation of 
this finding is the same as the explanation for why fear 
does not fully extinguish: When the response is prevented,
the animal is exposed to the later, unextinguished parts of 
the CS, which elicit fear. The model’s explanation is the

creases early in training and then decreases with more ex-
tended training (e.g., Brady, 1965; Brady & Harris, 1977; 
Coover, Ursin, & Levine, 1973; Kamin, Brimer, & Black,
1963; Solomon et al., 1953; Solomon & Wynne, 1953).
This is consistent with two-factor theory. Early in train-
ing, before the avoidance response is well established, the 
CS is often followed by the US; this results in fear of the
CS increasing. As the avoidance response becomes well
established, the CS is rarely, if ever, followed by the US; 
this results in extinction of the fear. The explanation of the
actor–critic is very similar, as we will now see.

To model fear of the CS, I summed the value V of allV
d/on/off states. To obtain a positive rather than negative
measure of fear, I then used the negative of that result. 
Fear F of the CS was therefore determined using the fol-
lowing equation:

F V i
i

n

( ),d /on/off/
1

where n is the number of d/on/off states (n 4 in all 
simulations).

Figure 8 shows that in Simulation 1 fear increases early 
in training and then decreases with more extensive train-
ing. The explanation for this pattern in the model is similar 
to the explanation provided by two-factor theory. In Simu-
lation 1, Trial 11 is still an escape trial, but after that, the
model successfully avoids on every trial. Fear therefore
decreases from Trial 12 onward.

The fact that fear should decrease in successful avoid-
ance trials is intuitive, but how does that occur in the 
model? Suppose that the model is in one of the d/on/off 
states (say, d/on/off /i) and performs an avoidance. If d/on/
off /i has a negative value, the avoidance takes the model 
from a state with a negative value to a state with a value 
of 0 (the safe state); this results in a positive prediction 
error, which increases the value of state d/on/off /i (i.e., 
decreases its absolute value), thereby reducing fear.

Finding 4: Fear does not completely extinguish 
even with many consecutive avoidances. Despite the 
widely replicated finding of a decrease in fear with exten-
sive avoidance training, as Mineka (1979) emphasized,
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Figure 8. Fear of the CS after each trial in Simulation 1.
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the avoidance response. In fact, this is the prediction of 
two-factor theory itself. But in that case, one would expect 
the avoidance response to extinguish, possibly with a grad-
ual lengthening of the avoidance responses preceding such 
extinction. To see this, suppose that at a certain point the 
animal is responding at approximately t sec after the onset
of the CS. After several such responses, fear of the first 
t sec of the CS would extinguish, and responding at t sec 
would no longer be reinforcing. The t-sec response would 
then extinguish. Later responses, however, would still be
reinforced because fear of the CS after t sec would not have
extinguished. The animal might therefore start to respond a
little later (say, at approximately t t sec). However, that
would result in extinction of fear of the first t t sec of 
the CS, which would result in extinction of the response at
t t sec and a shift to a later response. Eventually, this 
would result in extinction of the response.

The actor–critic can explain the resistance of avoidance
responding to extinction, regardless of whether the sched-
ule does or does not switch to extinction trials. In the afore-
mentioned simulation with 700 acquisition trials, the model 
exhibited no cycles of avoidance learning and extinction.
Once the avoidance response was well established (by 
Trial 12), it was performed in every trial. The same thing
occurred in Simulation 2, which consisted of 15 acquisition 
trials followed by 510 extinction trials. Again, the avoidance
response was well established by Trial 12, and it was per-
formed on every subsequent trial, including throughout the
510 extinction trials.2 The fact that the model performs sim-
ilarly in these two simulations is not surprising. The model
performs the avoidance response on every trial starting on
Trial 12, so it makes no difference whether the training re-
gime changes to an extinction schedule after that trial.

Furthermore, in the model the avoidance response per-
sists even with little or no fear. In Simulation 2, for ex-
ample, once the avoidance response was well established, 
it continued to be performed in every single trial, despite
a marked reduction in fear (Figure 9). It could be argued 
that perhaps the residual fear in Figure 9 is sufficient to
continue to reinforce the response. However, that fear is 
fear of the later parts of the CS; this is shown more clearly

same. Consider, for example, the situation in the last row 
of Figure 6. Fear of all of the d/off /off states and of d/on/
off /1 has already fully extinguished, and the probability 
of crossing in state d/on/off /1 is very close to 1. Left to
its own devices, the model will then avoid on state d/on/
off /1 in virtually every trial, with no concomitant fear. If,
however, one blocks the response, the model is exposed 
to states d/on/off /2 through d/on/off /4, which elicit fear.
The same ideas explain why animals (Solomon & Wynne, 
1954) and the model exhibit increased fear when they re-
spond with longer-than-usual latencies.

Findings Inconsistent With Two-Factor TheoryWW
Finding 6: Avoidance responses are extremely re-

sistant to extinction. According to two-factor theory,
when the avoidance response is well learned and the ani-
mal avoids on every trial, fear of the CS should extinguish. 
Termination of the CS would then no longer be reinforc-
ing, so the avoidance response should also extinguish. If 
at that point the animal was under an extinction schedule, 
it would not be shocked again, and the response should 
remain extinguished. If the animal was instead still under 
an acquisition schedule, it would get shocked again; this 
would produce fear conditioning, which would support 
learning of the avoidance response, and the entire cycle 
would be repeated. Two-factor theory therefore predicts 
that under an extinction schedule the avoidance response 
should extinguish, and under an extended acquisition 
schedule there should be cycles of response learning and 
extinction. Neither of these predictions corresponds to the 
empirical findings. Instead, once the avoidance response
is well learned, animals often continue to perform it in
every trial, during both acquisition and extinction (Levis, 
1966; Levis, Bouska, Eron, & McIlhon, 1970; Levis &
Boyd, 1979; Logan, 1951; Malloy & Levis, 1988; Mc-
Allister, McAllister, Scoles, & Hampton, 1986; Seligman 
& Campbell, 1965; Solomon et al., 1953; Solomon & 
Wynne, 1953; Wahlsten & Cole, 1972; R. W. Williams 
& Levis, 1991). Furthermore, avoidance responding per-
sists, and even gets stronger, after fear of the CS is drasti-
cally reduced or even nearly extinguished (Hodgson & 
Rachman, 1974; Mineka, 1979; Rachman, 1976; Rach-
man & Hodgson, 1974; Riccio & Silvestri, 1973). This 
has been found during schedules involving extended ac-
quisition (e.g., Cook, Mineka, & Trumble, 1987; Kamin
et al., 1963; Mineka & Gino, 1980; Neuenschwander,
Fabrigoule, & Mackintosh, 1987; Starr & Mineka, 1977) 
or extinction following acquisition (e.g., Solomon et al., 
1953). This persistence of the avoidance response even
after fear is greatly reduced is considered one of the main
problems for two-factor theory.

We saw above that even though fear is greatly reduced 
after several consecutive avoidances (Finding 3), it does
not fully extinguish (Finding 4). It could therefore be ar-
gued that whatever little fear remains is sufficient to main-
tain the avoidance response. However, as was discussed 
above, the residual fear that is measured by tests such as 
conditioned suppression likely reflects fear of the later part
of the CS, not of the part of the CS that typically precedes
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Figure 9. Fear of the CS in Simulation 2.
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come to 0, because the CS is no longer predictive of the
US. The CS therefore comes to predict a reinforcement
of 0, and the actual and predicted future reinforcements are 
also 0 whenever the avoidance response is performed, be-
cause the model transitions to the safe state, from where it
never receives any shock. The prediction error is therefore 
0, so the response is not weakened.

Finding 7: Avoidance latencies decrease through-
out acquisition and even extinction. Avoidance laten-
cies decrease throughout acquisition, becoming much 
shorter than necessary to avoid the shock (Beninger et al.,
1980; Solomon & Wynne, 1953). For example, in the ex-
periment of Solomon and Wynne (1953), after 50 trials 
of training the mean avoidance latency was 2 sec, even
though the shock only occurred at 10 sec. Avoidance la-
tencies also continue to decrease during extinction trials
(Solomon et al., 1953). This should come as no surprise,
since we have already noted that experiments with only 
an extended acquisition phase and experiments in which
an extended acquisition phase is followed by an extinction 
phase are indistinguishable for animals.

The finding of decreasing latencies throughout extended 
acquisition and in extinction is problematic for two-factor 
theory. As we saw above, fear during later phases of ac-
quisition and during extinction is significantly reduced; a 
reduction in fear is therefore accompanied by an appar-
ent increase in the strength of the response, which is the
opposite of what two-factor theory would predict. This, 
however, is exactly what the actor–critic predicts.

Figure 11 shows the avoidance latencies in Simula-
tion 2. Note that the latencies continue to decrease during
extinction. Furthermore, such decrease occurs in parallel
with a decrease in fear (Figure 9). The same thing occurs
during extended acquisition in Simulation 1 (not shown
because the graph is exactly the same as that for Simula-
tion 2). To understand these results, we need to understand 

in Figure 10. Note in particular that by Trial 100, fear of 
d/on/off /1 and earlier states has already fully extinguished 
and the probability of crossing in d/on/off /1 is very close 
to 1. The model will therefore avoid on virtually every 
trial on state d/on/off /1, which does not elicit fear, so there
will be no opportunity for fear reduction to continue to
reinforce the response. Although by Trial 100 fear of d/on/
off /1 and earlier states has already fully extinguished, 425 
trials later the probability of performing the response has
not decreased. The persistence of the avoidance response 
in the model is therefore not due to continuing reinforcet -
ment via fear reduction; in the model, unlike in two-factor 
theory, extinction of fear does not result in extinction of 
the response. But why?

The answer follows from Equation 3, together with the 
definition of prediction error. Suppose that fear of state s
has already extinguished [i.e., V(VV s) 0]. Now suppose
that the model makes an avoidance response in that state.
That will lead it to the safe state, which also has a value 
of 0. The prediction error is therefore 0, which, according
to Equation 3, implies that the strength of the response 
does not change.

This is a key point, so it is worth rephrasing. Equation 3
shows that for the strength of an action to decrease in
the model, a negative prediction error is required. How-
ever, there is never a negative prediction error when the
avoidance response is performed, regardless of whether 
the experiment consists only of acquisition trials or of a
sufficient number of acquisition trials followed by extinc-
tion trials. Initially, there is classical conditioning of the
CS to the shock, so the states that represent the CS acquire 
a negative value. Then, when the model performs the re-
sponse and is not shocked, there is a positive prediction
error, which reinforces the response. Once the avoidance
response becomes well established, the consecutive avoid-
ances make the value of the states that represent the CS
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Figure 10. Values of states and probabilities of crossing in Simulation 2.
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prediction error, when the system transitions from that 
state (with a value of 0) to a state that has a negative value
(i.e., is aversive). Thus, in the first trial, only the last state 
before the US gets a negative value. In the second trial, the 
second state before the US also gets a negative prediction 
error, when the system transitions from that state (with a 
value of 0) to the last state before the US, which now has a 
negative value. Thus, in the second trial, some of the nega-
tive value propagates backward to the second state be-
fore the US. In addition, because learning is gradual, the
last state before the US will still get a negative prediction 
error, so it will become even more negative. This process
continues in subsequent trials, resulting in the gradual 
propagation of value backward. Before value propagates 
all the way back, it is more negative for late than for early
substates of d/on/off. Thus, earlier in training, avoidances
with longer latencies are more strongly reinforced than 
avoidances with shorter latencies, so avoidances will 
tend to have long latencies. As training progresses, value 
propagates back to the early substates of d/on/off, so early
avoidances will also become strongly reinforced and the 
avoidance latencies decrease.

But why do avoidance latencies continue to decrease
even as fear is markedly reduced? The explanation again 

both the mechanism underlying the reduction in avoid-
ance latencies in the model and why avoidance latencies 
continue to decrease even as fear markedly decreases. We 
will start by considering the first question.

The reduction in avoidance latencies is due to two
factors. First, suppose that the increase in strength of 
the probability of crossing was about the same for each
d/on/off state when one performed the avoidance response 
in that state. Over time, this would result in a decrease in
avoidance latencies: As the probability of crossing in the
early d/on/off states increased, the probability of an early 
latency would increase, even if the probability of crossing 
in later d/on/off states was equally high. This plays a role 
in the decrease in avoidance latencies, but it is not the 
whole story. Figure 12 shows the probability of crossing 
for each state throughout Simulation 2. The probability 
starts by being higher in the later d/on/off substates and 
only becomes high for earlier d/on/off substates later in
training. This occurs because in temporal-difference mod-
els, value [V(VV s)] gradually propagates backward in time
(Montague et al., 1996; Niv, Duff, & Dayan, 2005; Schultz 
et al., 1997). The values of states are updated by the pre-
diction error (Equation 2). In the first trial, only the state
that immediately precedes the aversive US gets a negative
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Figure 11. The avoidance latencies in Simulation 2 continue to decrease during extinction. For
clarity, the left panel shows only the first 50 avoidances. The right panel shows all avoidances. The 
vertical axis represents the latency of the avoidance response. In the model, the latency is given by 
the substate of the d/on/off state in which the crossing occurred. Latencies of 0, 1, 2, and 3 corre-
spond to avoidance responses in states d/on/off/1, d/on/off/2, d/on/off/3, and d/on/off/4, respectively.
The horizontal axis represents the number of the avoidance response; for example, 7 represents 
the seventh avoidance response (not Trial 7). The figure shows a moving average of the avoidance
latencies, with a span of nine. Thus, the value plotted at each point i is an average of the avoidance i
latencies from i 4 through i 4. The moving average is not defined for the first and last four points 
in the data set. The end of the acquisition phase is marked by a dashed vertical line. There were six 
avoidances during the acquisition phase in this simulation, so the acquisition phase is over after the 
sixth avoidance. The avoidance latencies continue to decrease markedly after the end of acquisition. 
The occasional increases in latency are due to randomness in action selection in the model. The fact 
that such increases show up as plateaus rather than as single points is an artifact of the smoothing 
used to construct the figure. The increase in latency in points 7 and 8 is due to this randomness and 
is not related to the end of the acquisition phase; it also occurs in Simulation 1, which continues the 
acquisition phase for several more trials. Even though starting in about Trial 35 most avoidances 
have a latency of 0, there is occasionally an avoidance with longer latency. Given the smoothing 
imposed by the moving average procedure used to construct the figure, this shows up as a plateau.
These plateaus tend to become less frequent (and smaller) as extinction proceeds; thus, with more 
extinction trials, the avoidance response becomes even more likely to occur with a latency of 0. If one 
averaged across animals, as is often done in the experimental literature, this would result in a more
gradual decrease in latencies.
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negative value, the avoidance response in those states can 
continue to be strengthened. For example, after the end 
of acquisition (top row of Figure 10), the state d/on/off /1
has a negative value; until that value fully extinguishes,
performing the avoidance response in that state results in a
positive prediction error. This is why the probability of the
response in that state increases markedly from Trial 15 to
Trial 30 (Figure 10)—that is, after the end of the acquisi-
tion phase.

DISCUSSION

The Actor–Critic and the Need for Continued
Reinforcement to Sustain Responding

We saw that the actor–critic explains why the avoidance
response persists in the absence of continuing reinforce-
ment. In animals, continuing reinforcement is not nec-
essary to maintain a response in avoidance, but in other 
instrumental conditioning paradigms it is. The same thing
happens in the actor–critic. As a simple example, consider 
an appetitive paradigm in which the animal learns to press 
a lever in response to a stimulus S to receive food. Before 
learning, the model is not expecting to receive food when 
it presses the lever, so when it does, there is a positive 
prediction error, which reinforces the leverpressing. With
learning, S comes to have a positive value, because it is
followed by leverpressing and the resultant food delivery.
Now, suppose one stops giving food after the leverpress-
ing. Stimulus S predicts a positive value, so the omis-
sion of reward produces a negative prediction error that 
weakens the response. The leverpressing response will 
therefore weaken or even extinguish when one removes
the reinforcer, as is found empirically. The actor–critic
therefore explains both why continuing reinforcement is 
necessary to sustain responding in appetitive conditioning
and why it is not necessary in avoidance.

The Persistence of the Avoidance Response
Versus the Persistence of Habits

It is important to contrast the account of the persistence
of avoidance responses developed in this article with the 
idea of habits (Dickinson, 1985). Many experiments have
shown that habitual responses become autonomous from
their goals, persisting temporarily even when the animal
is no longer interested in their outcome (Adams, 1982; 
Dickinson, 1985, 1994). In these experiments, in a first 
phase, animals are trained to respond for food. In a second 
phase, food is devalued by satiating the animal or by pair-
ing the food with illness. Under certain training conditions 
(e.g., overtraining), the food devaluation does not lead to 
an immediate and pronounced reduction in responding,
even though the animals are no longer interested in the
food (e.g., Adams, 1982).

These results have been interpreted as suggesting that
whereas goal-directed actions may be under the control 
of a model-based reinforcement learning system, hab-
its may be under the control of a model-free reinforce-
ment learning system (Daw, Niv, & Dayan, 2005, 2006).
Model-based systems use a model of the environment

hinges on the prediction error. As long as fear of a state
has not fully extinguished, performing an avoidance in 
that state results in a positive prediction error, which rein-
forces the avoidance response. When this happens for the 
earlier d/on/off states, the avoidance latencies decrease.
Referring back to Figure 10, the left column shows that 
the value for most states tends to extinguish during the ex-
tinction phase (and the same is true with extended acquisi-
tion). However, while the states have at least a somewhat
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Figure 12. The response gradually transfers backward. These
graphs show the probability of crossing for each state in Simula-
tion 2, at 5-trial intervals. For simplicity, only the first 30 trials 
are shown. Each row shows these probabilities before the trial 
indicated on the vertical axis. During the first 10 trials (rows 2
and 3) the probability of crossing is greater for the d/on/on states
than for the d/on/off states, so escapes are more prevalent than 
avoidances. (In this simulation, one specific d/on/on substate has
an especially large probability of crossing. Different simulations 
would result in different d/on/on substates having large probabili-
ties for crossing at this stage.) Starting in row 4, the probability 
of crossing in the d/on/off states has increased dramatically; in 
particular, the probability of crossing in the last d/on/off substate 
is nearly 1. Consistent with this, at this stage, the model already 
successfully avoids in every trial. However, in row 4 the prob-
ability of crossing is much lower for early than for late d/on/off 
substates; therefore, at this stage, avoidance responses still have 
long latencies. As training progresses, earlier substates of d/on/off 
also acquire a large probability of crossing; avoidance latencies
therefore decrease.
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ticle addressed using the actor–critic—for example, the
gradual reduction of avoidance latencies with additional 
training. From a “cognitive” perspective, there seems to 
be no reason for the avoidance latencies to become shorter 
than necessary with additional training. In fact, Seligman 
and Johnston’s description of one of the expectations
formed by the animal was that “The animal expects that if 
he responds within a given time (rt, where t is the length of t
the CS–US interval . . .), no shock . . . will occur” (p. 91). 
But then, what is the driving force behind the gradual re-
duction in avoidance latencies? If anything, one would 
assume that with additional training the animal would es-
timate the length of the CS–US interval better, so it would 
be less compelled to perform the avoidance earlier just to
be safe.

Using the terminology of reinforcement learning, the
cognitive theory of Seligman and Johnston (1973) corre-
sponds to a model-based approach. For such an approach
to avoidance, see Smith et al. (2004) and Smith, Becker,
and Kapur (2005).

Feedback From the Avoidance Response 
and Conditioned Inhibition of Fear

Sensory feedback that accompanies the performance of 
the avoidance response becomes a conditioned inhibitor of 
fear (i.e., a safety signal) that may positively reinforce the 
avoidance response (Dinsmoor, 2001; Dinsmoor & Sears,
1973; Morris, 1974, 1975; Weisman & Litner, 1972).
Positive reinforcement by safety signals provides an alter-
native to two-factor theory’s assumption that response re-
inforcement is due to CS termination. Alternatively, both 
mechanisms may play a role in response reinforcement 
(Cicala & Owen, 1976; B. A. Williams, 2001).

Safety signals also provide an alternative explanation
for the persistence of avoidance responses. According to 
the Rescorla–Wagner model (Rescorla & Wagner, 1972), 
if the CS has a negative weight (i.e., elicits fear) and the
safety signal has an equal but positive weight (i.e., inhib-
its fear), the prediction of the aversive US is 0. When the 
animal successfully avoids, no shock is presented, so both
the CS and the safety signal would maintain their weights.
Thus, the positive value of the safety signal and/or the 
termination of the negative value of the CS could continue 
to reinforce the response perpetually.

This account can also explain most of the other findings 
discussed above. For example, fear of the CS would never 
completely extinguish because it would be protected from 
extinction by the safety signal (Chorazyna, 1962; Res-
corla, 1968). As another example, blocking the response
would elicit fear because it would remove the safety sig-
nal, thereby uncovering the fear of the CS.

An important difficulty for this account, however, is
to explain the decrease in avoidance latencies through-
out consecutive avoidance responses. As was discussed 
above, fear of the CS decreases markedly with consecu-
tive avoidance responses (even when it is measured by
tests such as conditioned suppression, in which the avoid-
ance response is not performed and the safety signal is 
therefore absent). Since the positive value of the safety

in which the relation of actions to their outcomes is ex-
plicitly represented. The model is often an MDP (such as 
the one in Figure 4), which includes knowledge of how 
actions affect the transitions between states and of the
reinforcements associated with each state. Actions are se-
lected in these systems by traversing the model to look at 
the consequences of the available actions. If the outcome 
of an action is no longer of interest (e.g., after food de-
valuation), these systems will therefore immediately stop
performing that action. In contrast, in model-free systems 
such as the actor–critic (as in standard S–R associations), 
the strength of actions is stored independently from their 
outcomes. As Daw and colleagues put it, in model-free
systems the action preferences are cached estimates (Daw 
et al., 2005; Daw, Niv, & Dayan, 2006). Even if the ani-
mal is no longer interested in the outcome of a previously 
desirable action, the strength of the action remains un-
changed. It is only when the animal performs the action 
again that a negative prediction error occurs, decreasing
the strength of the action. Furthermore, since learning in
these systems is usually gradual, it takes a few trials for 
the strength of the action to be substantially decreased,
which explains why food devaluation does not have an
immediate effect on animals’ responses when such re-
sponses have become habitual (Daw et al., 2005; Daw, 
Niv, & Dayan, 2006).

The cached values eventually catch up with the new 
contingencies, though, so the model would stop perform-
ing the behavior. Similarly, animals that are allowed to
continue to respond for the devalued food soon stop re-
sponding (Adams, 1982). This is different from what
happens in avoidance, in which the response tends not
to extinguish even with many extinction trials (Solomon 
et al., 1953). Accordingly, in the model the persistence of 
avoidance responses and the persistence of habits are due
to different mechanisms. Habits persist temporarily while 
the cached values are updated; avoidance responses per-
sist lastingly because there is never a negative prediction
error to weaken the response.

Relation to Cognitive Theories of Avoidance
An influential theory of avoidance that can explain the

high resistance of avoidance responses to extinction is Se-
ligman and Johnston’s (1973) cognitive theory. Seligman 
and Johnston proposed that in the course of avoidance
learning, animals learn two different action–outcome 
(A–O) expectancies for the situation in which the CS is 
on: If they do not perform the avoidance response, they 
will get shocked, and if they do perform the avoidance
response, they will not get shocked. Since they prefer no
shock to shock, this explains why they perform the avoid-
ance response. Seligman and Johnston’s explanation for 
the persistence of the avoidance response is that once the 
animal is performing the response consecutively on every 
trial, it never has an opportunity to disconfirm the expec-
tation that it will get shocked if it does not perform the 
avoidance response.

It is not clear, however, that Seligman and Johnston’s 
(1973) theory can explain all of the findings that this ar-
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never been shocked, so there is a marked reduction in fear; 
in two-way avoidance, the animal moves to a context in
which it was shocked recently, so there is less reduction
in fear; and in leverpressing avoidance, the animal does 
not move out of the dangerous context, so there is even
less reduction in fear (Bolles, 1978). Consistent with this
explanation, if animals are allowed to move out of the 
dangerous context following leverpressing, learning of 
leverpressing avoidance is significantly faster (Master-
son, 1970).

Reinforcement of the Avoidance Response 
by Prevention of the US

According to two-factor theory, the avoidance response
is reinforced not because it prevents the US, but because it
terminates the CS. Mowrer (1960) stated that “the avoid-
ance of the shock is a sort of by-product” (p. 30) with 
no causal role in behavior. In the standard discriminated 
avoidance procedure, avoidance of the US and termination 
of the CS are confounded because the response has both
effects. However, if the response prevents the US but does
not terminate the CS (Bolles, Stokes, & Younger, 1966;
Kamin, 1956), animals still learn it (albeit not as well as
when it has both effects). This finding is usually taken to
imply knowledge of the A–O contingency between the 
response and no shock.

The actor–critic does not represent A–O contingen-
cies; for that, a model-based approach would be required. 
In fact, the brain may implement both model-based and 
model-free reinforcement learning (Daw et al., 2005;
Daw, Niv, & Dayan, 2006), so both types of controller may
play a role in avoidance. However, the finding that preven-
tion of the US without termination of the CS is sufficient 
to support learning can also be given an interpretation on
the basis of the actor–critic alone. States in reinforcement
learning are not limited to representing external stimuli;
they may also include, for example, memories (Sutton &
Barto, 1998). Suppose that the states include memory of 
whether the avoidance response was executed. If the re-
sponse prevents shock, the state that represents the fact 
that the response has been executed will eventually ac-
quire a value of 0, because it is never followed by shock; 
the state that represents the fact that the response has not 
been executed, in contrast, will have a negative value, be-
cause it is followed by shock. Performing the response 
will therefore take the model from the negative (i.e., fear-
eliciting) state that corresponds to the response not having
been executed to the zero-valued state that corresponds to
the response having been executed; this produces a posi-
tive prediction error that reinforces the response.

The relative contributions of CS termination and US
prevention to avoidance learning may depend on the 
type of avoidance conditioning procedure (Bolles, 1970;
Bolles & Grossen, 1969; Bolles et al., 1966). On the basis 
of two-factor theory and the model, one might expect 
that CS termination would play a smaller role in one-
than in two-way avoidance, because in one-way avoid-
ance the change from the dangerous to the safe chamber 
would be sufficient to produce substantial fear reduc-
tion. This has indeed been observed empirically (Bolles, 

signal and the negative value of the CS should be sym-
metric, the value of the safety signal likely also decreases 
significantly. Reinforcement for the avoidance response, 
whether from termination of the CS or from the safety 
signal, therefore decreases markedly with consecutive
avoidances. Both when a response is positively reinforced 
by appetitive stimuli (Crespi, 1942; Stebbins, 1962; Zea-
man, 1949) and when it is reinforced by termination of an 
aversive stimulus (Strub, 1963; Woods, 1967), a decrease 
in reinforcement produces an increase in response laten-
cies. In avoidance, however, one finds a decrease, not an
increase, in response latencies throughout consecutive 
avoidances. It is unclear how this can be explained by this 
account.

Limitations of the Model
The present model has some limitations. In the model, 

all responses are treated equally. In animals, however, 
avoidance responses that are closer to species-specific 
defense reactions (SSDRs) are learned faster than arbi-
trary responses (Bolles, 1969, 1970; Grossen & Kelley, 
1972). These findings initially led to the suggestion that 
reinforcement may not play any role in the establishment 
of avoidance responses (Bolles, 1970), but subsequent 
findings confirmed a role for reinforcement in avoidance 
(Crawford & Masterson, 1978, 1982).

In one-way avoidance, animals may quickly learn that 
one side is dangerous and the other is safe, and this may 
elicit a tendency to flee the dangerous side and approach
the safe side (Bolles, 1978; Knapp, 1965; Zerbolio, 1968).
Consistent with this hypothesis, if the dangerous and safe
chambers are different (which facilitates learning about
their values), one-way avoidance learning is faster than if 
the chambers are identical (Knapp, 1965). The tendency 
to flee the dangerous side and approach the safe side may 
also explain why learning is easier in one-way avoid-
ance than in two-way or leverpressing avoidance (Bolles, 
1972a). Nevertheless, the strengthening of the avoidance
response throughout acquisition and even extinction (as 
evidenced by the reduction in latencies) suggests that re-
inforcement also plays a role.

The present article focused on one-way avoidance for 
simplicity. The goal, however, was to address general prin-
ciples that apply across avoidance paradigms, so I did not 
model the noninstrumental tendency to flee the dangerous
side and approach the safe side. Furthermore, pushing the
envelope on a single explanatory construct (the standard 
actor–critic model) brings important theoretical insights. 
For example, the actor–critic can account for the finding 
of enhanced avoidance learning when the two chambers 
are different without postulating fleeing or approach pro-
cesses. If the model used distributed representations for 
the state (Barto, 1995; Barto et al., 1983), there would 
be significant generalization of value across states; mak-
ing the chambers more distinct would facilitate learning
their values, which would produce faster learning. The 
model, like two-factor theory, can also explain why one-
way avoidance is easier than two-way avoidance, which
in turn is easier than leverpressing avoidance. In one-way
avoidance, the animal moves to a context in which it has
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therefore produce more resistance to extinction. Consis-
tent with this hypothesis, a strain of rats that performed 
the avoidance response on nearly every trial during acqui-
sition showed more resistance to extinction than a strain 
that did not avoid as consistently (Servatius, Jiao, Beck, 
Pang, & Minor, 2008).

Why would the avoidance response extinguish in the 
model if  is sufficiently high for the model not to avoid on
every trial? Suppose that the avoidance has a cost c. Then, 
the states that precede it (those corresponding to the CS) 
will have a negative value ( c, if we ignore the discount
factor for simplicity), even after fear of the CS is fully 
extinguished. Thus, when the model does not avoid and 
does not get shocked, it gets a positive prediction error c, 
because it goes from a state with value c to a state with
value 0 (no shock). This has two consequences: (1) Not 
avoiding (i.e., performing whatever other actions the ani-
mal performed) is reinforced, and (2) the value of the CS
becomes less negative ( c c; see Equation 2). Then, 
when the avoidance response is performed again, it pro-
duces a negative prediction error c, because the model 
was in a state in which it expected c c and it gets c. 
This negative prediction error weakens the avoidance re-
sponse. Repetition of the weakening of the avoidance re-
sponse and strengthening of alternative responses would 
eventually extinguish the avoidance response.

This discussion suggests that some of the variability
across experiments may be due to different costs for the
avoidance response. Other factors that may influence that 
variability include the intensity of shock (stronger shocks 
will produce larger prediction errors that stamp in the
response more strongly) and the number of avoidance 
responses until the schedule is switched to an extinction 
schedule (fewer responses mean fewer opportunities for 
reinforcement and thus a weaker, more extinguishable
response).

CONCLUSIONS

The actor–critic can be seen almost as a computational
implementation of two-factor theory. The two compo-
nents of the actor–critic (the actor and the critic) corre-
spond closely to the two processes in two-factor theory
(instrumental and classical conditioning, respectively). 
The actor–critic goes beyond two-factor theory, though. 
Unlike two-factor theory, the actor–critic does not predict 
that extinction of fear leads to extinction of the avoidance
response. For this reason, the actor–critic can explain the
persistence of avoidance responding, even after fear is 
greatly reduced or extinguished. In fact, the actor–critic 
even predicts the reduction in avoidance latencies during
extinction trials. Importantly, the actor–critic allows us to
understand why animals behave in the way that they do.
For example, it explains why continuing reinforcement is
not necessary to sustain responding in avoidance experi-
ments but is necessary to sustain responding in appetitive 
paradigms. In short, the actor–critic explains the idiosyn-
crasies of the empirical findings in avoidance without 
postulating any mechanisms specific to avoidance.

1969, 1970). By the same token, two-factor theory and 
the model would predict that CS termination should play 
a larger role in running in a wheel than in either one- or 
two-way avoidance, because when running in a wheel 
the animal does not change context at all, so fear reduc-
tion would be largely determined by the CS termination. 
That is not the case, though: CS termination does play a 
larger role in the running wheel than in one-way avoid-
ance, but it appears to play a smaller role in the running
wheel than in two-way avoidance (Bolles, 1970; Bolles 
et al., 1966).

SSDR theory attempts to explain these findings by
claiming that the responses involved are different, with 
running in one-way avoidance and in the wheel being 
closer to an SSDR (Bolles, 1970). However, the response 
in two-way avoidance is also running, so appealing to dif-ff
ferences in the responses themselves does not seem to ex-
plain much. One might argue that the SSDR is not running 
per se, but running to a safe place. But then why would 
running in the wheel be close to an SSDR, if it does not
involve moving to a safe place? SSDR theory actually has 
the same difficulties as two-factor theory or the model in 
explaining this pattern of findings; additional research is 
needed to make sense of them.

Variability in the Resistance of 
Avoidance to Extinction

As was noted above, many studies have shown remark-
able persistence of the avoidance response (Levis, 1966;
Levis et al., 1970; Levis & Boyd, 1979; Logan, 1951;
Malloy & Levis, 1988; McAllister et al., 1986; Seligman
& Campbell, 1965; Solomon et al., 1953; Solomon & 
Wynne, 1953; Wahlsten & Cole, 1972; R. W. Williams & 
Levis, 1991). For example, Solomon et al. (1953) reported 
that with 200 extinction trials none of the dogs in their 
experiment extinguished the response. Three additional 
dogs run for 280, 310, and 490 extinction trials also failed 
to extinguish the response. With humans, R. W. Williams 
and Levis (1991) reported that nearly half of their sub-
jects failed to extinguish after 500 trials, even though in 
many cases they had received a single pairing of the CS 
with a mild shock. Several studies, however, have reported 
gradual extinction of the avoidance response (see Mack-
intosh, 1974, for a review), even though there is often 
significant variability across animals (e.g., Sheffield &
Temmer, 1950). Even in the R. W. Williams and Levis 
study, approximately half of the subjects did extinguish d
the response.

The model can explain the different susceptibilities to 
extinction across subjects if one makes two reasonable
assumptions: (1) Different subjects have different values 
of the temperature parameter, , and (2) performing the 
avoidance response carries some cost (e.g., an energetic 
cost). Subjects with lower values of (i.e., those with a 
decreased tendency to explore) will tend to always avoid 
and therefore never discover that shock is no longer being 
delivered; subjects with higher values of are more likely 
to fail to perform the avoidance and therefore to discover 
that shock is no longer being delivered. Lower values of 
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