Skip to main content
Log in

MLP: A MATLAB toolbox for rapid and reliable auditory threshold estimation

  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

In this article, we present MLP, a MATLAB toolbox enabling auditory thresholds estimation via the adaptive maximum likelihood procedure proposed by David Green (1990, 1993). This adaptive procedure is particularly appealing for those psychologists who need to estimate thresholds with a good degree of accuracy and in a short time. Together with a description of the toolbox, the present text provides an introduction to the threshold estimation theory and a theoretical explanation of the maximum likelihood adaptive procedure. MLP comes with a graphical interface, and it is provided with several built-in, classic psychoacoustics experiments ready to use at a mouse click.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amitay, S., Irwin, A., Hawkey, D. J. C., Cowan, J. A., & Moore, D. R. (2006). A comparison of adaptive procedures for rapid and reliable threshold assessment and training in naive listeners. Journal of the Acoustical Society of America, 119, 1616–1625.

    Article  PubMed  Google Scholar 

  • Amitay, S., Irwin, A., & Moore D. R. (2006). Discrimination learning induced by training with identical stimuli. Nature Neuroscience, 9, 1446–1448. doi:10.1038/nn1787

    Article  PubMed  Google Scholar 

  • Baker, R. J., & Rosen, S. (1998). Minimizing the boredom by maximising likelihood: Efficient estimation of masked threshold. British Journal of Audiology, 32, 104–105.

    Google Scholar 

  • Baker, R. J., & Rosen, S. (2001). Evaluation of maximum likelihood threshold estimation with tone in noise masking. British Journal of Audiology, 35, 43–52.

    Article  PubMed  Google Scholar 

  • Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Fechner, G. T. (1889). Elemente der Psychophysik (2nd ed.). Leipzig: Breitkopf & Härtel.

    Google Scholar 

  • Florentine, M., Buus, S., & Geng, W. (2000). Toward a clinical procedure for narrowband gap detection: I. A psychophysical procedure. Audiology, 39, 161–167.

    Article  PubMed  Google Scholar 

  • García-Pérez, M. A., & Alcalá-Quintana, R. (2005). Sampling plans for fitting psychometric function. Spanish Journal of Psychology, 8, 256–289.

    Article  PubMed  Google Scholar 

  • Green, D. M. (1990). Stimulus selection in adaptive psychophysical procedures. Journal of the Acoustical Society of America, 87, 2662–2674. doi:10.1121/1.399058

    Article  PubMed  Google Scholar 

  • Green, D. M. (1993). A maximum-likelihood method for estimating thresholds in a yes-no task. Journal of the Acoustical Society of America, 93, 2096–2105. doi:10.1121/1.406696

    Article  Google Scholar 

  • Green, D. M. (1995). Maximum-likelihood procedures and the inattentive observer. Journal of the Acoustical Society of America, 97, 3749–3760. doi:10.1121/1.412390

    Article  PubMed  Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  • Gu, X., & Green, D. M. (1994). Further studies of a maximum likelihood yes-no procedure. Journal of the Acoustical Society of America, 96, 93–101. doi:10.1121/1.410378

    Article  PubMed  Google Scholar 

  • Hall, J. L. (1968). Maximum-likelihood sequential procedure for estimation of psychometric functions. Journal of the Acoustical Society of America, 44, 370.

    Article  Google Scholar 

  • Kaernbach, C. (1991). Simple adaptive testing with the weighted up-down method. Perception & Psychophysics, 49, 227–229.

    Article  Google Scholar 

  • Kidd, G. R., Watson, C. S., & Gygi, B. (2007). Individual differences in auditory abilities. Journal of the Acoustical Society of America, 122, 418–435.

    Article  PubMed  Google Scholar 

  • Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63, 1279–1292.

    Article  Google Scholar 

  • Leek, M. R., Dubno, J. R., He, N.-J., & Ahlstrom, J. B. (2000). Experience with a yes-no single-interval maximum-likelihood procedure. Journal of the Acoustical Society of America, 107, 2674–2684.

    Article  PubMed  Google Scholar 

  • Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America, 49, 467–477.

    Article  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.

    Article  PubMed  Google Scholar 

  • Pentland, A. (1980). Maximum likelihood estimation: The best PEST. Perception & Psychophysics, 28, 377–379.

    Article  Google Scholar 

  • Saberi, K., & Green, D. M. (1997). Evaluation of maximum-likelihood estimators in nonintensive auditory psychophysics. Perception & Psychophysics, 59, 867–876.

    Article  Google Scholar 

  • Schlauch, R. S., & Rose, R. M. (1990). Two-, three-, and four-interval forced-choice staircase procedures: Estimator bias and efficiency. Journal of the Acoustical Society of America, 88, 732–740. doi:10.1121/1.399776

    Article  PubMed  Google Scholar 

  • Simpson, W. A. (1989). The step method: A new adaptive psychophysical procedure. Perception & Psychophysics, 45, 572–576.

    Article  Google Scholar 

  • Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31, 137–149.

    Article  Google Scholar 

  • Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64, 153–181. doi:10.1037/h0046162

    Article  PubMed  Google Scholar 

  • Stevens, S. S., & Galanter, E. H. (1957). Ratio scales and category scales for a dozen perceptual continua. Journal of Experimental Psychology, 54, 377–411. doi:10.1037/h0043680

    Article  PubMed  Google Scholar 

  • Taylor, M. M., & Creelman, C. D. (1967). PEST: Efficient estimates on probability functions. Journal of the Acoustical Society of America, 41, 782–787.

    Article  Google Scholar 

  • Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35, 2503–2522. doi:10.1016/0042-6989%2895%2900016-S

    Article  PubMed  Google Scholar 

  • von Bekesy, G. (1947). A new audiometer. Acta Otolaryngology, 35, 411–422.

    Article  Google Scholar 

  • Watson, A. B., & Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric method. Perception & Psychophysics, 33, 113–120.

    Article  Google Scholar 

  • Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63, 1293–1313.

    Article  Google Scholar 

  • Wright, B. A., Lombardino, L. J., King, W. M., Puranik, C. S., Leonard, L. M., & Merzenich, M. M. (1997). Deficits in auditory temporal and spectral resolution in language-impaired children. Nature, 387, 176–178. doi:10.1038/387176a0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Grassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassi, M., Soranzo, A. MLP: A MATLAB toolbox for rapid and reliable auditory threshold estimation. Behavior Research Methods 41, 20–28 (2009). https://doi.org/10.3758/BRM.41.1.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BRM.41.1.20

Keywords

Navigation