
Psychonomic Bulletin & Review
/995,2 (/), 83-/04

On the origin of personal causal theories

MICHAEL E. YOUNG
University ojMinnesota, Minneapolis, Minnesota

Detecting the causal relations among environmental events is an important facet of learning. Cer
tain variables have been identified which influence both human causal attribution and animal learn
ing: temporal priority, temporal and spatial contiguity, covariation and contingency, and prior expe
rience, Recent research has continued to find distinct commonalities between the influence these
variables have in the two domains, supporting a neo-Humean analysis ofthe origins of personal causal
theories. The cues to causality determine which event relationships will be judged as causal; personal
causal theories emerge as a result of these judgments and in turn affect future attributions. An
examination of animal learning research motivates further extensions of the analogy. Researchers
are encouraged to study real-time causal attributions, to study additional methodological analogies
to conditioning paradigms, and to develop rich learning accounts of the acquisition of causal
theories.

It has been noted on many occasions that the concept
ofcausality underlies much ofhuman cognition and rep
resents one of the major factors used in forward and
backward inference. In social realms, inferential skill al
lows us to predict the behavior ofothers and to determine
why they behave as they do. In science, we are engaged
in an enterprise in which we seek to determine the causal
relationships among observables, such as lesion loca
tions and their behavioral effects, neural network archi
tectures and their performance, and biological processes
and cancer. In everyday life we strive to discover causes
of events (Why is there excessive paint peeling on my
house? Why is my child crying?) and to predict the ef
fects of actions (Will she call me after what I said last
night? What if I take the job?).

Causal attribution affords two primary advantages:
prediction and control. If an organism can discover the
causal nature ofevents, it can predict what events will fol
low others, and thus it will be able to prepare for the ar
rival of events that are important to its survival, its
enjoyment, and so forth. Control over events can be
established if the causing event is one that the organism
can produce or prevent. This dichotomy, prediction and
control, is captured in the traditional animal learning lit
erature by the processes of classical conditioning and
instrumental training. The parallels between causal at
tribution and animal learning are extensive (Killeen, 1981;
Mackintosh, 1977; Shanks & Dickinson, 1987; Wasser
man, 1990a).
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The work of Shanks and Dickinson (1987) and Was
serman (1990b) is the basis of a significant trend in the
understanding of causal attributions from an animal
learning perspective (see, e.g., Baker, Mercier, Vallee
Tourangeau, Frank, & Pan, 1993; Chapman, 1991; Chap
man & Robbins, 1990; Reed, 1992; Shanks, 1989; Van
Hamme, Kao, & Wasserman, 1993; Wasserman, Elek,
Chatlosh, & Baker, 1993; Young & DeBauche, 1993). In
this manuscript, I will reconsider this framework in
order to (1) determine how well recent research can be
integrated into it, (2) address common criticisms of the
approach, and (3) enlarge its boundaries by considering
the validity of less known aspects of animal learning
and their possible parallels in causality.

Recent reviews of the literature have focused on the
contingency aspect ofcausality. Cheng (1993) compared
the role ofcontingency with the role ofprior knowledge.
Allan (1993) surveyed the relative explanatory power of
rule-based models and associative models ofhuman con
tingency judgment. Shanks (1993b) presented a very de
tailed examination of the strengths and weaknesses ofa
relative contiguity model, of rule-based models, and of
associative models as mechanisms for human instrumen
tal learning. While I will discuss the relative role ofcon
tingency information as a cue to causality, my principal
goal is to explore the limits ofthe animal learning anal
ogy by considering a wider range ofconditioning data and
theories than that considered in these earlier reviews.

This exploration of causality centers on the origins of
our personal causal theories. We learn about causal re
lationships by directly observing them in operation or by
being informed about them. The former are personal
theories, whereas the latter are public theories. I do not
accept that humans are capable of viewing causality di
rectly (Harre & Madden, 1975), but rather that causal re
lationships in the environment are learned about as a re
sult of the interaction of two processes, one data driven
and the other theory driven (cf. Nisbett & Ross, 1980).

Copyright 1995 Psychonomic Society, Inc.
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Personal causal theories are acquired (data driven),
and as these theories develop, they influence future per
ceptions via top-down processes (theory driven). In con
trast, public theories are learned about via the process of
cultural transmission. Some of these public theories are
the result of the promulgation of a personal causal the
ory, and others are the result ofanalytical processes (Fig
ure 1). The origin ofpersonal theories thus has a signif
icant impact on our causal knowledge; personal theories
influence future attributions, and they can become pub
lic theories.

I will accept the basic tenets of a Humean view of
causality as a working hypothesis: Causality is a psycho
logical construct, a term that is used to describe a par
ticular class of event interrelationships. Many environ
mental cues are important to data-driven attributions,
with Hume's "cues-to-causality" representing one po
tentially important set. As data are gathered about event
interrelationships, a generalization of these data can
emerge in the form of a theory. This theory can then be
applied to make predictions in novel situations to the de
gree that these situations are similar to the ones that un
derlie the theory. Prior knowledge in the form of these
data-driven theories inevitably affects the integration of

logical analyses

can be used
to form

are the
basis of

Figure 1. The relationship between private and public causal the
ories, and the factors that influence their development. Elements in
bold are the focus of this paper.

new perceptions into the current body of causal knowl
edge. Few readers should find much difficulty accepting
such a proposal. Since the focus is on the origins of the
ories ofcausation, it is necessary to determine which data
drive attributions. Causality as a data-driven psycholog
ical construct should not imply that theories play no
role. In fact, I will demonstrate that focusing on the role
of learning in causal attributions requires that prior ex
perience be considered.

Because I am taking the Humean stance, I must ex
amine some basic tenets of Hume's theory and the evi
dence for and against it. I will adopt the term neo-Humean
to describe the notions of the modem psychologist or
philosopher who has indicated acceptance of Hume's
framework but has amended it in various ways. This will
help to defuse some of the most common objections
raised against the specifics of Hume's 1739 Treatise, an
endeavor that risks throwing the baby out with the bath
water. It is important to remember throughout this dis
cussion that I am considering the causal attributions that
are readily made in everyday life (common notion
causality). This is not an attempt to get at metaphysical
or scientific causality.

Conditioning and Causal Attribution
Shanks and Dickinson (1987), Killeen (198I), and Was

serman (I 990b) expounded upon a notion that has been
informally acknowledged by learning theorists for dec
ades: when an animal is being conditioned, it is learning
the causal relations among environmental and internal
events. They argue that causal attribution may be reduced
to basic learning principles. The conditioning account of
causal attribution will also be referred to here as an as
sociative account. This does not suggest a definition of
associationism that reduces learning to simple input
output relations, but a definition that stresses the relation
to animal learning. In contemporary, real-time learning
theories (Desmond & Moore, 1988; Grossberg & Schma
juk, 1989; Young, 1992), stimuli are processed within the
context ofongoing neural activity that is itself a product
of prior experience. Responding is thus a function of
current stimuli and the mental state of the organism.

When an animal is undergoing classical or Pavlovian
conditioning, its hypothetical goal is to predict the oc
currence of the unconditioned stimulus (US), such as
food or shock. The experimenter provides cues to assist
in this predictive task by including conditioned stimuli
(CSs). Prediction ofa US is frequently beneficial to the
animal and may permit it to prepare for its arrival. For
example, if the US is an air puff to the eye, the animal
can blink to protect the eye. In an analogous manner, in
strumental training permits the subject to control the
delivery of important events. In both cases, causal attri
bution can be ascribed to an animal. For classical condi
tioning, the CS is a candidate cause and the US is the ef
fect; for instrumental training, the response is the cause
and the outcome is the effect.

A difficult question arises when we posit causal pro
cessing in a lower species: How do we determine whether
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Neo-Humean Cue to Causality Description

Tablet
Defmition of the Modem Neo-Humean Cues

conditioning analogy, I will systematically progress
through a set of neo- Humean cues (see Table 1). Illus
trative examples of the human use of these cues are fol
lowed by discussions of the status of each cue in animal
learning. The manuscript closes with a proposal for a re
search strategy for increasing our understanding ofcausal
ity by expanding the limits of the learning framework.

Temporal Contiguity
By definition, contiguity in time requires that two

events, a cause and effect, occur one after the other with
no delay. Hence, one aspect of a causal relation is that a
causal event be immediately followed by its effect. How
ever, there is a lack ofclarity in the definition ofrequired
temporal relations. Hume's eighth principle suggested
that a cause should not be operative "for any time" or it
will no longer be considered a sufficient cause (events or
objects that are operative for longer periods but satisfy
other requirements are called "conditions"). In recent re
search, the requirement of absolute temporal contiguity
(effect must immediately follow) has been relaxed. It is
common to manipulate the delay between cause and ef
fect as an independent variable, examining the effect that
various degrees of contiguity have on causal judgment.

As a general principle, when the cause and effect are
unfamiliar and minimally similar to other known caus
ally related events, the closer in time the two events are,
the more likely the events will be judged as causally re
lated, assuming adequate support from the other cues to
causality (Schlottmann & Shanks, 1992; Shanks, Pear
son, & Dickinson, 1989; Wasserman & Neunaber, 1986).
One method of bridging this time gap, thus increasing
the likelihood of judging a temporally distant event as
the cause, is to fill the gap with other events that are tem
porally contiguous with the preceding and following
events (see Einhorn & Hogarth, 1986; Gruber, Fink, &
Damm, 1957; Reed, 1992; Young & DeBauche, 1993).
This establishes a causal chain of events, each of which
is a cause of the next event in the chain. The first event

An effect should quickly follow its
causes.
Causes should be in close spatial
proximity to their effects.

A cause always precedes its effects.

The occurrence of an effect should
depend on the occurrence of its
causes.

There are many candidate causes
for an effect: these will frequently
not operate independently of one
another.

A causal attribution will depend not
only on bottom-up data but also on
an organism's expectations, given
its prior experience.

Spatial

Prior experience

Contiguity
Temporal

Cue interaction/multiple
causality

Temporal priority
Covariation/contingency

the subject judges two events as causally related? Con
ditioned responding in classical conditioning only tells
us that the animal is able to predict the occurrence of the
US. Prediction does not imply causation. Arguments like
these focus solely on the temporal invariance of causal
ity and ignore aspects such as spatial contiguity and prior
knowledge.

During instrumental or Thorndikian training, the sub
ject can be said to have learned to produce the outcome,
which is not much different from saying that it has learned
to cause the outcome. However, some researchers (e.g.,
Guthrie, 1952, and Hull, 1943, as cited in Rescorla, 1987)
have argued that the chances of the desired response's
occurring increases not because of knowledge of the
outcome that will follow, but because the connection be
tween environmental stimuli and the response behavior
has been strengthened (i.e., the S-R association of the
S[timulus]-R[esponse]-O[utcome] sequence has been
increased, not the R-O association). Others (e.g.,
Rescorla & Solomon, 1967; Trapold & Overmier, 1972)
have suggested that the outcome is learned about, but
through being associated with environmental and dis
criminative stimuli (so both S-R and S-O associations
are formed). Rescorla (1987) has recently proposed that
three associations are acquired during instrumental
training: a weak S-R, an R-D, and an S-(R-D). The lat
ter signifies that the animal has learned that "when stim
ulus S is present, making response R will result in the
delivery of outcome 0." Only when R-O associations
are being formed can we suggest that an animal subject
is attributing the presentation of the outcome to its own
behavior.

Killeen (1981; Killeen & Smith, 1984) took a more
direct approach: he asked his subjects to tell him whether
they caused an event or not. Pigeons were presented with
three keylights and a food hopper. A peck on the center
keylight occasionally turned it off, and it was sometimes
turned off independently ofa keypeck. When the center
key went dark, two side keys were lit, one corresponding
to "I caused it" and the other corresponding to "the com
puter caused it." The pigeon was trained to peck the "I
caused it" key when the darkening of the center key was
caused by their peck and to peck the "computer caused
it" key when darkening was independent of their behav
ior; a correct response resulted in food delivery. Pigeons
mastered the task within several days and reached 80%
to 90% accuracy within a couple ofweeks. It may still be
argued that the pigeons developed some behavioral
strategies that allowed them to solve this task without
"inferring causality." However, human perception of
causality may invoke the same strategies.

Thus far, I have presented no definitive evidence (nor
will I) that an animal's behavior is a demonstration of
causal attribution, despite the similar problems being
faced by animals being conditioned and humans learn
ing about their environment. As is common in science,
further evidence bearing on this issue must be exam
ined to help determine the weight of support for this hy
pothesis. In the following examination ofthe attribution-
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Figure 2. Delay and trace conditionbtg paradigms in classical con
ditionbtg. The interstimulus interval (lSI) is identical, whereas the
trace interval for delay conditionbtg is zero.

A decrease in the relative importance ofcontiguity to
animal learning came about in the wake ofan early study
by Rescorla (1967); his paper instead stressed the im
portance of a contingent relationship between a CS and
US. If two animals receive equal numbers ofcontiguous
pairings of a CS and US but the second animal also re
ceives a large number of noncontiguous pairings, the
first animal demonstrates much better acquisition of a
conditioned response to the CS: the CS has greater pre
dictive power for the first subject. Rescorla and Wagner
(1972) tempered this emphasis on contingency by pre
senting a model that relied solely on contiguity (includ
ing contiguity ofa US with contextual stimuli other than
the CSs) which accounted for the findings of Rescorla
(1967). However, the damage to contiguity had been
done, and most modem animal learning texts and ex
periments relegate contiguity to a necessary but not suf
ficient variable for the establishment ofa conditioned re
sponse. Its necessity is important, in that a CS must
typically precede the US by a relatively short period of
time for learning to take place (see, however, Garcia &
Koelling, 1966); but in the absence ofa contingent rela
tionship, temporal contiguity has little or no impact on
acquisition.

This is in accord with the role ofcontiguity in human
causal attribution. It was noted that decreases in conti
guity between the cause and effect result in correspond
ing decreases in the judgment of a causal relationship
between the two events (Reed, 1992; Schlottmann &
Shanks, 1992; Shanks et aI., 1989; Siegler & Liebert,
1974; Wasserman & Neunaber, 1986). This generally
holds true in conditioning as well. Cause-effect intervals
that are too short can also result in weaker performance.
Smith, Coleman, and Gormezano (1969) presented one
ofthe most commonly cited studies demonstrating this,
in which they used a rabbit eye blink conditioning prepa
ration: acquisition of the CR was much better with a
200-msec CS-US delay than with a 50- or 100-msec
delay.However, I am uncomfortable with making a strong
argument for a causahty conditioning homology here,
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in the chain is the instigator and is judged as the ultimate
cause.

Temporal contiguity between cause and effect is im
portant for young children's causal judgments. Siegler
and Liebert (1974) found that children of 5-9 years of
age selected a contiguous event as cause more often than
an event that preceded the effect by 5 sec. Mendelson
and Shultz (1976) reached a similar conclusion using 4
to 8-year-olds. In both of these studies, temporal conti
guity assumed greater importance than covariation for
the youngest ofchildren. This is surprising, given the as
sumed superiority of covariation in much of the litera
ture. Any conclusion regarding the observed superiority
is tempered by the observation that the importance ofthe
cue was situation dependent; the Mendelson and Shultz
children chose a cause with greater covariation and
lower contiguity when there was an appropriate rationale
for the delay (in this case, the cause, a moving ball, pur
portedly had to travel some distance before reaching the
effect, a bell). This "rationale" functions as an event
with temporal extent which bridges the delay.

Previous work has demonstrated that too short of a
period of time between the cause and effect can lower
causal judgments just as can too long of a period can
(Michotte, 1963; Schlottmann & Shanks, 1992). The op
timal temporal delays vary according to the nature ofthe
cause and the effect. When judging which of various
events has caused gastric upset, a subject is more likely
to choose food ingestion that occurred some time ago as
opposed to ingestion that immediately preceded the ef
fect. This behavior by humans is usually explained by
appeal to knowledge of the time it takes for a selected
cause to bring about the effect. This knowledge may
have been acquired from prior experience or cultural
transmission.

The effect oftemporal contiguity on animals. During
the early years of the study of animal learning, it was
generally accepted that temporal contiguity between two
events (the CS and US, or response and reinforcer) was
the critical factor in learning. Pavlov (1927, p. 89) noted
that at longer CS-US intervals, the conditioned response
was "difficult if not impossible" to establish. Grice's
(1948) study of the effect of delay of reinforcement in
instrumental training established further that contiguity
was a variable of import for animal learning.

An early difficulty with the contiguity requirement in
classical conditioning centered on data demonstrating
trace conditioning. In delay conditioning, the CS onset
precedes the US onset (thus providing predictive value)
and the CS is still present at US onset (see Figure 2). In
trace conditioning, the CS offset precedes US onset,
thus creating a trace interval between the two events
(hence no direct temporal contiguity). Pavlov (1927) and
others appealed to the presence of a mental trace of the
CS that extends beyond its actual presence in the envi
ronment, and it is this trace which is contiguous with the
onset of the US. This idea is prominent in many con
temporary theories (see, e.g., Desmond & Moore, 1988;
Durlach, 1989; Sutton & Barto, 1981).

CS
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given the difference in time scales. Human adults will
frequently rely on their previously established causal
theories to eliminate as causes those that precede the ef
fect by too short a period oftime. To the extent that these
theories are rooted in an individual's personal experi
ence, we may effectively argue that these processes are
similar to those of a nonhuman subject. Animals do en
code the expected temporal interval between CS onset/
offset and US onset (see, e.g., Kehoe, Horne, Macrae, &
Horne, 1993; Kehoe & Napier, 1991).

Sufficiencyofcontiguity. The Rescorla-Wagner model
(Rescorla & Wagner, 1972) provides a mechanism by
which contingency-like performance can be exhibited
by a system relying solely on contiguity. The comparator
theories (Gibbon & Balsam, 1981; Miller & Schactman,
1985) also suggest that CS-US contiguity will produce
learning regardless of the presence ofother predictors of
the US; the reason that there is an apparent reliance on
contingency is a function of performance, not learning.
The Rescorla- Wagner model and Gibbon and Balsam's
(1981) comparator theory are both formulated with
enough precision to warrant closer examination. The
Rescorla- Wagner model has also been used to make pre
dictions in human causality judgment (e.g., Baker et aI.,
1993; Shanks, 1989; Shanks & Dickinson, 1987),whereas
comparator theory has not.

Rescorla and Wagner (1972) presented a framework
in which a stimulus, the US, can support a limited amount
of associative strength, A. This quantity represents the
importance of predicting a particular US. The degree to
which a US is not being predicted-that is, the degree to
which it is surprising (Kamin, 1969)-represents the
amount of learning that is still necessary to reduce the
surprisingness of the US. This is captured in the model
as the difference in It and Vr , where Vr is the sum of the
associative strengths between all CSs present on a trial
and the US-that is, the degree to which it is currently
being predicted. Learning during a trial is a function of
this difference:

(1)

where ax is a parameter representing the salience of an
individual CS (X in this equation) and f3 a learning rate
particular to the US; It = 0 when the US is absent. The
associative strength between every CS present on a
given trial and the US is modified by using Equation 1.
The Rescorla- Wagner model accounts for contingency
like learning by treating the context as just another stim
ulus. When a US appears in the absence ofa CS, thus de
creasing contingency, the context gains associative
strength. When the US appears in the presence of CSs,
the associative values of the context and the CSs will
sum to determine Vr . If the context acquires sufficient
strength, it will interfere with the acquisition ofstrength
by CSs during trials in which they occur, because the
context is omnipresent. Thus, according to the Rescorla
Wagner model, a decrease in "contingency" is accom
panied by an increase in context-US associative strength
through a contiguity mechanism, ultimately resulting in
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a decrease in the strength of the relationship between
CSs and the US.

The Rescorla- Wagner model has been relatively suc
cessful at predicting the ordinal strength of causes and
effects in human causal attribution (see, e.g., Baker
et aI., 1993; Shanks, 1989; Shanks & Dickinson, 1987).
It provides more than simply asymptotic formulas, it is
a reasonable description of the acquisition of causality
judgments (Shanks & Dickinson, 1987), and it success
fully predicts how CSs or causal candidates interact
when more than one are present. In general, its ordinal
predictions of the effect of various contingency sched
ules are correct, but there are some exceptions (see
Shanks & Dickinson, 1987).

The comparator theories (Gibbon & Balsam, 1981;
Miller & Schactman, 1985) represent an alternative class
of contiguity models. Comparator theories suggest that
subjects learn about every CS-US relation that they ex
perience. Performance, however, is not a direct function
oflearning. Incontrast with the Rescorla-Wagner model,
CS-US contiguity is posited to produce learning re
gardless of the presence of other predictors of the US;
but unless the CS is presented under conditions favor
able for behavioral expression of that learning, knowl
edge of the CS-US relation will not be observed. Con
ditioned performance is determined by the associative
value ofthe CS relative to the value ofits context; hence
it is the result ofa comparison. When the value ofthe CS
is greater than the value ofthe context, the CS will elicit
a conditioned response; when it is lower in value, it will
inhibit a conditioned response.

InGibbon and Balsam's (1981) scalar expectancy the
ory (SET), the context is literally the experimental con
text; Miller and Schactman (1985) suggest that context
may also be another punctate stimulus. There are other
differences as well; Durlach (1989) does a nice job of
comparing their relative predictions as well as predic
tions ofthe Rescorla-Wagner model. The principle differ
ence between comparator theories and many associative
theories is a difference in the relation between learning
and performance. Each class of theories accounts for
some data which the other does not. SET was originally
developed to address a shortcoming in the Rescorla
Wagner model with respect to the parceling ofan exper
imental session into discrete trials. Given the effect that
the intertrial interval (IT!) has on learning, Gibbon and
Balsam (1981) suggested that the associative connec
tion between a CS and US is a function of the time be
tween USs (the cycle duration, or C) and the length of
time that a CS is present during a cycle (T). Learning is
a function of the ratio CIT; for example, as the cycle du
ration increases, learning rate increases (the classic ad
vantage of spaced over massed trials).

Research in causal attribution has addressed in a very
limited way the issue of learning a limited set of rela
tions versus learning all of them but exhibiting only
some. In certain cases this limitation is the result of an
assumption that causal relations are not learned (Harre
& Madden, 1975), but it is generally the result of the lack
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of a methodology to resolve the issue. Researchers ad
vocating an associative view of causality (Chapman &
Robbins, 1990; Shanks & Dickinson, 1987; Wasserman,
I990b) commonly assume that only some relations are
learned, whereas those advocating a more normative,
contingency-based view (Cheng & Novick, 1992; Shak
lee & Elek, 1988; Waldmann & Holyoak, 1992) suggest
that most relations are encoded but only some are ex
hibited. Cheng and Novick (1992) proposed a view of
causal attribution which bears a resemblance to that ofthe
comparator theories. The production ofa causal inference
is dependent on the context in which the inference is re
quired (they call this context afocal set). Unfortunately
the choice of a focal set is relatively underdetermined,
making it difficult to test the theory against alternative
formulations (Shanks, 1993a).

The sufficiency of contiguity has been questioned in
the causality literature as it has been in animal learning.
When causal mechanisms are known, they facilitate a
causal judgment in the absence of strict contiguity (see,
e.g., Shultz & Kestenbaum, 1985). Einhorn and Hogarth
(1986) apparently de-emphasized contiguity by exclud
ing it from their theoretical equation of attribution.
However, it is included as part of their requirement of a
causal link and is very important in the construction of
causal chains. Recall that filling a gap was shown to be
important in alleviating the detrimental impact ofa lack
of contiguity between two events (Gruber et aI., 1957;
Reed, 1992). This work was largely motivated by the ef
fect that this manipulation has on conditioning. Filling a
trace interval is widely recognized as significantly alle
viating the decrease in the rate of acquisition in trace
conditioning as compared to delay conditioning (Bolles,
Collier, Bouton, & Marlin, 1978; Egger & Miller, 1962;
Kaplan & Hearst, 1982; Kehoe, Gibbs, Garcia, & Gor
mezano, 1979; Rescorla, 1982). Serial conditioning lever
ages this facilitatory effect: two or more sequential CSs
are co-contiguous, with the last CS immediately preced
ing the US. For example,A~B~C represents the initial
occurrence of stimulus A, followed by B and finally by
C (the US). The presence ofB fills the temporal gap be
tween A and C and facilitates the learning of the A~C
relationship. Analogous results have been found in in
strumental training of animals (Reed & Reilly, 1990).

Rescorla (1982) sought to determine how an inter
vening stimulus improves the acquisition of the rela
tionship during classical conditioning. In Experiment 1,
he used a between-subjects design involving four differ
ent manipulations of the trace interval. All, none, the
first half, or the second half of a 10-sec trace interval
was filled with another stimulus. As expected, filling the
interval completely facilitated responding to the distant
CS. Filling the first halfwas beneficial early in training,
whereas filling the second half had only a small effect.
Experiments 3 and 4 largely ruled out second-order con
ditioning as an explanation of these results whereby the
intervening stimulus (IS) functioned as a reinforcer of
the CS through conditioned reinforcement properties.
Stimulus generalization was also eliminated as an ex-

planation via extinction of the IS following training
enhanced responding to the CS was still observed. Res
corla's conclusion was that the IS facilitated the associ
ation between the CS and the US, appealing to the rather
vague notion of a Gestaltist perceptual continuity.

An alternative account ofthe facilitatory effect offill
ing the gap is that doing so differentiates the IT! from the
trace interval (Mowrer & Lamoreaux, 1951, as cited in
Kaplan & Hearst, 1982). This explanation is bolstered
by results showing that filling the IT! rather than the
trace interval also facilitates CS-US association (Kaplan
& Hearst, 1982). From a causality perspective, this sug
gests that the absence ofan event can function as a cause.
One aspect of the causal explanation ofserial condition
ing is that the intervening stimulus is functioning as part
of a causal chain (Young & DeBauche, 1993). Hence,
the relationship between the first event, the CS, and the
second, the IS, is important.

Kaplan and Hearst (1982, Experiment 4) manipulated
the temporal relationship between the event filling the
IT!, a tone, and a keylight CS. They describe their
groups in terms of the degree of overlap between the
tone and CS, but I will describe them in terms of the re
lationship between the CS and IS (absence oftone) to fa
cilitate the causal chain perspective on this research. The
relationship among stimuli in the four experimental
groups is illustrated in Figure 3. They observed good re
sponding to the CS in the complete overlap group, fair
in the partial overlap group, and little or no responding
in the no-overlap and trace compound groups. Focusing
on the CS-IS relationship, we have delay conditioning
for the complete overlap and partial overlap groups, and
simultaneous conditioning for the no-overlap group.
Therefore, it should not be surprising that the no-overlap
group results in poor CS-US conditioning; the CS-IS
relationship will be very weak, preventing the IS from
playing a role in the CS-IS-US causal chain. The dis
crimination hypothesis offered by Mowrer and Lamore-



aux cannot account for these data. The analysis I have
offered is analogous to that ofKaplan and Hearst (1982),
who note further that the Rescorla-Wagner model can be
extended to encapsulate these data.

Spatial Contiguity
Spatial contiguity necessitates a treatment analogous

to that oftemporal contiguity. Taking Hume literally, two
causally related objects must be in spatial contact with
each other, although we do find action at a distance (e.g.,
with magnetism). This dimension has also been investi
gated empirically (Gruber et aI., 1957; Leslie & Keeble,
1987; Michotte, 1963; Schlottmann & Shanks, 1992),
and the results suggest that spatial contiguity is a neces
sity for older children and adults, whereas younger chil
dren's use of the cue is inconsistent. A method parallel
to that used for bridging temporal gaps is applicable to
bridging spatial gaps (Gruber et aI., 1957). The presence
of a third object (or series of objects) that is spatially
contiguous with both a cause and its effect connects the
two. It is well known by billiard players that it is possi
ble to cause a ball to move by striking another that is cur
rently in contact with it. If the situation is just right, the
intermediate ball will not move. Bridging spatial gaps is
also evidenced when a person uses a long pole to push a
box. In the absence of the pole, it would be unlikely for
an observer to attribute the movement of the box to the
person standing a few feet away.

At this point I must be careful to make a distinction
between the roles I suggest for such bridgers of tempo
ral and spatial gaps and the role suggested by the "gen
erative theorists" (e.g., Shultz, 1982; White, 1989). I
argue that these bridges facilitate attribution via basic
learning mechanisms rooted in conditioning. This is sug
gested by the facilitatory role played by such bridges in
nonhuman species. For the generative theorists, the most
important cue to causality is knowledge of the mecha
nism by which the effect can be generated by a cause;
temporal and spatial bridges serve as mediums for en
ergy transfer. One can argue that at a conscious level,
adults do at times rely on just such a theoretical argu
ment for their causal judgments, but I suggest that this
use ofbridges occurs only after a personal causal theory
has emerged from prior experiences. Adults frequently
attribute causality and only later create a verbal expla
nation to support their (already made) conclusion, and
young children have little, ifany, concept ofenergy trans
fer at ages when they are inferring causality.

In classical conditioning experiments, the CS and US
locations have usually been relatively close to one another
given the confines of the typical apparatus. The same is
true in instrumental training wherein the stimulus and
response locations are kept close to the site ofreinforce
ment. When general spatial contiguity is weakened, con
ditioning can become very difficult (see, e.g., Breland &
Breland, 1961; Killeen, 1981; Rescorla & Cunningham,
1979; Testa, 1975). Rescorla and Cunningham (1979) per-
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formed one of the very few animal learning studies ad
dressing the relative importance of spatial contiguity to
conditioning. Spatial contiguity was observed to facil
itate the development of conditioned responding when
the temporal relation between two events was held con
stant. However, the power of spatial contiguity as a cue
is limited to a facilitatory role. Ifwe observe changes in
performance due to spatial contiguity in the absence of
temporal contiguity, it is more natural to appeal to pro
cesses such as stimulus generalization or pseudocondi
tioning rather than associative learning. Temporal and
spatial contiguity are not treated analogously in theories
of conditioning.

Shultz and Kestenbaum (1985) suggested that spatial
contiguity was more fundamental than temporal conti
guity and was second only to temporal priority. The im
portance placed on spatial contiguity as a cue to causal
ity in human research is not paralleled in the animal
literature. The few studies that have been done relegate
it to a secondary role. In order to rectify these positions,
it is necessary to examine the tasks being used in the two
types of research. In the human causal attribution liter
ature, spatial contiguity is typically manipulated in
launching tasks and other collision tasks (e.g., using a
stick to push an object, or a ball striking an unseen ob
ject causing a Jack-in-the-box to pop up). In contrast,
Testa (1975) and Rescorla and Cunningham (1979) used
procedures with the CS and US in similar locations.
These two classes of tasks differ with respect to the
specificity of prior experience that the subjects can be
said to have. Collisions involving one object striking or
pushing another are very common in the experience of
human (and probably animal) subjects. Although even
more common, similarity in location between a cause
and effect is more abstract than these specific collision
experiences; collisions may be more likely to retrieve in
formation on other collisions, owing to cue specificity.

Temporal Priority
Hume's second rule stated that the cause must be prior

to the effect. There has been considerable debate in the
developmental literature over the necessity of priority.
Early research (e.g., Kuhn & Phelps, 1976; Shultz & Men
delson, 1975) suggested that young children do not rely
on temporal priority as a causal cue. However, there was
a source of difficulty for children in these studies: they
were required to verbalize their knowledge (Bullock,
1984). It is possible that a child may understand the
causal relations observed but have difficulty in correctly
verbalizing this knowledge. Bullock and Gelman (1979)
opted for a nonverbal task: to indicate their inference,
subjects simply pointed at one of two alternative causes
of an event. The majority of 3-year-olds (an average of
13 of 16) chose the temporally prior event, and almost
all of the 4- and 5-year-olds chose this event. When
asked to provide verbal explanations during the experi
ment, only 12% of 3-year-olds used an order argument,
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whereas 60% of 5-year-olds did. This supports their as
sumption that verbalization is a poor assessment of the
causal knowledge of very young children.

Although it is recognized by young children as a cue
to causality, when contrasted with other causal cues,
temporal priority may not assume a high status until later
in childhood (Shultz, Altmann, & Asselin, 1986; Sophian
& Huber, 1984). Sophian and Huber found that 3-year
olds did not emphasize temporal priority in the presence
of other cues when the cause and effect were separated
by 200 msec. In contrast, over 50% of5-year-olds chose
the temporally prior event despite contrary indications
involving other causal information. Shultz et al. demon
strated that young children (3-4 years) relied on their
prior experience rather than on temporal priority in de
ciding which oftwo objects was the cause and which the
effect. Older children (7-8 years and 11-12 years) were
significantly better at using temporal priority as a cue.

Temporal priority has been studied in animal learning
by contrasting the learning ofcues, or CSs, that precede
the US with those that co-occur with or follow the US.
It is commonly accepted that forward conditioning is ef
fective (the CS precedes the US), whereas backward (the
CS follows the US) and simultaneous conditioning are
generally ineffective (see, e.g., Smith et aI., 1969). Mack
intosh (1974) concluded that "there is little reason to ac
cept the reality of backward conditioning" (p. 60). As a
result, it has been assumed that the CS must provide pre
dictive value for its presence to be noted and remem
bered by the subject. In studies of learning following
backward conditioning, it is generally found that a CS
which follows the US becomes a conditioned inhibitor,
ostensibly because it signals the termination of the US
(e.g., Kamin, 1963, and Moscovitch & LoLordo, 1968,
both as cited in Mackintosh, 1974).

Although this view is still prevalent, Spetch, Wilkie,
and Pinel (1981) surveyed the empirical research and
found good evidence for backward excitatory condi
tioning. The conditions under which it is observed are
limited, however. Excitatory conditioning occurs after a
few initial pairings followed by conditioned inhibition as
training progresses. The excitatory phase is relatively
short and only appears to occur with aversive stimuli.
Wagner and Terry (1975) proposed that associations be
tween the CS and US depend on the simultaneous re
hearsal ofthe two events in short-term memory. This of
fers a method for rectifying the existence of backward
conditioning with contemporary models that emphasize
prediction: if the US trace persists beyond its termina
tion, then a CS that follows it can be used as a predictor
ofthis trace. The duration ofthe trace may be consider
ably longer when the US is aversive. To explain the tran
sition from excitatory to inhibitory conditioning, Wagner
and Terry proposed that US persistence is also dependent
on its surprisingness, which decreases during learning.

Recent evidence suggests a slightly different theoret
ical perspective on the necessity oftemporal priority dur
ing conditioning. Matzel, Held, and Miller (1988) used an
alternative method for determining whether backward

conditioning could result in the formation of backward
associations. In previous studies, experimenters measured
subject response to the CS that followed the US. In con
trast, Matzel et al. measured responding to a second CS
that predicted the CS that followed the US. In the proto
typical design, they first preconditioned a group of rats
to a 5-sec click immediately followed by a 5-sec tone.
The tone was subsequently paired in the next phase with
a 5-sec shock in a forward relationship (tone-eshock), a
backward relationship (shock-etone), or simultaneously.
As would be expected from previous research, the tone
only elicited a significant CR following forward condi
tioning. However, the preconditioned click elicited a CR
after all three types of training. They suggest that the rat
encoded the following relationships depending on the
training received: forward training, click-otone-eshock;
backward training, click/shock-stone; simultaneous train
ing, click-etone/shock. In all these cases, the click is more
predictive of the shock arrival than the tone is, and sub
sequently the click is capable of eliciting an avoidance
response. Their conclusion was that temporal relations
were encoded, including backward associations, but that
this information was only utilized when it was of func
tional, predictive value.

The work of Matzel et al. (1988) suggests that a con
ditioning account does not preclude learning of back
ward associations. The observer can encode the tempo
ral relations among environmental events and utilize this
information in either a forward or a backward fashion.
More generally, comparator theories (Gibbon & Balsam,
1981; Miller &Schactman, 1985) adopt the position that
all CS-US relations are learned by a subject, but that
only a subset ofthose are expressed as befits a given sit
uation. This suggests that temporal priority is a perfor
mance, not a learning, variable. Although it is unlikely
that all stimuli relations are learned, it is quite probable
that only some of what is learned is being observed in a
given experiment.

Temporal priority is thus important to animals as well
as humans in making a predictive judgment. However, it
is clear that the importance of this causal cue relative to
the others changes considerably during human develop
ment. It is difficult to assess the presence ofa similar trend
in nonhuman animals, since the experiential base oflab
oratory animals is relatively limited.

Covariation
A very large body ofresearch has been dedicated to the

understanding of human judgments of covariation and
contingency (e.g., Allan & Jenkins, 1983; Arkes & Hark
ness, 1983; Benedict, 1991; Chapman & Robbins, 1990;
Cheng & Novick, 1992; Dickinson, Shanks, & Evenden,
1984; Mendelson & Shultz, 1976; Shaklee & Tucker,
1980; Shultz & Mendelson, 1975; Ward & Jenkins, 1965;
Wasserman & Shaklee, 1984; Yates & Curley, 1986). This
extensive literature has been recently reviewed from var
ious perspectives (Allan, 1993; Cheng, 1993; Shanks,
1993b). A limited presentation of this history is neces
sary for framing the discussion, but I will orient the dis-



cussion around the issues that are important to an animal
learning analysis.

Hume has often been criticized for his insistence on
constant conjunction as the primary cue to causality. A
number of publications have been dedicated to debunk
ing the primacy of covariation (the modern embodiment
of "constant conjunction"). Koslowski, Okagaki, Lorenz,
and Umbach (1989) suggest that "covariation is not
enough" in the title of their article. Their data do support
this argument but simultaneously demonstrate the pri
mary importance of covariation for subjects in their ex
periments. Shultz (e.g., 1982)has long argued that knowl
edge of a possible mediating causal mechanism is more
important than covariation to children and adults, but his
own earlier work (e.g., Mendelson & Shultz, 1976; Shultz
& Mendelson, 1975) has illustrated the importance, if
not the primacy, ofcovariation. In a recent article, White
(1992) suggested that covariation does play an important
role in causal attribution but proposed that it is used only
when certain other types ofinformation are not available
and when the experimental question posed specifically
refers to multiple observations. Although I believe that
he is right in bringing to our attention the demand char
acteristics of the type of causality question asked, I dis
agree with his treatment of covariation as a secondary
principle.

This disagreement is based on a bias exemplified by
White, Shultz, and others. When it is observed that causal
attribution can take place after a single observation, they
argue that covariation is obviously not necessary. It is
frequently disregarded that no observation takes place in
a vacuum of experience. When a person observes one ob
ject striking another on a computer screen, he/she is nec
essarily going to implicitly process this experience in the
context of all of his/her prior experiences with object
collisions (which is quite extensive). It is arguably im
possible for adults to observe any succession of events
without tapping into similar events gleaned from their
past, even when these historical events are only superfi
cially similar.

A common response from the anti-Humeans is to cite
studies which suggest that causal perception of launch
ing event sequences occurs in infants as young as 24
weeks ofage (e.g., Leslie, 1986; Leslie & Keeble, 1987).
Assuming that these infants are demonstrating causal
perception by around 6 months, that still provides for
considerable experience with collision events-situa
tions in which one object moves another-which will in
fluence later attributions. White (1992) suggested that
this is unlikely, because infants "presumably possess
limited powers ofanalogical reasoning" (p. 163); but ap
plication of this prior experience requires nothing more
than generalization, a skill possessed by many non
human animals. This "analogizing" also should not pre
suppose the conscious processing that is suggested by
White's use ofthe term "reasoning." Importantly, the en
tire basis for this argument has been called into question
by an attempt to replicate Leslie's experiments. Oakes
and Cohen (1990) used real objects with 6- and 10-month-
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old infants; Leslie used a cinematic display of moving
red and green blocks. Oakes and Cohen's results suggest
that by 10 months, but not by 6 months, infants discrim
inate between causal and noncausal events. The younger
infants appeared to respond to individual object charac
teristics but not to the relationship between the objects.

Shultz (1982) has been one ofthe strongest advocates
of a generative view of common notion causality. He
considered covariation as a cue to causality secondary to
a knowledge of causal mechanism. Shultz's view does
not appear to be irreconcilable with a neo-Humean view,
however. First, it should be noted that Shultz found it
necessary to provide his young subjects with experience
of the mechanisms in action before testing. Shultz
(1982) stated that

it is, in short, unreasonable to suppose that experience
(whether in the form of explicit pretraining or probable
prior exposure) would not have influenced the present re
sults. Some experience with particular transmissions may
indeed be critical to correct application of the generative
transmission rule. The issue here concerns the manner in
which such experience is processed and interpreted by
the child. (p. 17)

One method of rectifying Shultz's generative trans
mission rule (which actually appears to consist of a
number of domain-specific rules) with a neo-Humean
emphasis on contingency is to propose that the neo
Humean cues account for the development of domain
specific rules or theories which later interact with the
cues (see Figure 1). Since in this account a theory is a
distillation ofa number ofprior observations, the theory
should play a major role in attributions, perhaps out
weighing the current "data." Thus there appears to be no
suitable objection to the argument put forth by Hume
that covariation is an important cue to causality, since it
also underlies the causal theories with which it later
competes.

Cheng (1993) presented a similar argument for the for
mation of causal mechanism knowledge through a data
driven process. She noted the importance ofcontingency
data for the grounding of causal laws. Her analysis cen
tered on contingency as a grounding principle, but there
are limits to the explanatory power of this cue, some of
which can be addressed through consideration of addi
tional cues. However, a persistent limitation of the neo
Humean framework is reflected in Figure 1 by the addi
tional effect ofpublic causal theories. An animal learning
perspective has no obvious explanatory power for learn
ing due to linguistic instruction. For example, Rosen
farb, Newland, Brannon, and Howey (1992) exposed
subjects to an action-outcome contingency and found
that their performance was a reflection of their verbal
knowledge, even when that knowledge was manipulated
by the experimenters. Although contingency cues do not
operate independently of other processes, they are still
central to the development of personal causal theories.

It should not be concluded that Hume had the last word
on the notion ofconstant conjunction. This is one cue to
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causality that has undergone considerable revision. Hume
used the term constant conjunction, but elsewhere in his
Treatise, he gave consideration to the notion of frequent
conjunction (Hume, 1739/1969). There are many condi
tions under which an effect may not follow its usual
cause, yet such observations do not seriously dampen our
causal judgments. When striking a match fails to light it,
we simply try again, not knowing what conditions may
have prevented its lighting the first time.

Suppes (1970, 1984) argues that not only are causal
relations apparently probabilistic to the human observer,
but the basic metaphysics are probabilistic. He argues
that Kant and Hume were products of their time: science
was dominated by Newtonian mechanics and the deter
ministic nature of events. Any relationship that was ap
parently probabilistic was judged so only because of a
lack ofknowledge ofall the factors impinging on a given
event's occurrence. Once all the factors were known,
which may be infinite, it would be theoretically possible
to predict the future occurrence ofany event. This notion
still carries great appeal today. Even if the universe may
be deterministic, pragmatism requires us to treat causal
relations as probabilistic. Attempts to understand the
complexity of everyday phenomena have given rise to
modern chaos theory. Researchers in chaos have ac
cepted that although there may be an underlying order,
this does not imply that events are predictable.

Temporal invariance as sufficient. I find it necessary
at this stage to digress in order to distinguish between a
causal relationship and "mere" temporal invariance. Ex
amples of the latter .are frequently cited to discount
a Humean perspective. It is adaptive to be able to predict
future events, but these predictions can be based on tem
poral invariances as well as causal relationships. For
example, when we observe someone taking a step, we
can judge with reasonable certainty that another step will
follow. Simply that we can confidently predict an event
does not imply that a causal relationship is necessarily
present.

Consider the prototypical example of night following
day (and vice versa). Here we have a temporal relation
ship that is invariant but is not described as causal: day
does not cause night. We must first note that the tempo
ral parameters in operation for day-night are much
longer than is represented in everyday causal judgments.
Days are long and thus even by Humean principles can
not be causes, since events lasting for "any time" cannot
be causes. However, appeal to the duration of these
events does not account for circumstances in which the
events are long but inferences are still made. For exam
ple, the orbit of the moon causes the tides, short days
cause deciduous trees to lose their leaves, and the oxy
gen in water causes metal to rust. These examples ap
parently discount one of Hume's principles. What dif
ferentiates the day-onight scenario from the moon-stide
and water-crust scenarios? It is the fact that day and night
are not distinct from one other: each represents segments
on a continuum of lumination.

Although events of great duration are candidates as
causes, it is likely that such attributions are not readily
made. These attributions are likely the result either of a
pseudoscientific method whereby conditions are care
fully observed to ensure that distant events remain prox
imal in an observer's analysis, or ofnoting the difference
between an observed situation and other similar situa
tions in the observer's experience. When an individual
sees rust on metal in a damp room, the unusual humid
ity level of the room suggests it as a candidate cause.
The study of attributions involving long events is infea
sible in the laboratory unless the events are verbally
summarized. It is thus difficult to establish or discount
the operation of Hume's eighth rule in common notion
causal attributions.

Consider next an invariant sequence which consists of
shorter duration events: one clap does not cause another.
If we could perform an experiment to test the contin
gency ofthe two events, we would conclude that they are
not causal, because there is no contingent relationship.
In making everyday judgments, we frequently do not have
the luxury of manipulating our environment to deter
mine contingency. So why are series ofevents like clap
ping or walking not perceived as causally interrelated?
When very similar events (one clap is similar to another)
occur at close, regular intervals, they may be perceived
as a unique gestalt event (H. 1.Hilton, personal commu
nication, February 23, 1993). Thus we describe a se
quence ofclaps as clapping, a sequence ofsteps as walk
ing, a sequence ofup and down head motions as nodding,
and a series of short, staccato sounds as tapping. By
treating the sequence as a gestalt event, we can deter
mine the cause ofthe event tapping and in turn treat it as
a potential cause-for example, of a headache.

Another oft-mentioned refutation of Hume's cues is
the two-clocks example (R. Giere, personal communi
cation, March 3, 1994). Two different clocks are sitting
next to each other (spatial contiguity), with one set to
run I sec slower than the other. If they both strike the
hour with a single chime, then every hour (covariation)
the chime of one will be followed I sec later by the
chime of the other (temporal priority and temporal con
tiguity). Hume's cues to causality are apparently satis
fied, but this is a temporal invariance which is not judged
as causal. However, given our prior knowledge about
clocks (see the next section on prior knowledge), our ex
tensive experience suggests that clocks do not cause other
clocks to chime. An observer without this experience
might very well judge the events as causal. In fact, we
could rig the experimeJlit so that the second clock echoed
the first clock's chime through an electronic sound de
tector, so that a person within our culture would erro
neously judge the events as noncausal.

Cultural rituals represent another collection of tem
porally invariant events which are not described as
causally interrelated. These examples carry little weight,
because most rituals either are not truly invariant be
cause they have lots of variations on a theme, or are not
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similar to other invariant sequences in the person's ex
perience, thus lacking evidence for a causal judgment.

Although I cannot pretend to have developed an ex
haustive list ofthe temporal invariances typically found in
our world, I have surveyed some that are commonly cited
as presenting difficulties for the Humean view. Temporal
invariances that involve long events (such as day and
night) will not naturally be perceived as being directly
causally related. When the events are of short duration,
and when they are similar and follow each other in rela
tively quick succession, the series of events is perceived
as a longer, unique event. As the durations of the compo
nent events lengthen and their similarity decreases, I pre
dict that causal attributions will become more common.
Other examples of invariant sequences (e.g., cultural rit
uals) either lack the unvarying relation typified by causal
chains ofevents or are unique, with no similar sequences
that are also experienced as invariant. Remember that
causal attribution is not a function of one cue to causality
or strictly of the current perceptual evidence. Evidence
for an attribution is taken from multiple cues and is influ
enced by prior experiences (in the form ofpersonal causal
theories) of these and similar sequences.

Covariation versus contingency. Covariation and con
tingency are often used interchangeably in the literature
on human judgment of event relationships. This is a
loose use of terminology, one that I have adopted in the
discussion so far. It is important to note, however, that
covariation (as measured by the various correlation sta
tistics) does not imply a direction of dependence; there
is an assumed two-way relationship between the corre
lated or covarying variables. Statistics such as Pearson's
r for continuous variables and Pearson's X2 for binary
variables represent bidirectional dependencies. As Allan
(1980) demonstrated, Pearson's X2 is proportional to the
products of two f1P contingency measures, P(AIB) 
P(Alnot B) and P(BIA) - P(Blnot A). However, in the
majority of experiments in which subjects have been
asked to make a "covariation" judgment (e.g., Alloy &
Tabachnik, 1984; Shaklee, 1983; Shaklee & Elek, 1988;
Shaklee & Mims, 1981; Shultz & Mendelson, 1975), the
instructions have in reality asked for a unidirectional
judgment. This is not surprising, given that causality is
directional; correlation does not imply causality.

The problems arise when researchers examine "rules"
that their subjects might be using in making their co
variation (actually contingency) judgments. Consider the
2 X 2 contingency table presented as Table 2 (cell en
tries are frequencies).

Shaklee (1983) compared the degree to which subject
performance appeared consistent with a "cell a" rule

Effect

E
not E

C

a
c

Cause

notC

b
d
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(considering only the frequency ofco-occurrence of the
two events), an "a versus b" rule (the difference between
frequency ofco-occurrence and frequency ofoccurrence
of the effect when the cause was absent), a "sum of di
agonals" rule [(a+d) - (b+c)], and a "conditional
probability" rule [P(EIc) - P(Elnot C), which is equiv
alent to a/(a+c) - b/(b+d)]. The "cell a" rule and "sum
of diagonals" rule both lack directionality from the
cause to the effect. If subjects being asked to make a
contingency judgment are using covariation data (e.g.,
Shaklee, 1983), we should be curious why. Shaklee and
Mims (1981) presented fourth grade through college age
subjects a series of unidirectional problems (e.g., plants
pictured as healthy or sick as a function of the presence
or absence ofplant food, bug spray, or special medicine).
Across all age groups, a significant number of subjects
responded in a fashion consistent with the sum of diag
onals rule, a bidirectional assessment. The problem
domains and question form do not encourage such a judg
ment, but the presentation of the data in a 2 X 2 contin
gency table may be sufficiently symmetrical to mislead
or otherwise confuse subjects.

There have been a handful of studies investigating the
effect ofpresentation form involving a contingency table
on subject performance (e.g., Baker, Berbrier, & Vallee
Tourangeau, 1989; Van Hamme & Wasserman, 1993;
Ward & Jenkins, 1965; Wasserman, 1990a; Wasserman
& Shaklee, 1984). Although in many of these studies it
was not possible to differentiate unidirectional from
bidirectional rule use, since the "a versus b," "sum ofdi
agonals," and "conditional probability" rules would all
have come to the same conclusions, a recent study by
Kao and Wasserman (1993) permits a detailed assessment
of the effect ofpresentation form. In Experiment 2, they
presented subjects with a series of 8 contingent prob
lems and 13 noncontingent problems using either a sum
mary table or a trial-by-trial serial presentation. Given
the rule classification criteria of Shaklee, the summary
table presentation resulted in 21% of the subjects con
forming to "a versus b" or "a versus c" rule use (uni
directional) and 17% conforming to use of sum ofdiag
onals (bidirectional). Trial-by-trial presentation resulted
in 24% unidirectional rule use and 5% bidirectional.
Further evidence ofthe bidirectional bias created by sum
mary table presentation is evidenced by comparing sub
ject performance on the individual problems the authors
presented: if the b and c frequency counts are reversed,
subjects using unidirectional rules should be influenced
more than those biased toward bidirectional use. Of the
21 problems used, 8 pairs permitted such a comparison.
The average change in rating when band c counts were
swapped was .6 using summary tables and 1.13 using
trial-by-trial presentation.' The mode of presentation
has a systematic influence on judgments and must be
considered in all studies of human causal attribution.

It is generally recognized in quantitative psychology
that measures of association between two variables in
clude symmetric and asymmetric metrics. Pearson's X2

and related measures (e.g., Cramer's V, Pearson's phi,
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Kendall and Stuart's contingency coefficient; Liebetrau,
1983) are symmetric measures of association in that
they are insensitive to an interchange of the two vari
ables being analyzed. Asymmetric measures (e.g., I1P,
Goodman & Kruskall's Aand r, Somers's D; Liebetrau,
1983) are directional: A's dependence on B may be dif
ferent from B's dependence on A. A normative judger of
event relations should use a symmetric measure of
correlation when making a covariation (bidirectional)
judgment and an asymmetric measure for unidirectional
contingency judgments. This distinction has not been
honored in much of the judgment of covariation litera
ture (see Bindra, Clarke, & Shultz, 1980, and Einhorn &
Hogarth, 1986, p. 8, for related discussions).

But do we engage in complex contingency analysis
when we attribute causality? The question is: what do
we do and how do we do it? It is doubtful that we con
sciously calculate the probabilistic relations among events
or perform set operations on our episodic memories. Was
serman et al. (1993) rejected a statistical model ofcausal
judgment when they found that their subjects' estimates
of separate conditional probabilities did not map well
onto their estimates of the strength of a causal relation
ship. An alternative is that contingency and/or covaria
tion data are acquired implicitly-that is, unconsciously.
Lewicki (1986) and Reber (1989) demonstrated that not
only can covariation information be detected implicitly,
but our implicit methods are superior to our explicit ones
(cf. Brody, 1989). In addition, the ability of animals to
encode contingencies also suggests the possibility that
implicit mechanisms may provide good estimates of
measures of association.

Animalleaming, covariation, and contingency. Con
fusing covariation and contingency has not typically
been a problem in animal learning and associationist ac
counts of causality. The principle reason is the require
ment that for learning to occur, a CS must precede the US
and a response must precede the outcome, thus stressing
the directional nature of the relationship. Until recently,
it was assumed that animals required a forward, predic
tive relationship between stimuli, thus implying a strong
unidirectionality. Animals are described as making a
contingency judgment; their goal is to determine on
which cues and/or responses the arrival ofa biologically
relevant stimulus is contingent. For example, in Pavlov
ian or classical conditioning, when I1P = P(USICS) 
P(USlno CS) is positive, responding to a CS will be
higher; when I1P is negative, responding will be lower
following the CS; and when I1P is 0, the animal learns
that the CS is irrelevant (see Mackintosh, 1974, for a dis
cussion ofleamed irrelevance). Parallels hold in instru
mental training for the controllability of an outcome,
P(OIR) - P(Olno R), and for the elicitability of a dis
criminative stimulus, P(RISD) - P(Rlno SD). This does
not imply that covariation is never mistaken for contin
gency in the discussion of animals, although interest
ingly the confusion of terms is invariably found in pa-

pers drawing parallels between animal learning and
human contingency judgments (e.g., Alloy & Tabach
nik, 1984; Benedict, 1991).

As mentioned earlier, there is some disagreement
about the roles of contiguity and contingency in animal
learning. Most of the recent debate has centered on the
necessity for contingency in classical conditioning ex
periments (see, e.g., Papini & Bitterman, 1990). The use
of contingency as an independent variable is very com
mon, and its use is based on the assumption that contin
gency is a driving variable in conditioning experiments.
It is not necessary, however, to require that subjects are
calculating conditional probabilities as they learn. The
Rescorla- Wagner model represents one method for ac
counting through contiguity for many results typically
attributed to contingency.Ifall things were equal, it would
not be important in the short run to determine whether
contiguity or contingency was the controlling variable in
learning experiments. However, Papini and Bitterman
argue that there is sufficient evidence to suggest that all
things are not equal and that contingency represents lit
tle more than a convenient explanatory construct that
fails to account for many experimental results.

This debate regarding the relation between contiguity
and contingency has spread to the study of causality.
Wassermanand Neunaber (1986) demonstrated a decrease
in performance when the contingency between events
was held constant while contiguity was decreased. They
concluded that the findings implicated contiguity as the
determining variable rather than contingency. Shanks
(1993b) discusses some ofthe specific limitations of the
relative contiguity mechanism proposed by Wasserman
and Neunaber (1986), including its difficulty with ac
counting for the effect of temporal bridges of the sort
discussed earlier. Instead, Shanks has proposed that con
tiguity and contingency have independent effects: con
tingency information is captured with a mechanism sim
ilar to the Rescorla-Wagner model, while the effect of
contiguity is encapsulated by postulating that event rep
resentations decay over time. It has yet to be seen whether
the relative contiguity approach can be extended to en
compass the breadth ofShanks's proposal. However, con
tingency formulations have their own set ofshortcomings.

According to contingency theories, a subject's behav
ior should be the result of a retrospective evaluation of
the events that have occurred within the experimental
context and the computation of the relative contingen
cies of one set of stimuli (e.g., the CSs) with another set
(the USs). This suggests that trial order should have no
effect as long as the overall contingency is the same.
However, prior research (Benedict, 1991; Benedict &
Ayres, 1972; Yates & Curley, 1986) has clearly indicated
that early contingencies have a significant impact on
later performance in humans and nonhuman animals.
Under noncontingent conditions, an early positive con
tingency resulted in conditioning in rats and positive rat
ings by humans of a CS-US relationship and an early



negative contingency had the opposite effect. A contin
gency theory would need to weigh experience differen
tially in the calculation of probabilities.

These early contingency experiments are one demon
stration that it is not strictly the CS-US contingency
that is important but the particular series of events. The
Rescorla-Wagner contiguity model predicts the effect of
early pairings, because it is a trial-by-trialleaming model.
Contingency models must compute contingencies from
a representation analogous to the cells in a 2 X 2 con
tingency table (see Hammond & Paynter, 1983). Com
putation may take place using episodic memories of all
prior trials or using summary information (e.g., the 2 X 2
table). Although it is unlikely that all trial episodes are
available as distinct memories, it is possible. It is more
likely that some episodes are stored quite distinctly (e.g.,
those that are particularly surprising), and that those
memories interact with summarized or extracted infor
mation stored in the brain. This proposal, however,
would complicate contingency calculation, and it is
more generally posited that the animal is logging event
frequencies in a 2 X 2 contingency table, thus permit
ting local learning and allowing easy computation of
contingency using whatever mechanism the brain of that
species has developed (e.g., l::.P, Goodman-Kruskal L,
Pearson's q>, Xl). It is interesting to note that humans are
not particularly good judges of event frequencies; these
judgments are affected by memory trace strength, re
trievability of the memory (the availability heuristic),
and similarity to other memories (representativeness heu
ristic) (Eysenck & Keane, 1990). Hence, the data avail
able to a contingency computational mechanism will be
imperfect.

Gibbon and Balsam's (1981) SET theory is similar to
contingency theories in that it requires the computation
ofa ratio between overall cycle time and time that a pos
itive trial is present between reinforcement occasions
(the CIT ratio). To compute C and T, the subject is faced
with the same tradeoff between storing episodic memo
ries of all trials and storing running totals of C and T.
Their model also fails to predict the effect that early con
tingencies will have on performance.

Studies that involve the addition of unsignaled USs
intermixed with USs signaled by the CS are usually con
sidered to support the role of contingency in condition
ing. As unsignaled USs are added, contingency de
creases, resulting in weaker responding to the CS (see,
e.g., Durlach, 1983; Hammond & Weinberg, 1984; Res
corla, 1967). However, signaling these additional USs
goes a long way toward alleviating the impact they have
on CS responding (Durlach, 1983; Hammond & Wein
berg, 1984). Contingency theories predict that signaling
USs should not affect responding, because DP has not
changed with respect to the CS under study.

The differential effect of signaled versus unsignaled
USs is predicted by associative theories like the Rescorla
Wagner model. Recall that CSs must compete as predic
tors ofthe us. When unsignaled USs are added, the con-
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text gains in associative strength and directly competes
with the CS when both are present. Signaling the addi
tional USs results in a second CS, the signal, gaining as
sociative strength, decreasing context-US association
through this same competitive mechanism. From a causal
ity perspective, this is not surprising. When a single
event is not a particularly good predictor ofan effect, our
judgments of that event as causing the effect are lower.
When we observe the effect occurring sometimes fol
lowing one event and sometimes following another, it is
easy to conclude that we are simply observing two dif
ferent causes of the effect, each sufficient and neither in
dividually necessary. This behavior has been observed in
human causality judgments in the face of unsignaled
versus signaled effects (Reed, 1992; Shanks, 1989).

Hammond and Paynter (1983) evaluated six different
contingency theories (including l::.P, Gibbon & Balsam's
SET, and q>, a relative of Xl) and their ability to account
for some important empirical variables in the animal
contingency literature. They concluded that all of the
contingency theories reviewed failed to predict the ef
fects of one or more of the variables on animal condi
tioning. In addition, contingency formulas do not con
front the issue ofdeciding in which cell ofa contingency
table a particular event should be placed. It is necessary
to specify a unit of time analysis for making this deci
sion. For example, when a 5-sec CS is followed by a l-sec
US, the trial may be classified as (1) a single occurrence
in the "a" cell, (2) one occurrence of "c" (CS without
US) and one of "a," or (3) 5 of"c" and one of"b" (US
without CS). In the first case, the unit ofanalysis is 6 sec;
in the second, 3 sec; and in the third, 1 sec. This issue is
especially relevant when one is attempting to analyze
conditioning in the presence of trace intervals. Under
what conditions is a CS considered to be "close enough"
to the US to warrant placement in the "a" cell and when
is it temporally too far away, thus resulting in its classi
fication as a CS in the absence ofa US and the US's clas
sification as an unsignaled US? The issue of time is not
managed well by present formulations. Hallam, Grahame,
and Miller (1992) propose that each US event should
contribute fractionally to the appropriate cells as a func
tion of the interval between CS and US events. For ex
ample, the shorter the interstimulus interval (lSI), the
more the US counts as an "a" cell entry; the greater the
lSI, the more it counts as a "b" cell entry. Unfortunately,
this proposal lacks a formal specification (for a related
proposal in the causality literature see Shanks, 1993b;
Shanks et aI., 1989).

Hammond and Paynter (1983) noted that despite its
drawbacks, the Rescorla-Wagner theory is superior to con
tingency formulations in its theoretical scope and predic
tion ofthe effects ofstimulus competition. They conclude:

it is our guess that the problems of the existing contin
gency theories reviewed here will not be solved by con
catenating another probabilistic contingency formula....
we lean toward more complex approaches-complex the
ories to deal with complex problems. (p. 547)
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Given the evidence, I find little reason to advocate for
any of the current contingency accounts of either condi
tioning or causality. The shortcomings mentioned above
have not been adequately explained by existing contin
gency theories. An analysis relying on contiguity ap
pears better suited to the problems at hand, although con
tiguity has yet to be clearly demonstrated as sufficient.

Multiple causes and cue interaction. Having pro
gressed from Hume's concept ofconstant conjunction to
covariation and contingency, we have yet another step to
take. Each of these concepts presupposes that humans
extract conjunction data by analyzing pairs of events, a
candidate cause and the effect. This assumption is un
founded. Interaction between cues is important to human
(and animal) judgments ofcausality. The presence ofal
ternate causes affects current attributions (see, e.g.,
Chapman & Robbins, 1990; Einhorn & Hogarth, 1986;
Price & Yates, 1993; Shanks & Dickinson, 1987; Shus
tack & Sternberg, 1981). For example, Chapman and Rob
bins (1990) demonstrated that the judged predictive
strength ofa cue is influenced by the predictive strengths
ofcontemporary cues. In their second experiment, a cue
gained negative strength when paired with the absence
of an effect (i.e., it was perceived as preventing rather
than causing the effect) when consistently paired with a
cue that had previously been judged as a cause of the
same effect. This was contrasted with a cue that was
paired the same number of times with the absence ofthe
effect but failed to gain significant negative strength.
The only difference between the two cues was whether
they were paired during this phase of the experiment
with a cue previously trained to predict the effect. These
results and others have led many authors (e.g., Allan,
1993; Chapman & Robbins, 1990; Wasserman et al.,
1993) to suggest that approaches based on animal learn
ing theories (e.g., Rescorla & Wagner, 1972) are better
suited to capture the complexities of human judgments
of contingency.

MultipleCSs and CS interaction. A significant reason
for the continued popularity of Rescorla and Wagner's
(1972) model is its elegant method ofaddressing exper
imental paradigms where multiple CSs are present dur
ing a trial. In Equation 1, the amount of associative
strength remaining during a trial is a function of the
strengths ofother CSs present; for example, if the US is
being fully predicted by a subset of the contemporary
CSs, no change in associative values will occur. Block
ing is a commonly studied paradigm in which CS inter
action is observed (e.g., Kamin, 1969). Inforward block
ing, a cue, B, is paired with another predictor, A, that has
received pretraining as a predictor of a third event, the
US (A +,AB+ training; the "+" indicates reinforcement,
the presentation of the US following the CSs). B elicits
significantly less conditioned responding than does a
control (AB+ without prior A+ training), a result ac
counted for by competitive cue models like Rescorla and
Wagner's. As an example, assume that at the end of
Phase 1, A has an associative value, T-A, of 80, A. is 100,

a is .10, and f3 is 1. At asymptote, T-A will be 90 and VB
will be 10, in contrast to asymptotic values of 50 and 50
with no prior training of A. It is generally the case that
the order of phases is important for the emergence of
blocking. When the A+ trials are interspersed with the
AB+ trials, A can still block B (Wagner, 1969), but not
over a relatively short number of trials. The results of an
analysis using the Rescorla-Wagner model suggest that
the asymptotic strength of B will be zero, but that the
strengths will pass through a stage ofhigher values. This
results from the increasing competition from A as learn
ing progresses.

When the order ofphases is completely reversed (AB+,
A+), there is very little evidence ofa backward blocking
effect during animal conditioning. In one study by Kamin
(1969), rats demonstrated backward blocking. He found
that 8 LN+ trials (light-noise) resulted in less fear to L if
training was followed by 16 N+ trials before testing ofL.
In general, though, attempts to obtain backward block
ing in animals have been largely unsuccessful, and the
observed effects have been small (see Durlach, 1989).

Forward blocking of causes has been observed in a
number of human causal and contingency judgment
studies (Dickinson et al., 1984; Price & Yates, 1993;
Shanks, 1993a; Van Hamme et al., 1993; Waldmann &
Holyoak, 1992). Some studies (e.g., Price & Yates,
1993) included interspersing of the relevant trials with
results similar to those of Wagner (1969). However, ev
idence for backward blocking is not as clear. Backward
blocking has been observed in some human judgment
experiments (see, e.g., Chapman, 1991; Shanks, 1985,
1991), but not in others (see, e.g., Van Hamme et al., 1993;
Waldmann & Holyoak, 1992). Chapman (1991) and
Shanks (1985, 1991) have observed backward blocking,
although Chapman found a much smaller effect in back
ward than in forward blocking.

Williams, Sagness, and McPhee (1994) used pre
training manipulations to modify the strategy ofsubjects
engaging in a predictive task. The groups that were trained
to use an elemental strategy (in which the effects of can
didate causes are additive) exhibited forward as well as
strong backward blocking. The groups that used a con
figural strategy (treating multiple cues as unique pre
dictive compounds) failed to demonstrate backward or
forward blocking. Only when Williams et al. used an
instructional manipulation similar to that used by Chap
man and Robbins (1990) did they observe forward block
ing and no backward blocking? They suggest that con
figural processes may have a more detrimental effect on
backward than on forward blocking. Allan (1993) put
forth a similar argument, although she anticipated that
there would be difficulties in accounting for other data
when this perspective is taken. The difference between
the two forms ofblocking may depend on the interaction
ofelemental and configurallearning processes, but a clear
specification has yet to emerge.

Shanks and Dickinson (1987) and Van Hamme and
Wasserman (1994) presented reformulations of the



Rescorla-Wagnermodel in an attempt to account for back
ward blocking. The Shanks and Dickinson version demon
strated backward blocking but had other shortcomings
(Shanks, 1993b). Van Hamme and Wasserman (1994)
extended the Rescorla-Wagner equation by including
strength modification for cues not present on a trial.
This extension is sufficient to account for backward
blocking since it permits the modification of B's
strength during the second phase of the experiment
when it is not occurring. Unfortunately, Van Hamme and
Wasserman's modified Rescorla-Wagner model either
must learn about all the cues absent on a trial or must de
cide which ofthe absent cues are relevant to the context.
It is unlikely that an organism would be so poorly de
signed as to spend the amount of effort necessary to
learn the relation between every event, present or not,
and the outcome of interest. Van Hamme and Wasser
man (1994) thus chose the second option, permitting ap
plication ofthe learning equations to those cues relevant
to the prediction of the outcome. A cue is judged rele
vant after acquiring some positive or negative associa
tive strength, either via prior experience ofthe cue in the
experimental context or via verbal instructions. Their re
vised model holds promise; but further testing of its pre
dictive power is required, and it will retain many of the
known limitations ofthe Rescorla-Wagnermodel (Miller,
Barnet, & Grahame, in press).

Blocking represents only one way in which CSs inter
act in the formation ofCS-US relationships during clas
sical conditioning. Others include conditioned inhibi
tion, compound conditioning (e.g., negative patterning),
occasion setting, and serial conditioning. Occasion set
ting and serial conditioning represent two particular
areas of interest because of some interesting parallels to
causal attribution. In occasion setting (P. C. Holland,
1986, 1989a, 1989b), subjects are exposed to a Pavlovian
feature-positive discrimination (XA +, A -) paradigm.
The feature, X, typically precedes the common element,
A, by a short period oftime. As training progresses, sub
jects respond more to the common element when it fol
lows the feature than when it does not (assuming rea
sonable temporal and salience characteristics ofthe cues
involved). In Holland's terms, the feature, X, "sets the
occasion" for the common element to elicit a CR. The
role of an occasion setter is reminiscent of the role of a
"condition" in causal attributions. A condition is an event'
or cue that is necessary for the occurrence of an effect
and is present for some time preceding it (hence not the
triggering event). The paradigmatic example is the pres
ence of oxygen for a fire. The striking of a match or
other event is usually judged the cause, but oxygen is
one of the conditions for the occurrence ofa fire. When
oxygen is absent (e.g., in space), an observer would not
predict the occurrence of fire following the striking ofa
match. Hence, the presence of oxygen sets the occasion
for the operativity of the match strike. This parallel pro
vides another avenue of exploration of the condition
ing/causal attribution analogy with methodologies used
in occasion-setting research. There is one difference,
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however, between the way in which a condition is dis
cussed in the causality literature and the role ofoccasion
setters. Occasion setters are stimuli that exist for rela
tively short periods of time (at most, minutes), but con
ditions typically exist for much longer periods, as with
oxygen as a condition for combustion. In the latter case,
the vast conditioning literature on the role of context is
more relevant.

In serial conditioning two predictive cues are also off
set in time, but both are present on all trials (A-7B+,
where -7 indicates "is followed by"). This paradigm has
been most vigorously pursued by Kehoe and his col
leagues (Kehoe et al., 1993; Kehoe, Marshall-Goodell,
& Gormezano, 1987; Kehoe & Napier, 1991; Kehoe,
Schreurs, & Graham, 1987). The use of two sequential
predictors is analogous to the presence of a simple
causal chain, in which each event causes the next. In se
rial conditioning, the intervening event, B, facilitates the
development of the A-US relationship, often to the
detriment of its own B-US strength. In fact, the initial
event of a longer chain usually obtains the most US as
sociative strength (Kehoe & Napier, 1991). This sug
gests that intervening events may be serving a role anal
ogous to the apparent temporal bridging role of causal
mechanisms (Young, 1992; Young & DeBauche, 1993).
Causal mechanisms provide an event structure to bridge
a temporal gap between an initiating event (the candi
date cause) and the ultimate effect. Ifplaying a role anal
ogous to the B event in serial conditioning, a mechanism
should be serving a modulatory role and not be acquir
ing much of a predictive relationship between itself and
the effect. These and other features ofserially conditioned
CSs represent empirical questions to be pursued in the
exploration of the scope of the attribution/conditioning
analogy.

Prior Experience and Knowledge
Inherent in all the discussions ofneo-Humean cues is

the importance of experience. Hume was an empiricist
who deemed experience the cornerstone of causal attri
bution. However, as language users, we have methods
other than direct experience for determining whether
events might be causally related. I have mentioned "cul
tural transmission" in passing, but this avenue likely
plays a major role in some adult attributions. Through
formal education, we learn that static electricity can
cause hair to stand on end, that viruses cause colds, and
that demand increases as supply dwindles. These public
causal theories are relied on in many of our judgments.
It is this notion that Bullock, Gelman, and Baillargeon
(1982) and Shultz (1982) are building on when they
stress the importance of causal mechanisms. Mecha
nisms are embodiments of cultural expertise on causal
ity passed on through the generations. They collect the
experiences ofothers, thus freeing us from having to di
rectly discover all causal relationships ourselves. In this
sense, mechanisms play a role different from the one
that I proposed earlier, and I have little doubt that they
are rightly utilized by adult observers everywhere.
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Unfortunately, humans frequently ignore these cul
tural nuggets and leave them locked within some deep,
dark chamber of their minds. The extensive research on
folk or naive physics is a depressing example of the dif
ficulties of overriding our prior belief systems (Cham
pagne, Klopfer, & Anderson, 1980; Clement, 1982;
Kaiser, Proffitt, & McCloskey, 1985).1.H. Holland, Holy
oak, Nisbett, and Thagard (1986) summarize the current
research as substantial evidence that the new rules ob
tained via education do not merely compete with the old
rules (our prior belief systems) but are forced to modify
the old ones, resulting in slightly updated versions. Any
field ofexpertise in which the learner has extensive prior
knowledge or experience of the domain will suffer from
these problems. Highly educated people still believe in
the predictive power ofastrology and tarot cards, despite
their schooling. Coaches and athletes continue to wear
"lucky" clothes or adopt routines, despite ignorance ofa
mechanism that could bring about a win.

This is not to suggest that we must experience every
thing directly. The problems in applying cultural knowl
edge arise when our prior experience or knowledge
(which may have been culturally obtained at a younger
age) is quite extensive in a domain. This is true with com
mon notion physics, psychology, statistics, and biology,
inter alia. Prior experience weighs heavily on our current
judgments in the form of personal causal theories. The
research showing cue interaction in causal judgment
(e.g., Chapman & Robbins, 1990; Waldmann & Holy
oak, 1992) illustrates the significant impact that prior
experience and expectations have on current attributions.

Although not usually treated as a cue to causality, the
amount ofprior experience ofsimilar events is critical in
determining whether causality is inferred. Prior biases
and expectations can override many ofthe other cues, in
both animals and humans (for a review, see Alloy &
Tabachnik, 1984). Ausubel and Schiff (1954) investi
gated the effects of prior knowledge in kindergarten,
third grade, and sixth grade subjects who were required,
after observing a sequence of trials, to determine what
caused one side of a teeter-totter to drop. The youngest
subjects showed no difference in inferring a relationship
between object color and teeter-totter side to drop and
between side length and side to drop. In contrast, older
children had difficulty learning the color relationship.

The presence ofalternative causes also affects the ex
tent to which an event is judged as the cause ofa partic
ular effect. It is well accepted that the presence ofplau
sible alternatives decreases judgments regarding a cause
in question (Einhorn & Hogarth, 1986; Kelley, 1973;
Koslowski & Okagaki, 1986; Mackie, 1974; Nisbett &
Ross, 1980). This is driven from two types ofprocesses:
competition among candidate causes, and prior expecta
tions. When there are multiple plausible candidates, the
surety of one of them being the cause is decreased. The
observer is left to choose one of the candidates, ostensi
bly relying upon other cues to causality, or to infer that
multiple causation is germane to the problem at hand.
When the subject believes, on the basis of prior experi-

ence, that one of the candidates is more likely than an
other, this will strongly affect his/her judgment (the
Ausubel & Schiff, 1954, study is a good example). These
biases frequently result in misconceptions regarding
"true" causal relationships (see Nisbett & Ross, 1980,
for an excellent discussion of the many effects that bi
ases have on judgments of covariation and causality).

This leads me to suggest that the generative theorists
and the neo-Humeans are not as far apart as originally
surmised. (Nor are they as distant as is typically por
trayed in the literature-e.g., Shultz, 1982; White, 1989;
but see Cheng, 1993, for an excellent integration of the
two views.) They both argue that prior experience and
knowledge playa significant role in causal attribution.
They differ in the suggested form that this knowledge
takes and, potentially, its origins. A generative theorist
like Shultz suggests that it is stored in the form of rules
(Shultz & Kestenbaum, 1985), whereas many neo
Humeans make no claims about representation except to
suggest that current experiences are influenced by prior
events. A connectionist interpretation might best rectify
the two positions. Experience is encoded within a con
nectionist network over time, leaving traces of those ex
periences. This learning not only affects future behavior
but also alters the processing and storage ofnew stimuli
within the network. The effects of this prior learning
may appear rule-like to an outside observer (like Shultz
or White), but this does not imply that the underlying
representation is in the form of symbolic rules.

Einhorn and Hogarth (1986) attempted to integrate
the views of those both for and against the priority of
the cues to causality. Shultz has emphasized the impor
tance ofgenerative transmission over the traditional Hum
ean cues. In contrast, Einhorn and Hogarth do not de
emphasize the cues to causality. They stress that these
cues are not rules but heuristics. As heuristics, they are
fallible and thus are only probabilistic indicators of the
likelihood of a causal attribution. In addition, they note
that the cues "playa crucial role in delimiting the par
ticular models of generative transmission that people
use in causal reasoning, ... [so] it cannot be said that the
cues per se are disregarded in favor of [generative trans
mission)" (Einhorn & Hogarth, 1986, p. 13). They are
emphasizing the role ofneo-Humean cues to causality in
the origins of causal theories, an argument that I advo
cate and one that has not generally been attributed to
Einhorn and Hogarth's theoretical framework.

In an attempt to bring the two views closer together, I
find it necessary to point out that certain points cannot
be emended. The occasional generative theorist who still
insists that some causal relations can be directly observed
(e.g., Harre & Madden, 1975; White, 1989), without re
ducing this observation to something like the cues to
causality, will always be at odds with a Humean position.

The matter ofpreparedness. Experience is central to
the empirical and theoretical approach historically pur
sued in the field of animal learning. Hence it comes as
no surprise that prior experience (i.e., knowledge) has an
effect on ongoing attributions in conditioning experi-



ments, as is illustrated in the blocking design. What is
more interesting for the discussion at hand is the rich
ness of the effects that this experience has on animals.
Some of these effects are cited in support of the inade
quacy of associationist views of causality, but I suggest
that these arguments are more often evidence of the nar
row fashion in which some cognitive psychologists still
view animal learning theories. The most commonly cited
argument against associative views is the evidence of
stimulus relevance or belongingness.

Relevance and belongingness. Early work in animal
learning (e.g., by Pavlov, Skinner) supported the idea
that any stimulus could serve as a CS for any US. This was,
in a sense, necessary if one was to retain the proposed
goal that the laws oflearning were universal: any CS-US
or S-R relationship could be acquired. However, some ob
servations did not easily accord with this view. Thorn
dike (1932) was unable to train cats to yawn or to scratch
to receive a reinforcer. Breland and Breland (1961) had
difficulties training a raccoon to pick up a coin and de
posit it in a coin bank, and pigs also failed to learn the
same task. Garcia and Koelling (1966) provided the
most vexing data of this sort for researchers in Pavlov
ian conditioning. Four groups of rats were given dif
ferent CS-US relationships to learn. For one group, the
taste of a water solution (sweet) predicted the onset of
gastric upset (induced by lithium chloride or radiation).
For another, the taste predicted the onset of shock. The
last two received an audiovisual stimulus (flashing light
plus click) predicting either shock, for one group, or
gastric upset, in the other. The rats were readily able to
learn that taste predicted gastric upset and that an audio
visual stimulus predicted shock, but they had severe dif
ficulties in learning the other relationships. There have
been numerous demonstrations of such relevance, al
though results as dramatic as those observed in taste
aversion are not common. Garcia and Koelling sug
gested that some CSs were more "relevant" in the pre
diction ofcertain USs and that this relevance is inherent
in a species, the result of natural selection. In fact it is
relatively easy to develop post hoc a story ofwhy such a
CS-US belongingness is adaptive for a particular species
(fraught with the usual difficulties with this type of
inference).

The other notable characteristic of such relevant rela
tionships is the rapidity with which they are learned.
Taste aversion is often acquired after a single exposure.
This represents a nice parallel for causal attribution re
searchers of the inadequacy of associative approaches.
These investigators (Alloy & Tabachnik, 1984; Nisbett
& Ross, 1980; Shultz & Kestenbaum, 1985; White,
1989) note that attributions are often made by humans
after a single observation ofa cause-effect sequence. This
is analogous, in their opinion, to the processes observed
in animals in taste aversion studies and demonstrates
that covariation is unnecessary as a cue to causality.

There are two problems with this view. First, the vari
ety ofoccasions under which humans exhibit single trial
learning is much greater than that observed in animals.
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Although it may be adaptive for taste-gastric upset rela
tionships to be rapidly learned (as it is even in day-old
rats), it is much more difficult to contend that evolution
has selected for the relevance of the pushing of a button
for the turning on ofan electric appliance. I find it more
parsimonious to suggest that prior experience (in the
form of causal theories), not innate knowledge, is being
leveraged under these conditions. When observing a
"novel" event pairing that is similar to experienced event
pairs in which the prior event predicts the latter, the
process ofgeneralization will operate to "infer" a causal
relationship between the novel events-after a single
trial. This position has also been advocated in the con
ditioning literature to explain some, but not all, of the
observations of CS-US belongingness (Mackintosh,
1973). It is difficult to prove that an organism has had no
prior experience relevant to a particular pair of event re
lationships; this experience may merely be similar and
not identical to the current events, or it may be obtained
vicariously.

This is not to suggest that humans, or animals for that
matter, always require some background in related
events when they exhibit single-trial attributions. There
are certainly cases in which biological preparedness can
be effectively argued (e.g., taste aversion) and, in hu
mans at least, circumstances under which higher cogni
tive mechanisms are being brought to bear. In my opin
ion, however, this leaves a great number of occasions
wherein inferences are made quickly, spontaneously, and
without prolonged thought. One must argue that prior
experience is quickly being leveraged, that the organism
has innate knowledge of the relationship to be learned,
or that the other cues to causality provide sufficient ev
idence to support an inference.

Latent inhibition and learned irrelevance. Latent in
hibition and learned irrelevance represent two important
ways in which prior experience can affect current attri
butions without the effect being readily apparent to the
casual observer. In latent inhibition (Lubow, 1973)
that is, the CS preexposure effect-a subject is slower
than a control in learning a CS-US relationship when
the subject has received numerous prior presentations of
the CS alone. Latent inhibition provides a mechanism
for addressing the set of objections to associative ac
counts of causality exemplified by the following: "The
color of the walls in my bedroom are always paired with
my going to sleep, but other rooms of that color do not
cause me to anticipate sleeping." Through numerous
prior experiences in one's lifetime, wall color has been
shown to be an ineffective predictor of other events. An
analogous situation was observed in the older subjects in
the Ausubel and Schiff (1954) experiment, who had dif
ficulty learning that the color of the blocks predicted
which side of a teeter-totter would fall. Their prior ex
perience suggested that object color was a poor predic
tor of effects; this is latent inhibition at work.

Learned irrelevance represents another way in which
prior experience may inhibit certain attributions from
being made (Baker & Mackintosh, 1977). A subject who
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has prior experience ofa CS that is a poor predictor of a
US (i.e., there is a near-zero contingency between the
two) is retarded in the later acquisition of the CS as a
predictor of this particular US when it does consistently
follow the CS. This differs from latent inhibition in two
ways: (I) in latent inhibition, a subject is not required to
have had any prior exposure to the US; and (2) learned
irrelevance is particular to a CS-US pair, whereas latent
inhibition affects all subsequent CS-US pairs involving
the CS (however, note that latent inhibition has been
shown to be sensitive to the context in which the CS pre
exposure has taken place; Hall, 1991). When someone
suggests that the associative position is wrong because
"his alarm clock doesn't cause the neighborhood chil
dren to go to school," he has failed to note the relevance
of the vast amount of prior experience he has had
wherein his alarm clock has been a poor predictor of
other people's behavior (not to mention the problem of
lack of spatial contiguity). Note again that this is not to
suggest that this is all there is to the human story. Other
factors can influence an attribution; in this case, it would
be important to note that the children cannot hear his
alarm clock. However, how do we know that this is a rel
evant fact? Perhaps our prior experience of sounds as
predictors of others' and our own behavior are at the
root of our assumption that hearing a sound is a neces
sary condition for it to function as a causal factor. I have
found the scope of the associative approach to causality
to be quite surprising.

Summary
The preceding survey of the human causal attribution

literature has demonstrated the importance of Hume's
principles. The neo-Humean cues affect human judg
ment, although the degree to which each does so is situ
ation dependent. Through a rational Humean analysis of
a variety of data, I hope to have shed some light on the
strength of a learning perspective on the origin of per-

sonal causal theories. An examination of causal attribu
tion from a learning stance (Shanks & Dickinson, 1987;
Wasserman, 1990b) has helped refine the definition of
the Humean cues and facilitated their proper application
to the human literature.

The preceding survey of the animal learning literature
demonstrates the strength of the conditioning--eausal at
tribution analogy. The work of Shanks and Dickinson
(1987) and Wasserman (1990b) provides a solid frame
work for the understanding of causality. Accepting and ex
tending the analogy has provided a new perspective on un
derstanding human cognition. A number ofmethodologies
and theories that originate in the conditioning literature
offer opportunities for enriching our understanding of the
humanjudgment process. While promising, this view is not
without its critics. In addition to the earlier mentioned ar
guments posed by generative theorists, proponents of me
diation of attributions by higher order causal induction
have questioned the sufficiency ofan associative formula
tion (Cheng & Novick, 1992; Melz, Cheng, Holyoak, &
Waldmann, 1993; Waldmann & Holyoak, 1992). Many of
the concerns of these authors have been addressed by
Allan (1993) and Shanks (1993a, 1993b).

Conclusions
In the prior discussion, I have presented evidence for

the analogy between many human causal attributions
and animal conditioning. The parallels are summarized
in Table 3. This obviously does not function as proof of
the relationship. In my opinion, however, the evidence
has been compelling enough to warrant the continued in
vestigation of this theoretical approach. The condition
ing literature not only offers a framework within which
to couch human attribution research, but also presents a
wealth of data, empirical methods, and theories from
which to draw.

Current investigations have only touched on the
wealth of data, methodologies, and theories that the an-

Table3
Summary ofEffects of the Cues to Causatity on Human Causal Attribution and Animal Conditioning

Cue to Causality Human Causal Attribution Animal Conditioning

Necessary for behavior change to be
observed.

Mixed results. May be encompassed
by temporal contiguity.

Very important, e.g., blocking, inhibi
tion, configurallearning. Weak evi
dence for backward blocking.

Important in entire notion of condi
tioning as a learning process. Belong
ingness may be based on innate
mechanisms or prior experience.

Very important for adults and older
children as studied in launching
paradigms.

Necessary for events to be at least
contemporary.

Mixed results. Appears to depend on
longer term experience as basis for
contingency judgment.

Very important as seen in human
analogs of blocking and inhibition.
Some evidence for backward blocking.

Major effect in the form of prior
knowledge. Belongingness may be
based on experience or possibly
nature ofevent.

Spatial contiguity

Temporal contiguity Very important: gaps can be bridged Very important: gaps can be bridged
via real or hypothesized events. via real events and ifno intervening

events interfere with recall.

Secondary role, but only studied as
spatial proximity, not contiguity.

Temporal priority

Covariation/contingency

Prior experience

Cue interaction



imal learning perspective offers the study of human
causality. As I have illustrated, there are a number ofnew
avenues to consider. The present analysis suggests a se
ries of research recommendations:

1. Temporal contiguity: Intervening stimuli may be
perceived as causal mechanisms and mechanisms may
only be functioning to bridge a contiguity gap. We need
studies in which the temporal placement of the inter
vening stimulus is manipulated to assess the role ofthese
stimuli (e.g., analogies to Rescorla, 1982).

2. There has been a trend toward discrete trial pre
sentation in the study ofcausality. Given the importance
of temporal cues, studies of real-time events should
be emphasized in which temporal relationships are ma
nipulated.

3. Covariation and contingency must be clearly dif
ferentiated in causal attribution research and the effect
of presentation form considered in all studies.

4. Spatial contiguity may have a secondary effect
when studied in domains other than the launching para
digm and may be superseded by temporal contiguity.

5. Blocking represents but one type ofcue interaction.
Studies should adapt methodologies from research on
occasion setting, serial conditioning, latent inhibition,
CS-US irrelevance, and similar areas.

6. Prior knowledge has a profound impact on attribu
tions. Domains ofinquiry must be carefully selected and
analyzed in terms ofthe extent ofprior experience ofthe
events involved. This experience may be either positive
(wherein the two events have been previously associated),
or negative (wherein the events have previously been
shown to be unrelated, or the proposed cause has held no
predictive power over any environmental events).

7. An associative learning theory can explain the for
mation and leverage ofpersonal causal theories, although
current approaches have their limitations. Connectionist
models embody the associative mechanisms required,
but should be extended to include temporal mechanisms
more flexible than those found in current theories.

Although researchers in animal learning have been
studying the issue of event relations for a much longer
period oftime than have cognitive psychologists, they do
not have the final answers. The variety oftheories ofPav
lovian conditioning is evidence of the failure to con
verge on a single explanation that can account for most
ofthe existing data. It has become apparent that because
of the attempt to remain parsimonious, existing theories
have failed to cover the gamut ofconditioning data. This
is not surprising nor is it a great failing; existing theories
have generated an abundance of excellent studies and
have provided a suitable framework for dealing with the
immeasurable amount of data. If one were constrained
only to develop psychological theories that accounted
for all known data, no theories would be advanced. There
is growing recognition in the field ofassociative models
of causal attribution, however, that connectionism may
offer a framework with enough richness to capture more
of the currently known data than do present theories.
The development of recurrent network models ofcondi-
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tioning and human causal attribution is a step in this di
rection (Young, 1992; Young & Bailey, 1994; Young &
DeBauche, 1993).
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NarES

I. The differences were derived from a summary table and not indi
vidual subject data. The absolute differences were computed by using
the algebraic means reported in Kao and Wasserman's (1993) Table 5
comparing G13-SUM with G13-TBT and G9-SUM with G9-TBT. The
following pairs of problems were used: 2-4,3-5,6-8,7-9, 10-12, 11
13,15-16,19-20.

2. Subjects were being asked to predict the rise and fall of the stock
market after observing changes in the performance of individual
stocks. Chapman and Robbins (1990) had informed their subjects that
the stocks would fall into three categories (positive, negative, and neu
tral) depending on their influence on the market as a whole.
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