
Three computational versions of proportion correct for use
in forced-choice experiments l

DENNIS McFADDEN2
UNIVERSITY OF TEXAS

Three commonly used measures of
performance in forced-choice experiments,
all called proportion co"ect, are compared
as response bias, bias in the stimulus
outcomes, and level of performance are
varied. No position is taken on the
question of which is the computational
version of choice, but some of the
characteristics of the various versions are
examined.

Forced-choice techniques are now being
adopted by Es in many branches of
psychological research. The reason for this
is obvious-when used correctly, these
techniques permit estimates of the S's
ability to discriminate among the stimulus
alternatives that are relatively independent
of his tendency to use the various response
alternatives. Psychophysicists were the first
to recognize the confounding of these two
factors in data collected with classical
psychophysical methods, but awareness of
the problem of separating discriminability
and response criterion is now becoming
widespread among psychologists concerned
with phenomena other than sensory
processing.

In order to keep the discussion simple,
only forced-choice experiments that
employ two stimulus alternatives and two
response alternatives will be considered.
Much of what will be said can undoubtedly
be extended to include "m-alternative"
experiments, but that is left for the future.
So, each trial of the experiments under
consideration here produces one of four
possible stimulus-response combinations.
Let us denote the two classes of stimuli
"A" and "B," and the two response
alternatives "a" and "b." Clearly, then,
when the S is forced to give one of the two
responses on every trial, every response
contributes to one of the four proportions
Pea/A), PCb/A), Pea/B), or PCb/B). These
proportions are known as correct
acceptances (hits), incorrect rejections
(misses), incorrect acceptances (false
alarms), and correct rejections,
respectively, and they are frequently
displayed as the entries in a 2 by 2
stimulus-response matrix. The stimulus
alternatives might be words or trigrams
that were either seen previously in the

. experiment or not seen previously (Egan,
1958; McFadden & Greeno, 1968), the
presence or absence of a disk or line
partially masked by a second disk or line

(Schiller & Greenfield, 1969; Parlee, 1969),
a visual array in which the elements are
either all identical or identical except for
one (Donderi & Zelnicker, 1969), a
fIXed-ratio reinforcement schedule of one
magnitude or another (Rilling &
McDiarmid, 1965), the presence or absence
of a particular digit in a sequence of
rapidly presented digits (Eriksen & Collins,
1969), two observation intervals, one of
which contains a tone of one frequency
and the other a tone of a different
frequency (Henning, 1967), or, more
familiarly, noise-alone or signal-plus-noise
trials. Thus, the response alternatives in
such experiments can be "old" and "new,"
"present" and "absent," "same" and
"different," "Interval I" and "Interval II,"
"yes" and "no," etc. (The knowledgeable
reader may wish to glance ahead to Note 3
at this point.)

The idea of presenting so-called "blank
trials" or "catch trials" is an old one, but
the use of the errors made on such trials in
the assessment of the S's performance is a
recent development. In the 1950s the
theory of signal detectability, or TSD (see
Swets, 1964; Green & Swets, 1966), first
made clear to psychophysicists the
importance of obtaining a reliable estimate
of the errors on the "blank trials." Such
errors were classically viewed as the
hallmark of a poor S, but they are now
regarded as indispensable when the
objective is a measure of the S's ability to
discriminate stimulus alternatives. Indeed,
for reasons that will later become obvious,
a good S is now defined as one that makes,
on the average, as many false alarms as
misses. TSD employs estimates of the S's
hit rate and of his false-alarm rate to
compute the statistic d'. Within the theory,
this index of discriminability is
independent of the S's response bias, i.e.,
his tendency to use one of the two
responses more frequently than the other.
Obviously, this independence is a
characteristic of great value, for it allows
comparisons of sensitivity between Ss with
very different decision criteria.

Briefly, TSD assumes that each of the
(here) two stimulus alternatives is
represented "inside the S" as a distribution
and, further, that the two distributions lie
upon a common decision axis. Under the
influence of several variables, the S is
thought to select some value along this axis
as his criterion for response. That is, if the

sample value obtained on a particular trial
is equal to or greater than· the criterion
value he has adopted, then he gives one
response, and, if it is smaller, he gives the
other response. Obviously, the adoption of
an extreme value for the criterion will lead
to a preponderance of responses of one
kind, a response bias. In its simplest fonn,
TSD assumes that the two underlying
distributions are both normal with
variances that are equal, and it is upon this
assumption that the definition of d' lies.
Quite simply, this measure is the distance
in z-score units between the means of the
two underlying distributions. Numerically,
it is the z-score distance from the mean of
the B distribution to the criterion value,
minus the z-score distance from the mean
of the A distribution to the criterion.
These two distances are estimated for a
block of trials from the false-alarm and hit
rates, respectively.

As mentioned above, the beauty of d' is'
that, when the underlying distributions are
normals of equal variance, this measure of
discriminabiIity is "pure" in the sense that
it is unaffected by the particular response
criterion adopted by the S. And this is true
of no other metric presently in use.
Consider, for example, another commonly
seen measure of performance, the
proportion (percentage) of correct
decisions. For two-alternative experiments,
this measure is usually expressed as

P(C) =P(A)P(a/A) + P(B)P(b/B), (I)

where peA) and PCB) are the a priori
probabilities of the two stimulus
alternatives (see Egan & Clarke, 1966).
Table 1 shows three 2 by 2 matrices, all
with the same proportion correct, but with
different response biases, pea). As can be
seen, d' is different for each of these
matrices; it is a minimum when the S has
no response bias, pea) =0.5, and it
increases as the response bias increases. In
Table 2, d' is held constant and proportion
correct changes when the three response
biases of Table I are adopted. Here
proportion correct is a maximum when
there is no response bias, and it declines as
the response bias grows. Clearly, then,
equal proportion-correct matrices are not
equal-d' matrices and conversely.

If this difference between the two
measures is not intuitive, consider a S
operating with such an extreme criterion
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Table 1
EqualProportion-Correct Matrices for Different

Values of Response Bias, P(a). As the
bias worsens, d' increases.

Response Responses
Bias
P(a) Stimuli a b P(C) d'

.50 A .80 .20 .80 1.68
B .20 .80

.40 A .10 .30 .80 1.81
B .10 .90

.35 A .65 .35 .80 2.02
B .05 .95

Table 2
Equal.'t' Matrices for Different Values of
Response Bias, P(a). As the bias worsens,

proportion correct decreases.

Response Responses
Bias
P(a) Stimuli a b P(C) ct'

.50 A .800 .200 .800 1.68
B .200 .800

.40 A .685 .315 .785 1.68
B .115 .885

.35 A .617 .383 .761 1.68
B .083 .917

that nearly none of the A distribution lies
beyond his criterion, i.e., his hit rate,
P(alA), is nearly zero. It follows that
nearly all of the B distribution lies below
his criterion, making his correct·rejection
rate, P(b/B), essentially 1.0, and for equal
a prioris, Eq. I will yield a proportion
correct close to chance performance. And
this would be true no matter what the
separation between the means of the two
distributions, the d'. Less extreme criteria
would lead to proportions correct less close
to chance, but the point is that this
measure is not criterion free.

When the percentage of correct decisions
is plotted against some experimental
parameter such as a measure of the
"strength" of the stimulus, the resulting
relation is known as a psychometric
function (see Egan, Lindner, & McFadden,
1969). Classically, psychometric functions
were plots of a hit rate, a P(a/A), without
regard for the corresponding false-alarm
rate. Consequently, these functions
confound response bias with sensitivity.
True psychometric functions, those
employing measures of sensitivity as the
ordinate, are of great interest to sensory
psychologists because they show not only
how well a S is discriminating at some
stimulus level but also how his
discrimination performance changes with
changes in "stimulus strength."
(Regrettably, many psychologists working
in areas other than sensory psychology
have yet to realize the value of determining
the entire psychometric function instead of
just a single point on it.)

A favorite measure of performance for
psychometric functions is proportion
correct, but, partly because of the effect
demonstrated in Tables 1 and 2, there are
presently in use at least three different
methods for computing proportion correct
from a forced-choice data matrix. The
purpose of this paper is to give some
examples of how these various versions
differ. There is little said here that is new
to anyone who has worked with data from
forced-choice experiments, but perhaps the
newcomer can be saved some computations
and some anxiety about whether he is
using the "correct percent correct."

In practice, Eq. I is employed in two
ways, depending upon the particular E's
interpretation of the quantities P(A) and
P(B). That is, many Es program their trial
sequences from a source of random
numbers without constraints, a procedure
which leads to stimulus biases on individual
blocks of trials that are not necessarily
accurate reflections of the a priori
probabilities. Specifically, a block of 100
trials run with the a priori probability of
P(A) =P(B) =0.5 will only rarely result in
exactly 50 trials of each stimulus
alternative. When the obtained proportions
of the two stimulus alternatives are
different from the a priori probabilities,
some Es use the obtained proportions for
P(A) and P(B) in Eq. 1. This is easily
shown to be algebraically equivalent to
computing the proportion correct directly
from the raw frequencies in the 2 by 2 data
matrix. That is, when the obtained
stimulus proportions are used for P(A) and
P(B), Eq. I becomes

f(a/A) + f(b/B)
P(C)I = , (2)

f(a) + f(b)

where f(a/ A) is the number of responses a
on A trials, etc.

Other Es ignore the fact that the a priori
probabilities of the two stimulus
alternatives are sometimes quite different
from the obtained proportions. In
computing proportion correct, these
investigators use the a priori probabilities
for P(A) and P(B) in Eq. I. The most
commonly used value for the a prioris is
equality, i.e., peA) = P(B) =0.5. It is worth
noting that when this value is adopted and
the E uses the a priori probabilities for
P(A) and P(8), Eq. I becomes

I
P(Ch = '2 [P(alA) + P(b/B)) . (3)

Needless to say, if the E does not use an
"independent-trials process" to program
his trials but instead employs a procedure
that constrains his stimulus outcomes to be

equal, then for that experiment there is no
difference between Eq.. 2 and Eq. 3.

J. P. Egan introduced and named the last
measure of performance to be considered
here, maximum proportion correct or
P(C)m (see Egan, 1965; Green & Swets,
1966). The motivation behind this measure
is clearly illustrated in Table 2, where it is
shown that the other estimates of
proportion correct are not independent of
the S's response bias. That is, equal-d'
matrices can yield different proportions
correct. This is not true of P(C)m because
this measure is obtained through a
transformation of the d' associated with
the 2 by 2 data matrix. Specifically, a
normal table is entered with a z·score of
(d'/2), and the corresponding area is taken
as P(C)m' This value is the proportion
correct that would have been obtained had
the S adopted a symmetric criterion,
P(a) =P(b) =0.5, and had the underlying
distributions both been equal-variance
normals with a separation between the
means of d'. Considering Table 2 again,
P(C)m is .80 for all three matrices because
the d's are equal. In computing P(C)m the
E is, in effect, moving the S's criterion to
the point of intersection of the two
underlying distributions, the criterion value
at which proportion correct is maximum
given equal a prioris (Eq. 3) or equal
obtained proportions (Eq. 2).

Many Es feel compelled to perform this
"correction for bias," even though they
know that the correction is typically small
for trained Ss. They seem to feel that there
is something unacceptable about crediting
a S with a level of performance "below the
one he could have achieved had he had no
response bias." This last phrase is in
quotations to indicate that such an attitude
shows a deep commitment to the
assumptions of TSD. Other Es are hesitant
to "correct" their data because they are
unwilling to allow theoretical
commitments to affect their data, even if
the effect is small. The purpose of this
paper is to examine the discrepancies
among the various computational versions
of proportion correct. The discrepancies
are examined first as a function of the S's
response bias and then as a joint function
of his response bias and of the bias in the
stimulus proportions.

Table 3 shows six 2 by 2 matrices for
each of five levels of performance as
measured by d'. The response alternatives,
a and b, are indicated at the top of each
column of matrices, and the stimulus
alternatives, A and B, are indicated at the
left for each row of matrices. All six of the
matrices in a given column have the same
d' and, hence, the same P(C)m; the six
matrices differ in the number (proportion)
of each of the two responses given, i.e., in
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I Table 3
Each Column of Matrices Represents a Different Value of d and P(C)m, and Each Row Represents a Different Value of Response Bias, P(a). The

proportion correct shown can be regarded as either P(Ch or P(Ch. Decimal points were omitted throughout the body of the table.

PfC)m = .950 .850 .750 .650 .550
d = 3.29 2.07 1.35 0.77 0.25-

P(a) a b a b a b a b a b

.10 A 200000 800000 19800 80200 189 811 161 839 122 878
B 000018 999982 00177 99823 013 987 039 961 078 922
P(C) 600 598 588 56i 522

.20 A 4010 5990 3900 6100 356 644 302 698 235 765
B 0002 9998 0094 9906 043 957 098 902 165 835
P(C) 700 690 656 602 535

.30 A 5990 4010 570 430 508 492 429 571 343 657
B 0012 9988 029 971 092 908 171 829 257 743
P(C) 799 770 708 629 543

.40 A 7930 2070 729 271 640 360 544 456 448 552
B 0067 9933 072 928 160 840 256 744 352 648
P(C) 893 828 740 644 548

.45 A 8830 1170 794 206 697 303 599 401 500 500
B 0177 9823 106 894 202 798 301 699 400 600
P(C) 933 844 748 649 550

.50 A 950 050 850 150 750 250 650 350 550 450
B 050 950 150 850 250 750 350 650 450 550
P(C) 950 850 750 650 550

the response bias, pea). The bottommost
matrix in each column is what is known as
the symmetric matrix because the hit and
the correct-rejection rates are equal, as are
pea) and P(b). As the eye ascends each
column, it encounters matrices that have
increasingly large response biases toward
the response b, i.e., Pea) declines. For each
of the symmetric matrices in Table 3, the
computed proportion correct is equal to
the P(C)m for that column of matrices, but
for all the other matrices in a column, the
computed proportions correct are smaller
than the corresponding p(C)m' It is just
such discrepancies that impel some Es to
"correct for bias" by computing p(C)m
instead of P(C)} or P(C)2' For all of the
calculations associated with Table 3 (and
Tables I and 2 as well), it was assumed that
either the a prioris were equal and Eq. 3
was used to compute proportion correct or
that the obtained proportions were equal
and Eq. 2 was used. Thus, the proportions
correct shown in this table can be
interpreted either as P(C») or as P(C)2 , as a
function of response bias.

As can be seen from Table 3, the
magnitude of the discrepancy between the
computed proportion correct and P(C)m
for any value of response bias is different
for the different columns, i.e., for the
different levels of performance as measured
by d'. "For example, for the column
d' =3.29 and P(C)m =.950, the values of
proportion correct for the two extreme
response biases, .10 and .50, differ by 35%,
whereas that difference is only 2.8% in the
column d' ="0.25 and P(C)m =.550. 5aid
differently, a given response bias leads to a
discrepancy between computed proportion
correct and P(C)m that is greater the

greater the d'. This is a well-known fact,
and it is an encouraging one because it is
typically only when discrimination is
difficult that trained 5s adopt response
biases, not when discrimination is relatively
easy. Yet the more likely a response bias,
the less effect it has.

Again, for Table 3 the a pnon
probabilites and/or the obtained stimul~s

proportions were assumed to be equal.
That assumption will now be relaxed, and
the effects of both a response bias and a
bias in the stimulus proportions will be
examined. P(C») will be considered first
and then P(C)2' If a 5 has a bias for the
response b on a block of trials in which
there are indeed more B trials, it is intuitive
that P(C») will be larger than if the 5's bias
were for the response a. In order to
illustrate the combined effects of stimulus
bias and response bias on the value of
P(C»), Figs. la-Ie have been prepared. The
values on which the curves in Figs. I a-I e
are based were obtained in part by
operating on the equal-d' matrices shown
in Table 3. For example, the family of
curves shown in Fig. Ia was derived from
the column in Table 3 labeled
P(C)m = .950. For each matrix, the
obtained stimulus proportions were
systematically varied, the value of pea)
calculated, and then the value of P(C»)
computed. In all figures, the ordinate is
P(C») and the parameter on the curves,
P(A), is the obtained stimulus proportion
(the a prioris were assumed to be equal).
Thus, each curve shows, for a given value
of the obtained proportions, how P(C»)
varies as a function of the 5's response bias,
pea).

What these figures illustrate is that the

value of P(C») computed for a block of
trials is a pronounced function both of the
obtained stimulus proportions and of the
response bias of the S on that block of
trials. Consider first the effect of a
response bias on P(C») when there is no
bias in the stimulus proportions; this is
shown in each figure by the curve
designated P(A) =0.5. These curves are
symmetric around p(a) = 0.5, and they
show several things: the more response bias
a S demonstrates, the more his P(C») will
differ from P(C)m; the magnitude of this
difference, for a particular value ofp(a), is
greater the greater the d'; and in no case is
it possible for P(C») to be greater than
P(C)m when the obtained stimulus
proportions are equal.

The relationship becomes more
complicated, however, when the stimulus
proportions are biased. If the S responds
without bias in the face of a bias in the
stimulus proportions, P(C») will be smaller
than P(C)m by an amount that is
dependent upon both the severity of the
stimulus bias and the difficulty of the
discrimination. If the S demonstrates a
response bias that "follows" the bias in the
stimulus proportions, as is likely when the
discrimination is easy, then the resulting
P(C») may be greater than P(C)m (compare
Green & Swets, 1966, p.409). On the
other hand, if his response bias is opposite
to the direction of the stimulus bias, it is
possible for P(C») to be below the nominal
value for chance performance in the
forced-ehoice paradigm we are considering.
Again it should be emphasized that for
each point on each curve in these figures,
there exists a 2 by 2 matrix having a d' arid
a P(C)m equal to that for all other points
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Figs. la-Ie. P(C)} as a function of
response bias, pea), and of bias in the
obtained stimulus proportions, P(A), for
each of five values of P(C)m' Each point on
each curve is based upon a 2 by 2 data
matrix that has a P(C)m which is identical
to that for all other points on aU other
curves in that same figure. Clearly, P(C).
can be greater than, equal to, or smaller
than P(C)m, and it can be smaller than the
value for chance performance, 0.5.

it can only be equal to or smaller than
P(C)m' It shows in general a much smaller
range of variation than does P(C)! ; indeed,
because of this fact some of the curves had
to be omitted in Figs. 2d and 2e. Finally,
for these matrices, P(Ch never drops
below the level of chance performance.
Again it should be pointed out that exactly
the same data matrices were used to obtain
the curves for P(C)! and for P(Ch.

One justification for presenting all of
these tables and figures is that they can be
used by an E to quickly estimate, for a
particular data matrix, the discrepancy
between the version of proportion correct
he prefers to compute and the other two
versions. Obviously, only rarely wfll all of
the parameters of the matrix of data be
exactly equal to one of those used to
construct the figures, but the range shown
should be adequate for "ballpark
comparisons" for any data matrix.3

DISCUSSION
Now that the various computational

versions of proportion correct have been
compared as a function of several variables,
the inevitable question of which version is
"the best" can be faced. Clearly there can
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P(C)m would be less dramatic than those
shown for P(C)! and p(C)m in Figs. la-Ie.
Figures 2a-2e confirm this expectation.
The families of curves shown in these
figures are based on the matrices of
Table 3, just as were the curves in
Figs. la-Ie. The only difference is that
after manipulating the obtained stimulus
proportions and calculating pea), the value
for P(C)2, not P(C)!, was computed. The
parameter on the curves, P(A), is the
stimulus bias. The curves for peA) =0.5 in
Figs. 2a-2e are, of course, identical to those
shown in Figs. la-Ie; they are produced
again in order to facilitate comparison.
Perhaps the most obvious difference
between Figs. la-Ie and Figs. 2a-2e is that,
unlike P(C)!, P(C)2 never exceeds P(C)m;

Figure Ie.
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on all other curves in that same figure, but
the P(C)I for that matrix is given by the
ordinate value of the point. Values ofP(A)
greater than 0.5 are not shown in
Figs. I a-Ie because they would be
redundant; having a bias of 0.1 for
response a and a bias in the stimulus
proportions of 0.1 for stimulus A is
identical to having a response bias of 0.9
and a stimulus bias of 0.9. That is, each
curve could be reflected around the value
Pea) = 0.5 to obtain a curve whose
parameter would be the complement of
that of the first curve.

Since block-by-block variations in the
obtained stimulus proportions are ignored
by the measure P(C)2, one might expect
that the differences between P(C)2 and
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Figs. 2a-2e. P(Ch as a function of
response bias, P(a), and of bias in the
obtained stimulus proportions, peA), for
each of five values of P(C)m' Each point on
each curve is based upon a 2 by 2 data
matrix that has a P(C)m which is identical
to that for all other points on all other
curves in that same figure. The matrices are
the same as those used for Figs. la-Ie.
Unlike P(Ch, P(Ch can only be equal to
or smaller than P(C)m' and, for the
matrices considered, it is never below the
value for chance performance. Note that in
Figs. 2d and 2e the ordinate is expanded,
and the entire family of five curves still
could not be shown.
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be no simple answer to such a question.
The decision as to which version is the
most appropriate will have to be made by
each E for each experiment after careful
consideration of such nonindependent
factors as his reasons for doing the
experiment, the theories on which his data
bear, his willingness to allow his present
theoretical commitments to affect the
form of his basic data, and certain details
of the paradigm. The most that can be
done here is to point out some of the
characteristics of the different
computational versions in an attempt to
aid the E in his choice.

In one sense the entire discussion up to
this point has assumed, if only implicitly,
the validity of TSD and of its various
assumptions. That is, the figures and tables
were constructed by holding d' constant,

0.0 0.2 0.4 0.6 0.8 1.0
RESPONSE BIAS, PIa)

Figure 2e.

varying response bias and/or stimulus bias,
and computing the various proportions
correct. Such an approach might imply
that d' and P(C)m are the measures of
choice, the criteria against which other
measures should be judged. Such an
implication was not and is not intended.
The figures and tables were based upon
these measures only for reasons of
convenience, not to champion them, for, in
its simplest form, TSD is now recognized
to be in error regarding some details. Most
crucial to the present discussion is the
discrepancy between theory and data on
the question of the nature of the
underlying distributions. Simple TSD
assumes that they are normal distributions
of equal variance, but in many experiments
the data (specificaIly, the receiver
operating characteristics, or ROCs)

indicate distributions of unequal variance
(see Green & Swets, 1966). The pity is that
if the underlying distributions are not of
equal variance, the value of d' is' different
for different decision criteria, Le., it is no
longer a criterion-free measure of
discriminability. Continued use of d' in the
face of evidence challenging the
assumptions upon which this measure is
based may appear foolish (or worse) to
many readers. That it is still widely
employed is partly a reflection of the fact
that, in some areas of psychology, the d' of
TSD is more appropriate than any of the
other measures available, that is, it is more
nearly "correct" than any of the
alternative measures. (Certainly typical
ROC data are better fitted by equal-d'
functions than by equal-P(Ch functions,
for example, since the latter are unit-slope
straight lines in a ROC space with linear
coordinates.)

But this is beside the point. AIl that
need be noted here is that the computation
of P(C)m as an attempt to "correct for
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bias" presupposes the validity of the
assumptions of simple TSD, some of which
are acknowledged to be wrong in detail in
certain experimental situations. If an E
recognizes this problem but still feels that
the use of P(C)m is justified because it is in
some sense better than all of his present
alternatives, and/or that its use is required
in order to put his data into a form
appropriate for the theoretical arguments
he wants to make, then well and good. All
that can be asked is that he be aware of his
assumptions.

The E who is hesitant about making the
assumptions required to compute P(C)m in
a particular situation, but who feels that
something like this version should be used,
can be confident that the less
theory-bound P(Ch will differ from P(C)m
less, on the average, than will P(C)l' As
noted above, P(C)2 can only be equal to or
smaller than P(C)m and, particularly at
moderate and low levels of performance, it
is quite immune to fluctuations in the
obtained stimulus proportions.

It is difficult to say much that is positive
about P(C)I.It is, at the same time, the
most pure and the most primitive of the
three versions discussed. Figs. I a- Ie show
that the value of P(C)1 can vary
enormously as a function of response bias
and of stimulus bias and that it can
indicate below chance performance when
the other versions of proportion correct
indicate quite high discriminability. It does
have one characteristic that might prove a
virtue in some situations, namely, that
averaging P(C)l over several blocks of
trials, each taken at the same value of the
stimulus parameter, is equivalent to
cumulating across blocks the raw
frequencies in each of the four cells of the
data matrix and then computing P(C)l .

At high levels of performance, a S will
sometimes have either no false alarms or no
misses (or both) on some blocks of trials.
Since d' is infinite in such situations,
P(C)m cannot be calculated for such blocks
of trials. This is, of course, a disadvantage
that neither of the other versions has. Es
who prefer to use P(C)m typically compute
one of the other versions when faced with
a matrix containing a zero.

P(C)1 and P(C)2 differ in the way they
treat block·by-block discrepancies between
the a priori probabilities of the stimulus
alternatives and the obtained stimulus
proportions-P(C)1 ignores the a prioris
and P(Ch ignores the obtained
proportions. It is intuitive that P(C)\ is
inherently the more variable version
because it is based not only on an estimate
of the S's sensitivity, but also on an
estimate of the a priori probabilities. Of
course, the computation of P(Ch or P(C)m
involves no such estimates of the a prioris,

and, as a consequence, these versions
contain one less source of variance than
P(C)\.

In some ways, good Ss and poor Ss can
be likened to P(C)\ and P(Ch. In many
experiments, particularly psychophysical
experiments, a good S is defined as one
with a keen memory for the classes of
input to be discriminated but no memory
for the responses he has made on previous
trials. That is, he does not adopt exotic
response strategies, succumb to gambler's
fallacy, etc., but he treats each trial as an
independent event. Prior to the onset of
every trial, the probability of his giving one
response is equal to that of his giving the
other (assuming the a prioris are equal). In
a sense, such a S ignores the obtained
proportions. He may show a response bias
at the end of a biased block of trials, but
his bias is not the result of a change in his
tendency to give one of the two responses;
it is simply a reflection of the bias in the
stimuli on that block. Such a S could not
show a large bias opposite to the stimulus
bias. A poor S, on the other hand, is one
whose tendency to give the two responses
is biased as a result of one influence or
another, and, furthermore, his bias may
fluctuate from block to block and even
within a block. Such a S might begin a
block of trials with a predisposition toward
one of the responses, say due to an
extreme stimulus bias toward that stimulus
alternative on the previous block, but as
the block progresses, his criterion might
move in one direction or the other if a
stimulus bias began to develop. In a sense
such a S ignores the a prioris and, clearly,
the data from a S like this will be more
variable than those from the good S
discussed above.

Thus, P(C)1 is the version with the most
inherent variability, and some Ss are
characterized as poor because of their more
variable decision behavior, not necessarily
because of any difference in their
sensitivities. Taking these two facts
together, an E using Ss that he knows to be
less than higWy trained or motivated might
be apprehensive about the possibility of
adding even more variance to his data by
using P(Ch.

As noted above, there is no difference
between Eq. 2 and Eq. 3 when a trial
sequence is determined not by an
"independent-trials process" but by a
procedure that results in equal numbers of
each of the two stimulus alternatives on
every block of trials. This practice warrants
comment. Whereas such programming may
be convenient and even necessary for
proper coun terbalancing in certain
psychological experiments, in most
psychophysical experiments it is generally
a bad practice because the a priori

probability of the two stimulus alternatives
changes trial by trial when the stimulus
outcomes are constrained to be equal. If
the S knows and uses this information,
then the measure of performance
computed for him for that block of trials
will be contaminated by a nonsensory
variable of the sort modern psychophysics
tries to eliminate. As an example, consider
a block of trials in which a S receives by
chance many more A trials than B trials
during the first half of the block. If he
knows there will be an equal number of
both stimuli by the time the block is over,
then he also knows that the probability of
receiving a B trial is now much greater than
that of receiving an A trial. Clearly, by
simply increasing his rate of responding
"b" during the second half of the block, he
can guarantee himself some correct
decisions he would not otherwise obtain. If
equal stimulus outcomes are indispensable
in some experiment, the E probably ought
to make the trial sequences even more
pseudorandom by preventing large local
imbalances in the presentation rates so that
the Ss will be less likely to adopt response
strategies based on such imbalances.

Not to be minimized in this discussion is
the experience of many Es who have
concerned themselves with the question of
which computational version of proportion
correct to use and whose approach has
been the strong-arm one of computing all
three versions for every block of trials for
every S in the experiment. The typical
outcome of such heroic undertakings is
differences in the mean data of about
5%-8%. Such differences are not
insignificant in this era of precision
psychophysics; on the other hand, they are
not enormous differences, particularly in
some other areas of psychology. Hopefully,
as time passes, better and better measures
will be developed, and/or we will learn how
to run better experiments, and the problem
of choosing among these versions of
proportion correct will disappear or at least
be minimized. Until then, the tables and
figures presented here can facilitate
comparisons among the various versions of
proportion correct.
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NOTES
1. The preparation of this paper was supported

in part by a grant from the Graduate School of
the University of Texas. Preliminary drafts were
read and criticized by J. P. Egan, D. S.
Emmerich, H. Ermey, D. J. Foss, E. R. Hafter, G.
H. Jacobs, and L. A. Jeffress.

2. Address: Department of Psychology, Mezes
Hall, University of Texas, Austin, Texas 78712.

3. In psychophysics there are currently two
popular forced-choice paradigms that yield data
for which 2 by 2 matrices are appropriate, the
single-interval or yes-no method and the
two-interval forced~hoice or 21FC method. Both
involve two stimulus and two response
alternatives, that is, they could both be called
two-alternative methods. The difference is that in
the yes-no method the S is presented, on every

trial, with a single sample drawn either from one
distribution or the other, and his task is to decide
on the origin of that sample, whereas in the 21FC
method he is presented with two samples on
every trial, one drawn from each distribution,
and he must decide which of the two temporal
intervals contained the sample from the target
distribution. Simple statistics reveal that the
performance of an ideal S operating in the two

tasks shoul4 be related asy'2d'yn'= d'2IFC' and
this relation has been shown to hold fairly well
for human observers in several detection
situations. I have been intentionally vague in this
paper about which of these two paradigms I was
discussing, because I feel I am discussing both of
them. If an E is running an analog to a 21FC
experiment and he has reason to believe that the
square-root-of-two relation holds for his task,
then he may choose to make this correction
before computing proportion correct. Such
manipulations are sometimes necessary in making
an argument (e.g., see McFadden, 1966), but
they are irrelevant to the point of this paper.
What is said here about the various versions of
proportion correct will be true for any
two-alternative data matrix. All calculations
shown in this paper happen to be based on yes-no
statistics. The term "forced-choice" is used by
some writers for 2IFC and multiple-alternative
paradigms only, not for the yes-no method. This
distinction has not been respected in this paper.
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