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S2' ••• , Sn, evoke "Yes" responses with increasing probabilities,
Po, PI, P2, ••• , Pn- respectively, and "No" responses with
decreasing probabilities, qo, ql , q2, ••• , ~, respectively, where
Po + qo =PI + ql = ••• = Pn +~ = 1.00. Also, assume Po =.00,
i.e., the probability of a "Yes" response at So is zero, and
Pn =1.00, i.e., the probability of a "Yes" response at Sn is 1.00.
The p values will be called MeS p values. (See Table I.)

MA = ko + c(1 + ql + ql q2 + q, q2q3 + ••• + ql q2 ••• qn-l)'

(I)

Relationships Between MCS P Values and ML Threshold
Distributions

In the ascending method of limits (AML), successive stimuli,
So, SI , S2, etc., are presented until a "Yes" response occurs. The
probability of the "Yes" occurring at stimulus value 5i is qoql q2
••• <J.i-lPi (see Table 1).2 With Pn =1.00, the proportion of
ascending series terminating at a given stimulus value equals the
probability of an ascending series terminating at that value. Thus,
of all the ascending series, the proportion terminating at S4 is
qoql q2q3P4' For every ascending series terminating at a given
stimulus value, the threshold is midway between that value and
the preceding value in the series.J Thus, an ascending series that
terminates at S4 yields a threshold of (S3 + S4)/2 or k4.

Similar considerations applied to the descending method of
limits (DML) lead to the conclusion that the proportion of
descending series terminating at, say, S4 in the Table 1 example,
is Ps P7P6Ps qa , and for every descending series that terminates at
S4, the resulting threshold is (S4 + Ss )/2 or ks .

Combining the AML threshold distribution with the DML
threshold distribution gives the threshold distribution of the
combined method oflimits (CML).

Summary Statistical Measures of ML Distributions
The mean threshold of the AML threshold distribution is:

where c is the step size, i.e., c =(Sn - Sn-l) =••• =(52 - Sj ) =
(SI - So), and ko =(So - c/2).

The mean threshold of the DML threshold distribution is:
Description of Model

Assume that equally spaced, increasing stimulus values, So, SI ,

Table 1
Derivation of Method of Limits Thresholds from Method of Constant Stimuli (MCS) P Values on Assumption

that MCS Distribution is a Cumulative Symmetrical Distribution

The phi-gamma hypothesis is a special case of the general
hypothesis of a cumulative symmetrical distribution. Assuming
any cumulative symmetrical distribution, with stimuli equally
spaced about the axis ofsymmetry, (a) the descending method of
limits (DML) threshold distribution is asymmetrical and is a
mirror image of the ascending method of limits (AML) threshold
distribution; (b) the combined method of limits (CML) threshold
distribution is symmetrical; (c) with the subscripts A, D, and C
referring to AML, DML, and CML distributions:
MA <Mc<MD; UA = aD; aC>aA; (d) as step size increases:
MA increases, MD decreases, Me remains constant, aA and aD
increase, ac first decreases and then increases; (e) the mean
threshold of the method of constant stimuli (MCS) equals Me
For a particular assumption of a cumulative symmetrical
distribution, statistical measures of the method of limits can be
used to estimate MCS statistics. The analyses are supported by
data from brightness discrimination experiments.

The phi-gamma hypothesis and other related hypotheses are
commonly used with the Method of Constant Stimuli (MCS). The
purpose of this paper is to deduce, from such hypotheses,
predictions of the outcome of Method of Limits (ML)
experiments.

The model used in deriving the predictions was first invented
by Urban (1908). Since Urban's time, the model has been
independently reinvented, e.g., by Dixon and Mood (1948), by
Herrick (I967), and undoubtedly by others. The model reflects
the kind of data obtained in a two-category ("Yes"-"No") MCS
experiment. In a word, the model assumes that the probability of
a "Yes" response increases with an increase in the stimulus
intensity.

PSYCHOPHYSICAL PROBABILITY MODEL
The reader is referred to two earlier publications (Herrick,

1967, 1969) for a full description of the model and for
deductions from the model. In this section, only a summary
description will be given.

Stimulus
Value

Method of Constant Stimuli

Proportion of Responses
"Yes" "No"

Ascending Method of Limits

Probability of series terminating
at given stimulus value

Descending Method of Limits

Probability of series terminating
at given stimulus value

Po: .00
Pl
P2
P3
P4
Ps
P6
P7
Pg: 1.00

Po
qOPl
qOqlP2
qOqlqZP3
qOQlq2Q3P4
QOQl Q4PS
QOQl QSP6
QOQl Q6P7
QoQI Q7Pg

: Po
: Pg(Pl)
: PgP7(P2)
: PgP7P6(P3)
: PgP7 P6PS(P4)
: PgP7 P4(PS)
: PgP7 P3(P6)
: PgP7 PZ(P7)
: PgP7 Pl(Pg)

pgP7" . PIQO
PgP7" . PZQl
PgP7'" P3Q2
PgP7'" P4Q3
PgP7 P6PSQ4
PgP7P6QS
PgP7Q6
PgQ7
Qg

: PgP7 Pl(Pg)
= PgP7 P2(P7)
: PgP7 P3(P6)
= Pgp7 P4(ps)
= PgP7 PS(P4)
: PgP7 P6(P3)
: PgP7(P2)
= Pg(Pl)
= Po
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The standard deviation of the AML threshold distribution is:

No matter what set ofMCS P values are assumed,

The standard deviation of the DML threshold distribution is:

00 = {c2 [n2 - 3Pn-lPn-2 ••• PI - 5Pn-lPn-2 ••• P2

value, Xc, f(xo -~) = f(xo +~) for any value of ~, the
equation is an equation of a symmetrical distribution. When the
ordinates of such a distribution are cumulated, the resulting
distribution is a cumulative symmetrical distribution. The left
half of Fig. 1 illustrates two cumulative symmetrical
distributions, each symmetrical with respect to the stimulus
value, 55.

If the ordinate of a cumulative symmetrical distribution at
(xo - olh) is Pi, the ordinate at (xo + olh) is (1 - pJ or 'Ii. Now,
with respect to the probability model described above, if stimulus
values for the ML are selected with respect to the axis of
symmetry, Po =~, PI = ~-l, P2 = ~-2, "', Pn-l = ql,
Pn = 'lo.

Summary Statistics of Cumulative Symmetrical Distribution
With MCS P values selected with respect to the axis of

symmetry, the middlemost stimulus must have an lBSociated
P =0.50. In the left half of Fig. 1, for example, the rniddlemost
stimulus is S", so P4 must equal 0.50. With an even number of
stimuli, the two middlemost stimuli must have associated P values
that fall equally above and below 0.50. Since the stimulus value
associated with P =0.50 is the mean (or median) threshold of the
MCS, the mean (or median) threshold of the MCS is always
midway between So and Sn' That is:

(3)

(2)

(4)

MO =ko + c(n - Pn-l - Pn-lPn- 2 - Pn-lPn-2Pn-3

- ••• - Pn-lPn-2Pn-3 ••• P2Pl)'

oA = tc2 [1 + 3ql + 5ql ~ + 7ql q2q3

+ ••• + (2n -l)qlq2 ••• qn-d -(MA - kO)2}~. (5)

The mean threshold for the CML threshold distribution, when
the number of thresholds of the AML distribution, namely, NA ,
equals the number of thresholds of the DML distribution,
namely, No, is:

-7Pn-lPn-2 ••• P3 - ••• -(2n -1)Pn-l]

- (Mo -ko)2 }~. (6)

When NA =No, the standard deviation for the CML threshold
distribution is:

0c ={ [(MA - Mo)/2j2 + (OA2 +00 2)/2 }'h (7)

CUMULATIVE SYMMETRICAL DISTRIBUTIONS
Def"mitionof Cumulative Symmetrical Distribution

Consider a distribution, y = f(x). If, with respect to some x

74

(8)

The variability of a cumulative symmetrical distribution may
be specified by the standard deviation of the distribution. The
symbol for this measure will be 0MCS-

Assumptions of Cumulative Symmetrical Distributions in
Psychophysics

Two assumptions commonly made in psychophysics are (a) the
phi-gamma hypothesis, which states that, as a function of
increasing stimulus intensity, the proportions of "Yes" responses,
i.e., the MCS P values, are described by a cumulative normal
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Fig. 2. Means and standard deviations of
method of limits threshold distributions as
a function of step size. Subscripts refer to
ascending method of limits (A), descending
method of limits (D), and combined me
thod of limits (C) .
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To be symmetrical, an AML threshold distribution must have
equal ordinate values at points equally distant from an axis of
symmetry. For example, with respect to Table I, the proportion
of AML thresholds of value k, must equal the proportion of
AML thresholds of value ks. Now, the proportion of AML
thresholds of value k l is qoPI ::(1.00) PI ::PI, and the
proportion of AML thresholds of value ks is
PIP2P3P4PSP6P,(PS)2. Thus, the proportions at kl and ks are
unequal. Therefore, an AML threshold distribution is
asymmetrical Since a DML distribution is a mirror image of an
AML distribution, it too must be asymmetrical.

The above analysis indicates that the assumption that MCS p
values form a cumulative symmetrical distribution is incompatible
with the assumption of normality, or of any other form of
symmetry, for the AML or DML threshold distributions.
Conversely, if either the AML or the DML threshold distribution
is symmetrical, MCS p values cannot form points on a cumulative
symmetrical distribution.f

By pooling the AML and DML distributions, the threshold
distribution of the CML is obtained. For the CML threshold
distribution, the proportion of thresholds of value kl (see
Table I) is (qoPI + PsP' ••• Plqo)/2. The proportion of
thresholds of value ks is the same. Similarly, the proportion of
thresholds of value k2 equals the proportion of thresholds of
value k, , etc. Thus, the CML threshold distribution is
symmetrical.

If a CML distribution, expressed in proportions of thresholds,
is cumulated, is the result identical with the underlying
cumulative symmetrical distribution of p values? For example, if
the CML distribution of Fig. I, with Me = 55.00 and ue = 9.210,
is cumulated, is the plot the same as the plot of the MCS p values

...--,......---------------------__----r-;

z..
UJ
~

distribution, and (b) the quantal hypothesis, which states that the
p values form a cumulative rectangular distribution (Guilford,
1954). Both of these hypotheses may be subsumed under the
hypothesis that the p values form a cumulative symmetrical
distribution. Thus, any deductions from the probability model
that apply to a cumulative symmetrical distribution wiIl apply to
the phi-gamma hypothesis, to the quantal hypothesis, and to any
other hypothesis that assumes a cumulative symmetrical
distribution.

DEDUCTIONS BASED ON THE ASSUMPTION THAT
THE MCS p VALUES FORM A CUMULATIVE

SYMMETRICAL DISTRIBUTION
Shapes of ML Distributions

In Table I, the proportion of ascending series terminating at S3
is qoql q2P3' In a cumulative symmetrical distribution, with nine
stimuli, qo =ps, ql =p" q2 =P6, etc. Therefore, qoql q2P3 =
PSP,P6P3, as indicated in Table I. Similarly, the proportion of
descending series terminating at each stimulus value may be
expressed in terms containing only p values, as in Table I. A
comparison of the proportions of AML series terminating at the
different stimulus values with the proportions of DML series
terminating at the different stimulus values indicates
correspondence. For the Table I data, the proportions of
ascending series terminating at So, SI, S2, "', Ss equal the
proportions of descending series terminating at Ss, S" 56, "',
So, respectively. Thus, the proportions of AML thresholds of
values k], k z , k3, "', ks equal the proportions of DML
thresholds of values ks , k, , k6 , ••• , k I , respectively. In short, the
DML threshold distribution is a mirror image of the AML
threshold distribution .

SPACING BErWEEN SUCCESSIVE STIMU~I (STEP SIZE)
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Substituting, in Eq. 3, the values for MA and MD given in Eqs.
9 and 10:

where z = .5 + ql + qlq2 + qlq2q3 + ••• + qlq2 ... lin-I.
Similarly,

with MMCS =55.00 and aMCS =10.001 Obviously not, in the
Fig. 1 example. Moreover, analyses given elsewhere (Herrick,
1968) indicate that, in general, a cumulated CML distribution is
not equivalent to the associated MeS p values. Siegel (1962)
assumed such equivalence in his comparison of psychophysical
methods.

Mean Thresholds of ML Distributions
Equation 1 gave a description of MA for any set of MCS p

values. Equation 1 may also be written as

(15)MA== (MMCS - 4) + c'z.

ESTIMATION OF MMCS AND aMCS FROM ML MEASURES
ON THE ASSUMPTION OF A CUMULATIVE

NORMAL DISTRIBUTION
In this section, relationships concerning only the phi-gamma

hypothesis will be considered.

Estimation of MM CS
Dividing a ML term by aMCS expresses the ML term in units of

aMCS. In what follows, when a ML term is expressed in units of
aMCS, the term will carry a prime. For example, (c/aMcS) = c';
(MA/aMCs) = MA·

A particular stimulus value may be expressed in terms of
MMCS and aMCS. For example, for the cumulative normal
distribution of Fig. 1, the stimulus value So may be expressed as
MMCS - 4aMCS·

With the above points in mind, consider Eq.9. When
(MMCS - 4aMCS) is substituted for So, and each term is divided
byaMCS:

(9)

(10)

MA = So + cz,

MA = MMCS - .408 aMCS + .181 c. (17)

Substituting this value for z in Eq. 15, and multiplying by aMCS
gives:

Now, for the assumption of a cumulative normal distribution,
the relationship between z and c', for c' values between 0.5 and
2.0, is approximately described by:6

In the following section, Eq.2l relates aMCS, aA, and c.
Substituting in Eq. 17 the value of aMCS given in Eq. 21, and
solving for MM CS,

(16)z = .181 + (3.592/c').

Equation 11 indicates that the phi-gamma hypothesis, the
quantal hypothesis, or any hypothesis of a cumulative
symmetrical distribution predicts the same Me.

Subtracting Eq. 9 from Eq. 10 gives the amount by which MD
is greater than MA:

Mc = (So + cz + Sn - cz)/2 =(So + Sn)/2. (11)

MD - MA = c(n - 2z) = Range - 2cz. (12)

Standard Deviations of ML Distributions
When distributions are mirror images, their standard deviations

are equal. 5 Therefore, aA = aD.
Since aA = aD, aA may be substituted for aD in Eq. 7. When

the terms are rearranged:

(13)
MMCS = MA + .637 aA - .337 c. (18)

The value ofMMCS may also be estimated by Mc, for MMCS =
(Sn - So)/2 = Mc·

Estimation of aMCS
For the assumption of a cumulative normal distribution, for c'

values between 0.5 and 2.0, the approximate relationship7

between c' and alA is:

Influence of Step Size on ML Mean Thresholds and Standard
Deviations

In the examples of Fig. 1, the spacing between successive
stimuli is 10 units, i.e., c =10. The derivation of ML distributions
from MCS p values was also carried out for other step sizes for
the cumulative rectangular and cumulative normal distributions
of Fig. 1. In all cases, So = 15. The largest step size used, 26.667,
was obtained by dividing the range by 3, i.e.,
(95 -15)+3=26.667. This gives So = 15, SI =41.667,
S2 = 68.333, 34 = 95. If the range were divided into larger steps,
e.g., by dividing the range by 2, the result would be the trivial
case of only three stimuli, 15, 55, and 95, with associated p
values of .00, .50, and 1.00. (Note that when stimuli are selected
with respect to the axis of symmetry, c can only equal the values
obtained by dividing the range by integers.)

In general, the number of stimulus values covering the range
from So through Sn, may be computed by:

Similarly,

MMCS= MD - .637 aD + .337 c.

aA == .641 + .245 c'.

Multiplying Eq. 20 by aMCS and solving for aMCS:

aMCS = 1.56 aA - .382 c.

(19)

(20)

(21)

Number of stimulus values = [(Sn - So)/c] + 1 = (Range/c) + 1.

(14)

Also, since aA = aD,

aMCS = 1.56 aD - .382 c. (22)

The p values used with the cumulative rectangular distribution
were derived by calculation. The p values used with the
cumulative normal distribution were obtained from a normal
curve table.

For the ML distributions derived with the different step sizes,
the means and standard deviations computed are plotted in
Fig. 2.

76

Substituting in Eq. 13 the values for MA, MD, and aA given
above, and solving for aMCS, gives an estimate of aMCS in terms
of ac and c:

aMCS = (-.144 c) + (2.31 ac2
- .187 c2)Yz /1.l 55. (23)

Comment
It should be noted that the differences between ML and MeS
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Session Procedure Log AI Luminances (mL) Used

Table2
Summary of Experimental Procedures

-.04, -.10, -.16, -.22, etc.

-.04, -.07, -.10, -.13, etc.

..
'" Statistical Measure in LogmL~
ill
.c Session MA MD MC aA aD aC0

A.L. A.M. -.278 -.255 -.267 .044 .038 .042
P.M. -.279 -.216 -.225 .043 .038 .051

J.D. A.M. -.474 -.402 -.443 .073 .064 .071
P.M. -.526 -.268 -.399 .114 .152 .186

Statistical Measure in Log mL

MD MD U)) U))
(large (small (large (small

Observer Session step) step) step} step)

A.L. A.M. -.200 -.168 .060 .033
P.M. -.217 -.156 .047 .031

J.D. A.M. -.379 -.344 .093 .093
P.M. -.359 -.240 .129 .076

Table4
Experiment 2. Results of B.1oess Discrimination Experiments Using
Two Step Sizes with the Descending Method of Limit&. (Predictions from

Analyses: MD (large step) <MD (lI1laIl step);
aD (qe step)>aD (small step).]

Table3
Experiment 1. Results of Brightness Discrimination Experiments Using
the AML and the DML. (Predictions from Analyses: MA< MC; MC <MD;

aA = aD; aC > aA; aC > aD']

TableS
Experiment 3. Results of Brightness Discrimination Experiments Using
the Method of Constant Stimuli and the Descending Method of Limit&.
(Predictions from Analyses: MMCS < MD; <1Mcs > Up when c is smaIL]

Statistical Measure in Log mL

-.10, -.16, -.22, -.28, etc.

-.04, -.055, -.07, -.085,etc.

-.10, -.115, -.13, -.145.etc.

-.04, -.16, -.28, -.40, etc.

-.16, -.19, -.22, -.25,etc.

-.16, -.28, -.40, -.52, etc.

-.34, -.28, -.22, and-.16
-.16, -.175, -.19, -.205, etc.
-.52, -.40, -.28, and -.16
-.16, -.19, -.22, -.25, etc.

Experiment 1
AML -.37, -.34, -.31, -.28, etc.
DML -.19, -.22, -.25, -.28, etc.
AML -.34, -.31, -.28, -.25, etc.
DML -.16, -.19, -.22, -.25, etc.
AML -.58, -.52, -.46, -.40, etc.
DML -.22, -.28, -.34, -.40, etc.
AML -.76, -.70, -.64, -.58, etc.
DML -.04, -.10, -.16, -.22, etc.

Experiment 2
DML

(luge step)
DML

(small step)
DML

(luge step)
DML

(smaIl step)
DML

(luge step)
DML

(smaIl step)
DML

(luge step)
DML

(small step)
Experiment 3

MCS
DML
MCS
DML

A.M.

P.M.

A.M.

A.M.

P.M.

P.M.

A.M.

P.M.

A.M. &
P.M.
A.M.&
P.M.

A.L.

J.D.

A.L.

J.D.

J.D.

A.L.

Observer

statistical measures are quite small. For example, stating the
differences in terms of aMCS, when c' = 1.0 : (MMCS - MA) <
(.25 <1MCS), (aMCS - (JA) < (.11 aMCS), and (aMCS - ad <
(.08 aMCS). When c' =1.6 : (MMCS - MA) < (.11 aMCS),
(aA - aMCS) < (.05 aMCS), and(ac - aMCS) < (.05 aMCS)·

EXPERIMENTAL EVALUATIONS
Practical Problems

Although the above analyses provide many predictions,
experimental evaluation is difficult because of practical
considerations. First, since only a limited number of judgments
may be obtained in an experimental session, the resulting sample
statistics will be somewhat unreliable. Second, a predicted
difference is often quite small. Third, in selecting stimuli for a ML
experiment, the axis of symmetry for the cumulative symmetrical
distribution is unknown. Thus, the stimuli will not be spaced with
respect to the axis of symmetry, and, consequently, the
predictions. given above will not hold exactly. Fourth, in an
attempt to obtain many thresholds for a given number of
judgments, the initial stimulus in a ML series may' be selected
within the appropriate range of stimuli, rather than at the
extreme of the range. For example, the initial stimulus for a
descending series may be one with an associated p value of, say.
0.92, rather than 1.00. Such selections would yield differences
between statistical measures that were less than the differences
predicted by the analyses. Keeping these problems in mind, we
turn now to some brightness discrimination experiments designed
to evaluate some of the gross predictions of the analyses.

Procedure
The experimental situation was as follows. Monocularly, an 0

centrally fixated a circular adapting field of white light, I deg
7 min in diam, at an apparent distance of 570 mm, with a
luminance of 11.5 mL. On command, a 2Q.msec flash (the .:lI

Observer Session MMCS MD aMcs aD

A.L. A.M. -.281 -.207 .060 .027
P.M. -.251 -.192 .087 .021

1.0.
A.M. -.347 -.298 .098 .093
P.M. -.328 -.223 .164 .059

light) was added to the whole adapting field.
Each session consisted of 260 judgments: 120 with one

procedure, 120 with another, and 20 randomly inserted "catch
tests." Table 2 summarizes the procedures. In Experiment I, the
ascending and descending series were alternated randomly. In
Experiment 2, 60 judgments were made with the large-step size,
then 120 with the small-step size, then 60 with the large-step size,
in the morning session; the order was reversed in the afternoon
session. In Experiment 3, 60 judgments with the DML were
followed by 120 judgments with the MCS and then by 60
judgments with the DML in the a.m. session; the order was
reversed in the p.m. session.

Results
The results of the experiments, along with predictions

appropriate to each experiment, are presented in Tables 3, 4, and
5. Except for the MCS part of Experiment 3, the predictions are
based on the assumption that the p values form an unspecified
cumulative symmetrical distribution. The means and standard
deviations for the ML procedures were computed in the usual
way. In Experiment 3, MMCS and aMcS were estimated from a
straight line fitted, by the method of least squares, to a plot of
log .!lIs vs proportion of "Yes" responses (a MCS plot) plotted
on a cumulative normal scale. In all "catch tests," the Os
responded correctly.

In Experiment I, excluding the prediction aA = aD, 15 of the
16 evaluations support the predictions. In Experiment 2, 7 of the
8 evaluations support the predictions. In Experiment 3, all 8
evaluations support the predictions. In short, in spite of all the

Perception & Psychophysics, 1970, Vol. 7 (2) 77



practical limitations, the data support the predictive value of the
analyses.

If the cumulative normal distribution is assumed to be the
underlying distribution, Eqs. 18, 19,21,22, and 23 may beused
to estimate MMCS and 0MCS from the data given in Tables 3, 4,
and 5. For example, for 0 JD., for the morning session of
Experiment 2 (see Tables 2 and 4) for the large-step size: c =.I 2,
MD =-.379, and 0D =.093. Applying Eq. 19:

MMCS = -.379 - .637(.093) + .337(.12) = -.398.

Also, using Eq. 22:

0MCS = 1.56(.093) - .382(.12) = .099.

An alternative methodf for estimating MMCS and 0MCS is to
treat the ML data like MCS data, i.e., c.alculate the proportion of
"Yes" responses at each stimulus value, plot the proportion of
"Yes" responses vs stimulus values (a MCS plot), and estimate
MMCS and 0MCS from the plot. This procedure was followed for
the example just discussed. The data points, plotted on a
cumulative normal scale, were fitted, by the method of least
squares, with a straight line. The estimates obtained were:
MMCS =-.420, and 0MCS =.132.
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NOTES
1. Address: Aerospace Medical Research Department, Naval Air

Development Center, Johnsville, Warminster, Pennsylvania 18974.
2. Some discussion of nonprobability influences may be found in an

earlier publication (Herrick. 1969).
3. Other definitions of the threshold have been considered elsewhere

(Herrick, 1969).
4. The points discussed in this paragraph are considered more fully

elsewhere (Herrick, 1968).
5. Following the ideas presented in the first paper of this series (Herrick,

1967), Pollack (1968) performed Monte Carlo simulations of various
psychophysical procedures. The results of his simulations differ slightly
from the results obtained with Eqs, 9·13. The discrepancies undoubtedly
result from some minor errors in the computer simulation process. noted
byPoUack.

6. Over a wider range, from c! = 0.10 to c' = 2.667, the relationship may
be described by the more complex equation, z = -.28 + 4.04(c')-·1I4.

7. Over the range from c! = 0.10 to c' =2.667. the equation,
o'A=' .92(c')·2-2. gives a good approximation.

8. This method is discussed and illustrated in an earlier paper (Herrick.
1969).
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