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Two subjective scales of number

WILLIAM P. BANKS and MARK J. COLEMAN
Pomona College, Claremont, California 9/711

The way in which the apparent magnitude of numbers grows with their absolute mag
nitude was measured with a modified version of the direct technique Marks and Slawson
(1966) used to determine the psychophysical exponent for loudness. This modified technique
required subjects to estimate how evenly and randomly a sequence of integers appeared to
sample the numerical continuum. The results indicate that the apparent magnitude of numbers
increases with a decelerated power function of their arithmetic magnitude when a series
samples from an open-ended range. However, when an upper boundary of the range is specified,
the subjective scale seems to be linear. Random productions of numbers parallel the results
found with judgments of presented sequences. The two scales of number provide the basis
for an interpretation of the difference between magnitude and category scales: that subjects
use numbers differently when the response scale is open-ended (magnitude estimation) than
when it has a fixed upper limit (category scale). Given the assumption that subjects use numbers
in this way in the two tasks, the qualitative relation between magnitude and category scales
is predicted.

Since Garner, Hake, and Eriksen (1956) discussed
the effect response systems can have on reports of
perceptual events and sensory magnitudes, there have
been a number of attempts to determine the effects
of response scales on the results of direct-scaling
techniques. In the magnitude estimation paradigm,
the most popular and versatile of the direct-scaling
techniques, the response scale is the numerical con
tinuum, and interest in response effects in direct
scaling has naturally focused on numerical responses.
Attneave (1962) provided a stimulating discussion of
the issues relating to use of numerical responses, and,
in the same paper, he presented probably the first
reported attempt to scale the numerical continuum.
From the results of this informal experiment, Attneave
concluded that the subjective magnitude of numbers
grows with the .4 power of their absolute magnitude.
If subjects in magnitude estimation tasks used such a
compressed scale of number in selecting their responses,
a stimulus called "10" would be subjectively only
two or three times as large as a stimulus called" I,"
not 10 times as great.

A few studies subsequent to Attneave's 1962 paper
have yielded subjective scales of number, but it has
been only a few because the numerical continuum
presents a very difficult problem. Direct scaling tech
niques such as a ratio production or magnitude
estimation cannot be used because subjects can use
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arithmetic algorithms to estimate the "correct"
answer in a way that is impossible with psychophysical
continua. More important, magnitude estimation ap
plied to the scaling of number would necessarily be
subject to the distortions of the response system, and
a direct scale of number would therefore be con
taminated by the very factors it is intended to mea
sure. Indirect techniques, at least the classical ones,
also seem inapplicable to the numerical continuum.
For example, a JND scale of integers is absurd on the
face of it: Two numbers are either equal or they are
not (however, Weissman, Hollingsworth, & Baird,
1975, have obtained psychometric functions for dif
ferences between sets of numbers).

In spite of the difficulties of scaling the numbers
(or possibly because of the difficulties), at least three
difficult forms of the subjective scale of the numerical
continuum have emerged from scaling studies: (1) a
linear scale (Goude, 1962; Rosner, 1965); (2) a loga
rithmic scale (Ekman, 1964; Ekman & Hosman, 1965;
Moyer & Landauer, 1967; Rule, 1969); and (3) a
decelerated power function scale (Curtis, Attneave,
& Harrington, 1968; Curtis & Fox, 1969; Schneider,
Parker, Ostrosky, Stein, & Kanow, 1974). Banks and
Hill (1974) used several scaling techniques and were
able to conclude that the scale is compressive, but
they found that either a logarithmic or a power func
tion (exponent of .6) fit their results equally well.
Banks, Fujii, and Kayra-Stuart (1976) concluded that
a compressed scale of number IS needed to account
for the pattern of reaction times for comparative
judgments among pairs of digits. (Moyer & Landauer,
1967, came to the same conclusion.) The Banks et al.
(1976)study was, however, similar to that of Banks and
Hill (1974) in its inability to distinguish between a com
pressed power function and a logarithmic function.
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Experiments 1-5 in the present study attempt to
decide among these proposed scales by use of a vari
ation of the technique Marks and Slawson (1966)
devised to make a direct test of the S. S. Stevens
(1956) power function for loudness (cf. also Borg,
Edstrom, & Marklund, Note 1, for another variation
of the Marks and Slawson techniques). Marks and
Slawson presented their subjects with 2.5-sec bursts
of auditory pulses that increased in loudness according
to various functions during presentation, and sub
jects rated the apparent deviation from linearity of
the growth in loudness of each burst. The functions
by which loudness increased were chosen in such a
way that they would each provide a linear increase
over a different mapping of sound pressure level onto
the subjective continuum. The psychophysical law
whose growth function was rated overall the least
nonlinear was taken as the best psychophysical law
for loudness. The results indicated a power-law
psychophysical function with an exponent of .6. This
is the same psychophysical function for sound pres
sure level as is obtained from numerical magnitude
estimations of loudness.

The Marks and Slawson technique cannot be used
in unmodified form to estimate the subjective scale
for number. Most subjects would apply a mathematical
definition of linearity (i.e., N, - Nj-l =k) to numbers
in any monotonically ascending or descending series,
and the series judged most linear would automatically
be an arithmetic one, regardless of the subjective
scale of number. Consequently, the task of Experi
ments 1-5 was to judge how evenly and randomly a
sequence of irregularly ordered numbers samples the
numerical continuum. The logic of the Marks and
Slawson technique is little altered by the present vari
ation, and they could have performed their experi
ment in a manner analogous to the present one. In
such an experiment, they would have presented sub
jects with a series of pulses varying unsystematically
in loudness. The loudness of the pulses would be
selected by sampling rectilinearly over various map
pings of sound pressure level. The series that used the
"true" psychophysical mapping should sound most
random. Sampling: according to other mapping func
tions would result in series that would seem to have
too many loud pulses or too many soft ones.

The first five experiments led us to the unexpected
conclusion that the scale of number depends on the
range over which the numbers are sampled. If the
range has finite limits at both ends, subjects find
rectilinear sampling to be the most uniform and
random. If the top end is unbounded, subjects find
a decelerated power function to be the best. There
seem, therefore, to be two subjective scales of number,
one for closed ranges and one for infinite ranges.
Experiment 6 shows that production of random
numbers shows the same relationship: rectilinear
sampling over closed ranges and compressive sampling

(more small than large numbers) over open ranges.
These results suggest that people have available two
separate scales of numbers, and the range of numbers
determines which scale is used. If one scale is used
in magnitude estimation and the other in category
judgment, many relations between these two scaling
techniques are explained.

EXPERIMENT I

Method
Subjects. Twelve male and female Pomona College undergrad

uates volunteered to be unpaid subjects. The subjects all had
had previous experience in random number generation experiments
similar to those of Banks and Hill (1974).

Materials. Four sequences of 10 integer, were generated in the
range of approximately I to 2,000. The number, were sampled
rectilinearly from "rulers" graduated in logarithmic, linear, inverve
square (exponent 1/2l, and inverse cube (exponent 1/3) units,
The linear set had 1 as it, smallest number, and every 225th
number above for the next nine. Small integral amounts were
added to or subtracted from each number to conceal the under
lying orderliness of the numbers, The random number, from the
logarithmic scale were generated by means of the function N = ekn,

where k took on the values, I. 2, ... 10, and n was chosen such
that when k = I, the function was close to 1.0, and when k = 10,
the function was close to 2,000. The random numbers from the in
verse square and inverse cube scales were generated with the func
tion N=(ka)E, where k took on the values I, 2, ... 10, E was
2 for the inverse square ruler and 3 for the inverse cube ruler, and
a was chosen such that N = 1 for k = I, and N = 2,000 for k = 10
for each ruler. Values of N for the nonlinear scales were rounded
off to the nearest integer, and the numbers for all four functions
were put in the same irregular order (the sequence of ordinal mag
nitude, in all four irregular order, was rhc same). The four se
quence, of scrambled numbers were then tape-recorded by a male
speaker.

Procedure. The subjecrs had the following instruction-, read to
them: "You are going to hear four series of random whole num
bers played to you on the tape recorder. After hearing each scricv
I would like you to rate how randomly and evenly it seems to you
to sample nurnberv. Usc a 1-10 scale for your ratings, where I
means least random and 10 means movt random." Questions were
resolved by repeating the instructions or, failing that, by stating
that randomness implied that all numbers within the range sampled
had an equal chance of being selected. Once the suhjcct s indicated
vatisfaci iun with the instructions. the four sequence- were played
and then judged individually immediately after being played. The
four sequences were administered for judgment in an order counter
balanced for position in the session over subjects.

Results
Figure 1 shows the mean judgments of randomness

of the numbers derived from each series. The linear
and logarithmic series were judged least random, and
the inverse cube function stands out as considerably
more random than the others. Only two subjects rated
either the linear or logarithmic series more random
than the cube series. The four means are reliably dif
ferent at p < .01, with an F(3,36) of 10.98. The four
medians differ at the same level according to the
Friedman test IX2(3) = 171.38].

Discussion
As is clear from Figure I, the results indicate that
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Figure 1. Results of Experiment 1: Mean rating and median rank of rating of subjective random
ness of randomized series of integers selected according to a rectilinear sampling rule from numeri
cal scales compressed according to power functions with exponents of .3, .5, or 1.0. A fourth com
pression, logarithmic, is plotted as though it were a power function with an exponent of .0.

the subjective scale of number is decelerated. A power
function with an exponent less than 1.0 seems to be the
best-fitting function, but it is not possible to estimate
the size of the exponent confidently from the present
results because only two decelerated power function
scales were investigated. At the very least, it can be
stated that the scale is compressive, but not so com
pressive as a logarithmic function. However, if the
trend of the results as seen in Figure I is approximated
with a smooth curve, it seems to indicate more specif
ically that the psychophysical power function for
number is one with an exponent less than .5. An ex
ponent in this range would be in approximate agree
ment with Attneave's (1962) estimate and with the best
exponent in the power law tried by Banks et al. (1976).
Such a small exponent is. on the other hand. too small

to agree with the estimates of Curtis and his colleagues
(Curtis et aI., 1968; Curtis & Fox, 1969) or with the
estimates of Banks and Hill (1974). In both cases,
estimates fell in the range from .5 to 1.0, which was
not even examined here.

Experiment 2 samples decelerated exponents more
systematically and completely than those in Experi
ment I to give a better estimate of the exponent for
number. Experiment 1 does not locate the peak of the
estimating function very precisely, nor does it eliminate
the possibility of a second peak in the range .5 to 1.0.

EXPERIMENT 2

Method
Subjects. Twelve male and female Pomona College undergrad

uates were recruited to serve as unpaid subjects.
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Materials. Eight series of 15 integers were generated in the range
from approximately 1 to 100,000. Seven of the series were generated
using power functions as in Experiment 1 and with exponents equal
to .1. .3, .36, .5, .7, .9, and 1.1. The third exponent, .36, was
chosen to create a series approximating the random numbers
generated by an independent group of 10 subjects in a random
number generation task similar to Banks and Hill's (1974). The
exponent comes from a least-squares fit to the order statistics for
the first 25 numbers produced. The largest number (100,000) in
each of these seven series was not presented in order to avoid an
ob\ ious upper limit. In addition to these, an eighth series was
presented. This eighth series was produced by the same independent
group of 10 subjects whose number scale for random production
had an exponent of .36. Rather than fitting a curve to ohtain this
series, we used the means of the numbers subjects gave as produc
tious, The first 14 numbers given by these subject, were put in
order from smallest to largest, and the geometric mean at each
ordinal position was taken across subjects. (These means constitute
the first 14 order statistics, as discussed by Banks & Hill, 1974).
These means ranged from 1.4 to 9,973. In order to give the series
a maximum of about 100,000, each geometric mean of each ordered
position was multiplied by 10. In this series, when only the first
14 numbers are used, the exponent fit to the order statistics is .39.

The order of the numbers within each series and the order of
presentation of the series were then randomized and tape-recorded
bva male speaker.

Procedure, The procedure was the same as that used in Ex
periment I.

Results
These results, shown in Figure 2, generally agree

with those obtained in Experiment 1. The two series
based on subjects' productions, plotted as exponents
of .36 and .39, were judged to be most random.
These IwO were not judged to be significantly dif
ferent from each other according to a liberal least
significant difference test (a =.50, LSD =.66). As the
exponent increased in value, the mean randomness
rating fell, with the exception of the exponent .9,
for which a slight increase, followed by a decrease, was
measured. The mean ratings were reliably different at
p < .01 [F(7,77)=3.1O].
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Figure 2. Results of Experiment 2: mean ratings of randomness
of series 2enerated analogously to those in Experiment I. See text
for details of generatlon procedure.

The function in the figure seems to indicate clearly
that the most random power function series is generated
with an exponent between .3 and .4, just as Exper
iment 1 found. Experiment 3 was conducted because
it seemed necessary to replicate the findings of Exper
iment 2 with samples taken from smal1er numbers
than before. Here the range 1-2,000 was used, instead
of 1-100,000 as in Experiment 2. The range 1-2,000
more nearly approximates the range of numbers people
use when asked to make judgments in magnitude
estimation, and it probably samples numbers people
"know" better (or at least use more frequently) than
most of those in the 1-100,000 range. The small ex
ponent estimated from samples from the 1-100,000
range may be overly influenced by the very compressed
subjective scale for the very large numbers included.
Banks and Hill (1974) found the subjective scale for
number to become progressively more compressed
for larger numbers. The exponent of .6 fit the range
from 1 to 1,000 quite well, but above 10,000, the
compression progressively approached a logarithmic
scale as the numbers grew larger.

Another reason for repeating Experiment 2 with a
narrower range is that the presence of large numbers
in samples may have made them seem less random.
Subjects may assume that large numbers should almost
never be selected and that their presence in the sample
indicates nonrandomness. Since the proportion of
large numbers declines as the exponent decreases, the
assumption that large numbers indicate nonrandomness
will create a bias toward smaller exponents. Use of a
sample from a range restricted to 2,000 or less will
test for such a bias. There should be less of a bias
toward smal1 exponents in such a case, and the ran
domness judgments should shift to series with larger
exponents if the bias against large numbers were indeed
a factor.

EXPERIMENT 3

Method
Subjeds, Nine male and female Claremont colleges undergrad

uates served as unpaid subjects for the present experiment.
Materials. Seven sequences of 15 integers were generated in the

range from approximately I to 2,000. All were generated according
to the power function of Experiments 1 and 2, with exponents
of .1, .3, .36, .5, .7, .9, and 1.1. The 15th integer in each series
(2,000) was omitted from presentation to avoid that number's
serving as an obvious upper limit. The first 14 integers in each
series were put in random order as before.

Procedure. The presentation of the stimuli was identical to that
used in previous experiments.

Results
The exponent .36 produced the highest randomness

ratings, with a decrease in ratings with exponents
smaller and larger in value. This finding is demon
strated in Figure 3 with a plot of exponent value vs.
mean randomness rating. Analysis of variance shows
the randomness ratings significantly different at p <
.0001 [F(6,48)=6.73].
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on the integral values 1-10 inclusive, and a chosen for each
series to give a maximum close to 1,000. Values of N were
rounded off to the nearest integer, resulting in a minimum of
oand maximum of 1,000 in each series.

In the previous experiments, the largest number in the sequence
(the "de facto" upper limit) varied from series to series, producing
(we assume) the impression that there was no fixed upper limit
to the range being sampled. In these series, on the other hand,
the largest number was 1,000 and the smallest was O. Subjects
may have judged the first series they heard as though it were
sampled without an upper limit, but, by the second series, they
should have observed the consistent limits and judged accordingly
from then on. Any systematic effort of a shift in strategy should
be equally distributed over series because position of series in the
order of presentation was completelycounterbalanced over subjects.

Procedure. The procedure was identical to that used in the pre
vious experiments, except that the instructions ended with the fol
lowing: "Do not attempt to apply any mathematical definition of
randomness. Just judge on the basis of an intuitive feel for the
randomness with which the numbers are sampled. Use a 1-10
scale for your ratings, where 1 means least random and 10 means
most random."

Results and Discussion
Figure 4 plots the mean randomness ratings as a

function of exponent. The series generated with the
exponent .1 was seen as least random, and the series
generated with the exponent .9 as most random. The
randomness ratings increased as the exponent ap
proached the value of 1. An analysis of variance
revealed a significant difference between the mean
randomness ratings [F(4,112)= 13.96, p < .0001].

The results show a function somewhat different
from that found in the previous experiments. Here
we find greater subjective randomness as the exponent
approaches unity. The results suggest that an ex
ponent of 1.0 (linear scale) or even an accelerated
scale might turn out to be best. Experiment 5 replicated

Figure 4. Results of Experiment 4: mean ratings of randomness
of series generated by power functions as in the previous experl
ments, but, in this case, an explicit upper limit of approximately
100 was used so that subjects knew that samples were limited to
1-,2-, and 3-dillit numbers.
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FlllUft 3. Results of Experiment 3: mean ratlnlls of randomness
of series llenerated by rules similar to tbose used for power
function series in Experiments 1 and 2. However, in this case,
no numbers above 2,000 were used in the series.
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The results of Experiment 3 confirm those of Ex
periments 1 and 2: A compressive power function
with an exponent between .3 and .4 produces the
series judged most random. Neither the requirement
to generate before judging, as in Experiment 1, nor
the wide range of Experiment 2 was responsible for
the previous finding. The following two experiments
were conducted in an attempt to determine under
what conditions subjects would judge the randomness
of series linearly, that is, according to the criterion
of equiprobability over a linear scale. Given a relatively
small number of alternatives, subjects can judge
equiprobability quite accurately (Peterson & Beach,
1967, pp. 30-31), and it seems they should be able
to do sounder some conditions here. Experiments 4
and 5 use series that are quite clearly from a closed
scale, in contrast with the open scale of Experiments
1-3. The impression of an open scale came about
because those experiments omitted the highest number,
which was either 2,000 or 100,000, depending on the
experiment. Thus, the largest number varied from series
to series. In Experiments 4 and 5, the endpoint of the
series was 1,000, and it was always presented with the
other numbers to give a consistent upper anchor to
the series.

Method
Subjects. Twenty-nine Claremont colleges undergraduates were

recruited from two psychology courses to be unpaid subjects.
Materials. Five sequences of 10 integers were generated in the

range from approximately I to 1,000. The numbers were rectilin
early sampled from "rulers" graduated in units with exponents
of .1, .3, .5, .7, and .9, according to the same method used in
Experiments 1-3. The function N=(ka)E describes the different
scales used, with E equaling one of the five exponents, k taking
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Experiment 4 with two changes. First, subjects gen
erated random numbers before judging the series in
order to test )¥hether generation imposes a bias toward
nonlinear series. All of the subjects in Experiment 1,
and some of those in Experiments 2 and 3, had been
given a random number generation task prior to
judging the series. Second, an exponent of 1.1 was
added to test whether the series with an exponent
of 1.0 was a maximum.

EXPERIMENT 5

Method
Subjects. Ten male and female Pomona College undergraduates

served as unpaid subjects.
Materials. Six series of 10 integers were generated with the equa

tion described in Experiment 4. The exponents were .1, .3, .5,
.7, .9, and 1.1.

Procedure. All subjects were given the task of random number
generation before the randomness estimation task. Instructions
similar to those used by Banks and Hill (1974) were read to the
subjects. Subjects gave 25 numbers, and all productions were
recorded on audiotape. Immediately after random number genera
tion, subjects received instructions essentially the same as those
for Experiment 4. The six sequences were again counterbalanced
for position over subjects, and all subjects were tested individually.

Results and Discussion
Thesubjects' random numbers under 106 were

analyzed by the same techniques used by Banks and
Hill (1974): Each subject's random productions were
put in rank order, and the geometric mean for each
ordinal position was taken across subjects. The
result was a measure of central tendency for each
ordinal position, known as the order statistic. These
numbers were, incidentally, those used in Experi
ment 2 for the series with the exponents of .36 and .39.

In producing random numbers, subjects selected
more smaller numbers than they did larger ones.
More precisely, in agreement with the Banks and Hill
analysis, subjects produced the numbers as though
selecting from a ruler compressed according to a
power function with an exponent less than 1.0. The
power function fit to the numbers these subjects gave
has an exponent of .36 if the entire set of 25 num
bers is used, and an exponent of .39 if only the first
14 are used. These figures seem in some conflict with
the Banks and Hill estimate of .6 for the power
function for number, but the conflict is not as great
as it might seem. Banks and Hill's estimate of the
exponent for the subjective magnitude of numbers
is not based simply on the fit of a power function to
the full range of productions, but also on the fit to
smaller numbers, which are used most often in direct
scaling experiments. Fitting a power function to the
numbers Banks and Hill obtained under 1,000 alone
in their Experiment 2 gives an exponent of .49. When
only the numbers under 1,000 in the present produc
tions are considered, the exponent for the power
function fit is .52.
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Figure 5. Results of Experiment 5: mean ratings of randomness
of series generated by power functions as in the previous experi
ments, and with an explicit upper limit as in Experiment 4. Here,
however, subjects generated random numbers before judging the
series in order to allow a test of whether the difference between
the functions of Experiment 4 and Experiments 1-3 resulted from
experience subjects had had in the earlier experiments with random
number generation before estimation.

Figure 5 plots the results of the second half of
the experiment: randomness rating as a function of
exponent. This replicates Experiment 4, with [F(5,45)
=9.52, p < .0001] for the difference among the series'
means. The randomness ratings increased as the ex
ponent approached unity, and fell of at 1.1. The
results of Experiment 5 leave little question that sub
jects judge randomness according to a linear function
when numbers are sampled from a range specified
at both ends. The differences between Experiments
1-3, which revealed a compressive subjective scale of
number, and Experiments 4 and 5, which revealed
a linear scale, seem to depend on whether the range
of numbers given to the subjects has a definite upper
limit.

EXPERIMENT 6

Experiments 1-5 show a great deal of similarity be
tween number production and number perception
with an open-ended range. The productions reported
in Banks and Hill (1974), as well as in this paper,
imply a decelerated power function scale of number,
and the present judgments of randomness in an open
ended scale imply that the subjectively most random
and "even" sampling of numbers also comes from a
compressed scale. The precise sizes of the exponents
of power functions for the subjective scale in the two
cases are even approximately the same. Furthermore,
the series judged subjectively to be the most random
of all is composed of the order statistics of numbers
subjects actually produced. Our experiments allow us
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GENERAL DISCUSSION

how the mean of the order statistics increases with
their rank. When the ranges are appropriately scaled,
the similarity (and the linearity) of the functions is
remarkable.

Figure 6. Results of Experiment 6: mean of order statistics (see
text) as a function of their rank order for integers generated
randomly by subjects in the range 1-9 (left panel), 10-99 (center
panel), and 100-999 (right panel). These functions have been scaled
to fit in the same space. The factor needed for rescaling both
axes is inserted in the upper left-hand comer of each panel.
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Method
Subjects. Twenty-one subjects, male and female students at

Claremont colleges, volunteered to perform in this experiment
while waiting to serve in another, unrelated one. All were naive
to this experimental task.

Procedure. Subjects first gave 20 to 25 numbers under uncon
strained random number production instructions identical to those
used by Banks and Hill (1974), Experiments 1-3. They were then
asked to produce random integers as before but to constrain their
productions to a certain range. Three different ranges were
given, each to 7 of the 21 subjects. Subjects were assigned to one
of the three range groups cyclically on the basis of their order
of volunteering for the experiment, with the first subject in Group I,
the second in Group 2, third in Group 3, fourth in Group I,
and so on. The range for Group 1 was the integers 1·9, for
Group 2, the integers 10-99, and for Group 3, the integers 100
999. Each subject was allowed to produce at least 10 integers
before being stopped. All productions were tape-recorded. The first
10 numbers produced in the experimentally defined range were
transcribed for analysis.

to compare production and estimation for a scale
without an explicit top end, but we have only estima
tion data for series with closed ends and no produc
tions. Experiment 6 examines whether random pro
ductions in a restricted range imply a linear scale of
number, as the judgments do. If the linear scale
found for the judgments in the closed scale reflects
the subjective scale of number and not some strategy
subjects use to estimate randomness in this special
case, then the same scale should be found in produc
tions in a closed scale.

Results
Subjects' responses were put in rank order, and the

geometricmean for each position was computed across
subjects for each of the three constrained conditions,
as wellas for the open-ended condition. This technique
of analyzing the production yields the order statistics
(cf. Banks & Hill, 1974) for the series.

The order statistics for the unconstrained series
gave subjective scales very similar to those obtained
by Banks and Hill (1974). The subjects sampled more
small than large numbers in any range of their pro
ductions examined. The subjective scale for the un
constrained number (looking only at the first 20
numbers subjects gave) was fit by a power function
with an exponent of .55. The r for the fit was .92.
On the other hand, the order statistics for the re
stricted ranges were well fit by straight lines using the
least-squares method: for the range 1-10, r2 =.995;
for the range 10-99, r' = .974; for the range 100-999,
r2 =.990. When the responses for the range 10-99 are
divided by 10 and responses for the range 100-999 are
divided by 100, and the data from all three ranges
subjected to an analysis of variance, there are no re
liable differences between the functions at all. It is as
though subjects in these three conditions adjusted
output perfectly to the ranges they had and sampled
rectilinearly in each case. The linearity of sampling
within restricted intervals replicates the similar results
obtained by Noma and Baird (1975). Figure 6 shows

Experiments 1-3 show a sort of behavior regarding
numbers very different from that exhibited in Experi
ments 4-6. The generalization that seems dictated by
our results is that subjects perceive the numerical
continuum as compressive when they deal with a
numerical scale that is open at the upper end, and
they perceive the numbers linearly when given a
range limited at both ends. This generalization holds
whether subjects are judging the apparent randomness
of numbers sampled from open and closed ranges or
whether they are generating subjectively random
samples of integers from limited or unlimited ranges.

While this generalization seems amply supported
by our results, it is nonethelessambiguous on whether
the shifts in compression come from changes in scale
compression or sampling rule. The choice of com
pressive scales as most random in Experiments 1-3
could have been made either because subjects operate
with a compressed subjective representation of num
ber or because they apply a nonrectangular sampling
rule to a perfectlylinear representation of the numerical
scale. In fact, there are not just these two alternatives,
but a whole class of them, composed of the set of
possible scale compressions combined with whatever
sampling distribution is necessary in each case to com
plement the degree of scale compression and produce
the functions obtained from the subjects. By the
same reasoning, the linear functions obtained in Ex
periments 4-6 could result from a linear numerical
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scale combined with a linear sampling function or
from any of an infinite set of combinations of non
linear numerical scales and nonlinear sampling rules.

Banks and Hill (1974, Experiment 4) provided a
test of whether the sampling rule or the subjective
numerical continuum was compressive in unlimited
range random number generation. In this test, sub
jects were shown a drawing of a "number line" that
was to represent the numerical continuum, going
from small numbers at the left end to large numbers
at the right, which terminated in a rightward-pointing
arrowhead to indicate there was to be no explicit
upper limit to the numbers. A singlevertical histogram
bar was drawn on the number line near either the left
or the right end of the line. Subjects had previously
generated numbers according to instructions with no
constraint on the upper limit, and were told that this
bar represented their instructions for the next random
generation task. When the bar was at the left end of
the scale, they were to generate numbers within an in
terval of their own choosing among the smaller num
bers; when the bar was at the right end, they were to
generate within an interval among the larger numbers.
The definition of the width of the range sampled and
of the meaning of "larger" and "smaller" numbers
was left to the subjects. The width of range they
chose was, in fact, the dependent measure. The results
showed that subjects used a wider numerical range as
the range was placed higher on the continuum, despite
the fact that for both high and low placements the
bars were drawn to the same width. Such an outcome
implies that subjects assumed that the same bar width
spanned a greater numerical range for larger numbers
and thus that the continuum was compressed, not the
sampling rule.

In Experiment 4 of Banks and Hill (1974) the num
ber line was explicitly defined as open-ended. The
result is therefore in agreement with the present set of
studies, which show that a numerical scale unbounded
at the upper end is perceivedas compressed. A further
prediction from the present studies is that the con
tinuum would be perceived as linear, or at least as
less compressed, when the upper end is bounded. To
give an informal test of this prediction, we asked nine
subjects waiting for other experiments (who had never
performed in a number experiment and did not know
the purpose of this one) to generate numbers in inter
vals on a "number line" like that used in Experiment 4
of Banks and Hill. However, they had both an un
bounded range, like that of the previous Banks and
Hill experiment, and a bounded range. In both the
unbounded and bounded ranges, the numeral "1"
was written just above the boundary marker at the
bottom end of the range. Above the upper boundary
marker at the top end of the bounded range, "1,000"
was written to give a numerical upper limit. There
was nothing written over the arrowhead at the right
end of the unbounded range.

When shown the unbounded number line, the
mean range of numbers subjects gave was 178 for the
interval at the low end of the scale and 964 for the
interval at the high end of the scale. This difference
is reliable, with z=3.23, p< .01. This is actually a
stronger effect than previously found, where the
mean range was 45 and 82 for small and large num
bers, respectively, but there were a few procedural
differences between this and the previous experiments
and no reason to expect exact replication. The bounded
number line, as predicted, yielded a roughly equal
mean range for intervals among both small and large
numbers, with 114 and 131 for small and large, re
spectively, and the difference falls far short of re
liability. This experiment therefore supports the
hypothesis that the differences between open and
closed ranges in both judgment and production of
subjectively random sequences of numbers derive
from differences in scale compression in the two cases
rather than from differences in sampling rule.

If there are two different subjective scales of num
ber, as our results seem to show, then we can draw
some conclusions regarding the difference between
results of two widely used scaling techniques that re
quire subjects to give direct numerical estimates of
stimulus magnitudes. These two techniques are mag
nitude estimation and category judgment scaling. In
both techniques, subjects report the position of a
stimulus on a upidimensicnal scale, and in both, sub
jects give numerical responses to indicate the scale
value of each stimulus. The numbers subjects give are
averagedto give the mean scalevalue for each stimulus.
The two techniques differ in the constraints on the
subject's numerical responses. In category scaling,
subjects are given a small set of categories that are
usually denoted by integers, and they can only use
this set of integers as responses. In magnitude estima
tion, on the other hand, subjects' numbers are intended
to express the apparent ratio of magnitude of exper
imentally presented stimuli to an explicit or implicit
reference magnitude. In magnitude estimation, the
responses are relatively unconstrained compared with
categoryscaling. Subjects are not restricted to integers,
and they need observe no upper limit tqjheir responses.

Similar as they may seem, category and-magnitude
tasks have some very different characteristics. First,
it appears that category scales are more affected by
stimulus spacing and procedural variables than mag
nitude estimation scales are (cf. Marks, 1968; J. C.
Stevens, 1958;S. S. Stevens, 1971; Stevens& Galanter,
1957). Second, despite the variations in the form of
the category scale that may be induced by variations
in technique, the category scale values for a continuum
are generally a curvilinear function of the magnitude
estimation scale values for the same continuum. The
form of this relation is such that when category values
are plotted as a function of magnitude estimation,
the function is typically a concave downward. nega-



tively accelerated one, with category scale values
moving relatively more rapidly than magnitude values
at the bottom of the scale and less rapidly at the top
(Eisler, 1963; J. C. Stevens, 1958; S. S. Stevens, 1971).

Explanations of the difference between the scales
have usually been based on the hypothesis that dif
ferent operations of judgment are induced by the
instructions in the two cases. However, another dif
ference between the two techniques that has been
relatively neglected is the range of responses allowed
the subjects. Magnitude estimation allows subjects
an open-ended scale, and category judgment gives
subjects a small set of possible responses.

Some compelling evidence that response freedom
may be more important than instructions comes from
a small number of studies that have used category
scaling instructions but allowed a wider range of
responses than is usual. Rubin (cited in Marks, 1968,
and S. S. Stevens & Galanter, 1957) allowed sub
jects up to 100 categories of response and found the
category scale to become more like the magnitude
estimation scale as the number of responses was
increased. Marks (1968) found that increasing the
number of categories tended to make the category
scale more nearly like the magnitude scale. Gibson
and Tomko (1972) compared category scales with
either 7 or 49 steps and found the typical curvilinear
relation between category and magnitude scales for
the 7~category scale, but a linear relation with the
49-category scale. They concluded that it is the range
of available responses rather than the instructions
that determinedthe form of the categoryscale. Finally,
Montgomery (1975) compared a number of method
ological differences between magnitude and category
scaling and found that range of response scale and
freedom to choose the highest response number were
the most important. Other factors, including the rule
given the subject for responding, were negligible.
When response freedom was allowed, subjects pro
duced a magnitude estimation scale; when responses
were restricted to a small set, subjects produced a
category scale.

It is possible that the difference in response freedom
in the two scaling techniques has not been connected
often with the difference in results because there has
been no available theory to explain why response
freedom should make a difference. The present re
search supplies a theoretical foundation for the dif
ference in the two subjective scales. If subjects per
ceive numerical magnitude in category scaling ac
cording to the function obtained in the present closed
range experiments, and if they perceive numbers in
magnitude estimation according to the function ob
tained in the present experiments using an open-ended
range, then the relation between magnitude estimation
scales and category scales could be predicted solely
from the different ways subjects use numbers in the
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two cases (cf. also Baird, 1975; Banks & Hill, 1974).
The prediction follows because of the nature of the
numerical "rulers" subjects use under the two in
structional sets. If the category scaling ruler is ap
proximately linear (width of a unit does not change
systematically with position on the scale) and the
magnitude estimation ruler is compressive (width of a
unit declines with positions higher in the scale), then
the general curvilinear relation between the two scales
is predicted. It does not matter what the rulers are
measuring; if the category scale measurement for
each stimulus is plotted as a function of the mag
nitude scale measurement, a curvilinear function will
be obtained.

Figure 7 illustrates the sort of relationship between
categoryand magnitude scales that would be predicted
if subjects used subjective scales of number calibrated
according to the closed-range function in category
scaling and according to the open-range function in
magnitude estimation. This figure plots the first
through tenth order statistics for the 10 numbers
generated in the 1-10 range of Experiment 6 (the
results would have been virtually identical in form if
we had used order statistics from either of the other
ranges) plotted against 10 equally spaced points be
tween 1 and 250 on the random-production subjective
scale of Banks and Hill (1974, Experiment 2). The
trend of the curve in Figure 7 is qualitatively the same
as is found whencategoryvaluesfor a givencontinuum
are plotted as a function of magnitude estimation
scale values for the same continuum. Variations in
this general form would be expected if the category
scaleweredistorted bystimulusspacing,end anchoring,
and any of the other factors that can affect the form
of the category scale. We therefore cannot make

U 010

l- I
(J)

I- W
« t:l 8
I- Z
(J) «

a::
a::

6w ~Cl
a::
0 z

0

IJ.. I-
0 U

::l 3
W Cl
Cl 0
::l a::
l- o,

z
t:l a::« o 0
~ IJ.. 50 100 150 200 250

MAGNITUDE OF ORDER STATISTIC FOR

PRODUCTION IN UNLIMITED RANGE

Figure 7. Relation between random production scales of number
for productions given in an unlimited range (abscissa) and a limited
range (ordinate). This relation is qualitatively the same as that
between category judgment and magnitude estimation scales.
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exact predictions about the form of the relation be
tween category and magnitude scales without a
model for the procedural factors that affect the form
of the function. Nevertheless, Figure 7 gives a first
order approximation to the relationship.

The theory, then, is that subjects "measure" their
sensations with a compressive ruler under magnitude
estimation instructions and with an apparently linear
ruler under category judgment. Does this mean that
the categoryscale is more accurate than the magnitude
scale? The answer to this question is negative, partly
because of the biases that afflict category scales.
Another reason is the uncertainty of generalizing
from tasks in which numerical responses are uncon
strained by stimuli to those in which they are. It
is possible that requiring stimuli to be matched to the
numbers will cause a systematic shift in the form of
the subjective scale. The most that we can say, and
the most that we need to say to predict the general
form of the relation, is that the subjective number
scale used in category scaling is less compressive
than the subjective number scale used in magnitude
estimation.

Aside from the relation to category scaling, what
are the implications for magnitude estimation scales
if the subjective scale of number is nonlinear? Banks
and Hill (1974) have discussed some of these implica
tions. If the number scale is a decelerated power
function, as seems to be the case from the present
research as well as Banks and Hill's, then power
function scales derived from magnitude estimation
will have exponents that are systematically inflated.
If n is the exponent for subjective size of numbers
(where a< n < 1.0), then all magnitude estimation
scales will have power function exponents larger by
a factor of n-l than the "true" subjective scale.
Of course, it will be impossible to detect this from
magnitude estimation scales, since their exponents
willall be inflated by a common factor. Cross-modality
matching, which is often considered to check the
validity of magnitude estimation, would also be in
sensitive to a constant percentage change in magnitude
estimation exponents (cf. Banks & Hill, 1974, pp. 372
375). In fact, as Banks and Hill note, a constant
percentage change in magnitude estimation exponents
would alter the conclusions of very few studies employ
ing magnitude estimation or cross-modality matching.
Most studies are concerned with the relative sizes of
exponents or the goodness of fit of power functions,
neither of which vary with a constant percentage
change in the exponent.

The possible difference between the magnitude es
timation function and a sensory scale uncontaminated
by the numerical (or other) response scale becomes
important when we consider a variety of techniques,
such as equisection and bisection, that do not require
a numerical response. Banks and Hill showed how

the results of these studies are consistent with the
hypothesis that the "true" subjective scale is more
compressive than the magnitude estimation scale, as
would be expected if the numerical response scale
multiplies the exponent by a factor greater than 1.0.
Furthermore, the "input" scales found by Curtis and
his colleagues (e.g., Curtis et al., 1968; Curtis & Fox,
1969)correspond to the "pure" sensory scale in this
analysis, and these are also compressed relative to the
magnitude estimation function.

We should also consider the scaling result that sug
gested the present studies (Marks & Slawson, 1966)
because their findings seem to imply no difference
between the magnitude estimation scale for loudness
and the underlying sensory scale. The power function
by which their tone bursts increased in intensity had
an exponent of 1.67 for the series judged most linear.
Such an exponent corresponds to a scale exponent of
.6, which is the usual magnitude estimation value.
However, their tones were spaced closely enough in
time to be subject to effects of sensory interactions
such as masking, summation, and loudness enhance
ment. If, for example, the loudness of each tone in
the serieswas enhanced by the previous one (Zwislocki
& Sokolich, 1974), then the effective subjective func
tion by which successive tone bursts increased in
loudness could have a larger power-function exponent
than that measured in SPL by the experimenters.
Thus, the series that increased according to an ex
ponent of 1.6 could have had the same effect as one
that rose with, say, an exponent of 2.0 but that was
spread out enough in time to eliminate loudness en
hancement (or other interactive effects, such as
masking or summation). A rise function with an ex
ponent higher than 1.6 implies a subjective scale
more compressed than the magnitude estimation scale
for loudness. Such a result is predicted by the hypoth
esis that magnitude estimation scales are expanded by
the numerical response scale. To verify our interpre
tation of the Marks and Slawson results, it would be
necessary to replicate their study over a number of
interburst intervals.

One final question we should consider is the basis
for the two scales. Why do we carry two scales around
with us? One justification could be found in the fact
that sometimes we need to be aware of percentage
differences and sometimes we need to be aware of
amount of difference. An easy way to approximate
percentage differences is to measure with a com
pressive scale, whereas a linear scale is needed to re
cord amount differences. It is possible that the two
subjective scales developed in response to these two
different cognitive needs. Why an open-ended scale
tends to elicit the percentage metric (magnitude
estimation) and why the restricted scale tends to elicit
the amount metric (category judgment) are questions
still to be answered.
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