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noiseless system (one where the
response realizations are all identical).
The net result of the weighted sum,
Ai, is

where Rj is the value of the noiseless
output at the jth sa1tVlling instant. The
sum given in Eq. 1 may be obtained in
closed form by means of the binomial
expansion:

The PDP-8/1 as a CAT
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A programmed algorithm to compute a weighted ensemble average on a set of
output signal realizations is presented. Thus programmed, the PDP-8/I can
recover output signals, which are due to periodic input signals, from a noisy
system. Arbitrarily, large enhancement of signal-to-noise ratio is attainable. The
configuration used is a 4K PDP-8/I with AD08-B analog-to-digital converter.
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Clearly, then, the correct values, Rj,
are recovered by the algorithm in the
case of a noiseless system.

Letting M =a in Eq. 1 and then
applying Eq. 2, where b = 1 and
x =a -I, it is seen that,
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Fig. 1. At each sampling instant the
CAT algorithm will perform an
ensemble average, automatically
assigning the correct weighting factor
to each realization of the ensemble.
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The system's response signal is then
sampled. This sample is divided by a
factor, M = 2n (n = any fixed positive
integer less than 10), and temporarily
stored; the first entry in an initially
empty table of core memory is
multiplied by a constant, (M - 1)/M,
and added to the temporarily stored
new value; then the result is stored
back again into the first location in the
memory table. After a sampling
interval, another sample is taken of the
response signal. This sample is
weighted and then added as before to
the weighted second entry in the
memory table. This process continues,
each time checking that the stimulus
signal has not gone through another
positive-going zero crossing, and each
time updating the next entry in the
memory table. When the stimulus
waveform crosses zero with positive
slope, the algorithm resets to the first
entry in the memory table and
continues.

The net effect of the algorithm may
be considered to be the creation of an
ensemble of sampled response
waveform realizations which are all of
the same duration as one cycle of the
stimulus and are coherent with the
stimulus waveform (see Fig. 1).
Effectively, then, at each sampling
instant a weighted ensemble average is
computed. The weighting factors are:
l/M for the sample from the zeroth
(most recent realization of the
ensemble and (M - 1)/M2 for the next
most recent realization. This is
equivalent to a weighting factor of
(M - 1 )i /Mi+ 1 for the ith realization.
The ensemble sum of these weighted
samples is then computed.

Consider, for example, the case of a

THE ALGORITHM
Many areas of experimental science

are concemed at one time or another
with retrieving, from a noisy system,
an output signal caused by a periodic
waveform which is applied to the
input of this system. One typical
technique for accomplishing this has
been through use of a class of small
special-purpose machines called
"computers of average transients"
(CATs). With the advent of low-cost
general-purpose digital computers such
as the PDP-8/I with A/D converter, the
usefulness of such special-purpose
machines has become economically
questionable.

In our laboratory, a program has
been written for a 4K PDP-8/I with an
A/D converter which will retrieve the
noise-corrupted periodic response
signal from a biological system which
is receiving a periodic stimulus signal.
This program uses the system's input
stimulus as a trigger to reset a coherent
averaging algorithm which is applied to
the noisy response signal. An
arbitrarily large signal-to-noise ratio
enhancement may be achieved as a
tradeoff against any desired degree of
sensitivity to time-varying properties
of the response signal. The program
stores, as its estimate of the
instantaneous value of the sampled
response signal, a weighted linear sum
of the latest sample and its previous
estimate (which is based on all earlier
samples of the response signal which
were taken at equal delay times after
the beginnings of new cycles of the
stimulus waveform).

The algorithm starts immediately
after the system's stimulus waveform
contains a positive-going zero crossing.
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Fig. 2. (a) The CAT algorithm wherein M =2n for positive integer values of n.
(b) The CAT algorithm in z-transforrn nomenclature.
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A TYPICAL EXAMPLE
The algorithm is flexible in that it

From the binomial expansion

H(z) = a[1 + bz- 1 + b 2 Z-2 + ...

a
G(s)=s+a (13)

a =- ~ In b =- f In (M ~ 1)

(12)

Fig. 3. A selected example of the
kind of output typically obtained
through use of the algorithm. In this
case, the response is electrically
induced body sway in a standing
human.

g(t) =ab t / T =ae-a t (10)

Hence, using Eq. 6 and then Eq. 5:

hk = abk =g(kT). (9)

Thus, it is clear that the continuous
g(t), in order to have the sampled
values given in Eq. 9, must have the
form

where

or

From the impulse response given in
Eq. 10, it follows that the equivalent
continuous transfer function is that of
the first-order low-pass filter

and so the "time constant" associated
with the convergence of the algorithm
is given by Eq. 12 as

Y(z) _ H(z) - a (7)
X(z) 1 - bx- I

where a = 11M and b = (M -l)/M.

The z-transforrn, H(z), of a string of
numbers, [hk], is defined as

that of a simple first-order RC filter
insofar as its response to actual
changes in the true (uncorrupted)
component of the response signal is
concerned. Of particular interest in
this regard is the question of the time
of convergence of the algorithm.
Initially, each location in the memory
table is set equal to zero. During the
operation of the algorithm, the average
value of each of the entries in this
table will grow and converge toward a
final value. The time constant of this
convergence may be obtained as
follows.

Let us seek a linear transfer
function, G(s), such that the sampled
values of its impulse response, g(t), are
equal to the series of output values,
[Yk], of the digital filter algorithm
when the input series [Xk] is the "unit
input sequence" given by xk =0 for
k * 0 and Xo =1. Specifically, we
desire a g(t) such that for this "unit
input sequence," [xk], the digital
filter output series is

The "transfer function" of a digital
filter, H(z), is the ratio of the
z-transform of its output string divided
by the "z-transform" of its input
string. The H(z) for the algorithm
under consideration is obtained from
Fig. 2b as

SIGNAL-TO-NOISE
ENHANCEMENT

Rhyne (1969) indicates that the
signal-to-noise ratio enhancement
obtainable through this method is

Signal
Noise

After
Averaging

= (2M -1)'h X Sig~al
NOIse

CONVERGENCE TIME
The algorithm considered here is, in

reality, a recursive digital filter (see
Fig. 2), the input to which is a string
of numbers. These numbers are the
sampled values of successive
rea l i zations of the system's
noise-corrupted response signal, each
taken at identical sampling times after
the onset of a new cycle of the
stimulus waveform. Thus, the time
interval, T, between these samples is
the period of the stimulus waveform.

The net effect of this digital filter is

Before
Averaging

(4)

If a corrupting noise, uncorrelated
with the periodic stimulus and having
zero mean value is added to the
response signal, it has an arbitrarily
small effect on the weighted linear
sums, Aj, provided the number of
realizations (cycles of output
waveform) that are ensemble averaged
is large. This is because the expected
value of the sum of two varying
quantities is equal to the sum of the
expected values of each of these
quantities, and in this example, as well
as in most practical situations, the
expected value of the noise is zero.
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will accept a wide range of input
frequencies, can supply a wide range
of sampling frequencies and will attain
a significant enhancement of
signal-to-noise ratio. It has been
applied quite successfully in our
laboratory to determine phase
responses of psychophysical systems
where noise corruption of the output
signal is unavoidable, and where

immediate knowledge of this response
is needed in order to continue the
experiment properly. Only
fixed-point, single-precision arithmetic
is used, and the program is written in
PAL III. Division is accomplished by
successive CLL and RAR commands.
An example of the output of the
algorithm is shown in Fig. 3. The
response in this case is body sway in a

standing human induced
low-frequency sinusoidal
stimulus applied to the skull.

by a
current

Simulation of neural sets

BRAD COX*
University of Chicago, Chicago, Illinois 60637

A program has been written for the PDP-8/1 computer which simulates the
behavior of 64 model neurons which may be connected together to form a
functional neural net. The simulation includes provisions for studying the
possible mechanisms of learning in real systems. Operation of the net requires
inputs from either a robot or a robot simulator program and output from the net
serves as input to such a robot, so that the entire system investigates the
behavior of an organism and its brain in interaction with an environment.

INTRODUCTION
Mankind has probably been

involved in contemplating the paradox
of "pondering the ponderer" ever
since he first possessed a brain to
ponder itself with, but, while there has
been some progress in unraveling the
functioning of some of the brain's
parts, we are still not much closer to
understanding the really basic question
of how it learns. Part of the problem is
due to the fact that neurons are very
small, and the parts of the neurons
where one expects the most important
aspects of their behavior to be carried
out (in the synapses and dendrites) are
far too small to allow measurements of
their activities to be made without
damaging them. It is possible to make
electrodes small enough to record
electrical potential changes from
individual cell bodies, but we have
little assurance that these are not
incidental by products of more
important events taking place at the
molecular level for which we lack the
tools to observed directly.

In addition, while technology has
been of great help in developing tools
to use in experimental brain studies,
the concepts that one tends to use
when thinking of present-day
machinery has little applicability to
biological systems. Brains have been
likened to hydraulic systems,
telephone exchanges, holograms, and
computers, but the fact remains that
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they operate on entirely different
principles, for which we lack any good
analogs.

There are, however, several
characteristics of biological nerve nets
which should be of help in
understanding how they function.
Organisms develop from single cells by
following certain rules for
development which eventually lead to
the creation of sense organs, nervous
systems, effector organs, and a body
which houses these elements and
maintains a fairly constant spatial
relationship between them. There is
every reason to believe that the brain
cannot be studied in isolation from
these relationships, and that the
feedback loop between effector organs
and the sensory apparatus is essential
in maintaining reasonable responses to
environmental changes and, therefore,
normal brain activity.

In addition, as one examines a range
of organisms, from those with very
simple nervous systems and very
stereotyped modes of behavior to
those with millions of neurons, one
finds that the apparent randomness of
connections between individual
neurons Increases drastically. For
example, the sea hare (Aplysia) has a
nervous system composed of relatively
few n e u rons which are readily
identifiable from individual to
individual, with each neuron always
connecting to the same other neurons
in case after case. In contrast, in
mammals, while the gross anatomy is
very rep rod u ci hl e, can nections
between developing neurons appear to
be guided by laws that are very general
in nature and leave much opportunity
for randomness. One tends to suspect

that the mechanisms of learning might
have evolved to remove the burden of
specifying the function of individual
neurons from the genetic apparatus,
thus allowing larger numbers of
neurons, depending on the redundant
information content of the feedback
loop between muscular activity and
sensory changes, to establish their
functional identity. The well-known
peculiarities of instincts and reflexes
probably represent the existence of a
backbone of genetically controlled
pathways which serve as a bootstrap to
enable the organism to survive in his
initial contacts with his environment
and to keep him functioning until
sufficient learned pathways have been
established.

This paper describes the current
progress of our efforts to develop
experimental tools and ways of
thinking which we hope will lead to
new progress in this field. The neural
simulator program is designed to be
used as the nervous system for a robot,
on which sensors are mounted to
encode relationships between the
robot and its environment and internal
variables. The outputs from the
simulator will be used to control
servomotors which will alter these
relationships. Our next step will be to
select some real biological system
about which enough experimental
information has been published to
guide the building of a robot which
can reproduce the range of bodily
activity relevant to that organism.
Ultimately, the entire system will be
used to investigate the behavioral
effects, modifications of parameters,
and even the logical structure of the
model neurons described in this paper.

GENERAL SIMULATION LOGIC
The current version of the simulator

is operating on a PDP-8/1 computer
with 8K of memory, extended
arithmetic element, and the AX08
laboratory peripheral unit which is
used for oscilloscope control. Up to 64
model neurons can be simulated, each
of which can have up to 8 inputs and 8
outputs, which may be connected to
any of the other neurons in the net. In
addition, interface routines are

Behav. Res. Meth. & Instru., 1971, Vol. 3 (2) 81


