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Occupancy model of perceived numerosity

JURI ALLIK and TIIA TUULMETS
University of Tartu, Tartu, Estonia

Observers saw 234 different pairs of stochastically organized dot patterns and indicated which
of the two patterns appeared to be more numerous. All of the data can be accounted for by sup
posing that the choice of the more numerous pattern is based on the determination of the oc
cupancy indices of both patterns. Each dot is posited to have an impact upon its neighborhood
in a constant occupancy radius R. The area of the stimulus plane occupied collectively by all
dots provides a basis for judging relative numerosity; the pattern with the larger occupancy value
is chosen as more numerous. The occupancy model, besides providing a general explanation of
known numerosity illusions in strictly quantitative terms, can explain some puzzling aspects
of numerosity perception.

Quantification is one of the most impressive acts of the
human mind. On many occasions, however, the direct
one-by-one counting of items is impossible: the number
of objects is too large, the viewing time is too limited,
the separation of already-counted objects from not-yet
counted ones is too difficult, and so forth. Nevertheless,
in all such situations, the observer is able to estimate the
approximate number of items on the basis of an instan
taneous impression of numerosity. In a typical numerosity
discrimination experiment, the observer indicates which
of the two presented random-dot patterns appears to be
more numerous. It is intuitively compelling to think that
the observer's decision is based on an internal represen
tation of numerosity-that the pattern producing the
greater subjective magnitude of an internal process is
chosen as being more numerous. All currently constructed
psychophysical scales describe perceived numerosity as
a power function of the objective number of items in the
stimulus (Indow & Ida, 1977; Krueger, 1972, 1984). All
these numerosity-scales are very tentative, however, for
they fail to take into account the well-documented depen
dence of perceived numerosity on the spatial configura
tion of dots. The same numbers of dots distributed differ
ently in space may appear to be very different in the
apparent number of their elements. For example, objects
occupying a more extended area on the display usually
appear to contain more numerouselements (Bevan, Maier,
& Helson, 1963; Binet, 1890; Ponzo, 1928). Many other
configurations of dots have been found to increase or
decrease in their apparent visual number, relative to the
same number of randomly distributed dots (Frith & Frith,
1972; Ginsburg, 1976; Ginsburg & Goldstein, 1987;
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Krueger, 1972; Taves, 1941; Vos, van Oeffelen, Tibosch,
& Allik, 1988). Such results indicate that the perceptual
system is not able to abstract the number per se from all
the other stimulus attributes (see Allik, 1989).

Gestalt categories of perceptual organization, such as
spatial proximity, provide more realistic candidates for
the stimulus properties that serve as bases for numerosity
judgments. Unfortunately, most of these principles have
not been formulated in quantitatively measurable terms,
and, as a rule, they can be communicated only through
graphic examples. One of the few attempts to explain per
ceived numerosity in strictly formal terms was undertaken
by Vos et al. (1988). The basic idea is that the perceived
numerosity depends not on the number of dots as such
but on a more complex spatial property of the dot
pattern-namely, the total area of the plane apparently
filled with dots. The impact each dot has upon its neigh
borhood is portrayed as a monotonicallydecreasing spread
(dispersion) function. The regions in the image where the
sum of all (potentiallyoverlapping) individual spread func
tions exceeds a pre-established threshold value are
regarded as being filled with dots.

A formal description of the CODE (COntour DEtec
tor) model, including the selection of optimal parameters
(form and width of the spread function, threshold value),
was provided by van Oeffelen and Vos in 1983. Accord
ing to the CODE model, the width of the spread function
depends on the distance to its nearest neighbor. The filled
area index predicted the sign or direction of many known
numerosity illusions (Vos et al. 1988). In addition, five
specially constructed 36-<1ot patterns filling approximately
33% of the total area were rated as being more numer
ous than five 36-dot patterns filling only 15% of the total
area. However, the model has not been tested in a more
demanding manner. It is also worth noting that a general
concern of the Vos et al. study, as with other numerosity
studies in general, was to predict the sign of the
numerosity illusion, not its magnitude.

Although the basic idea of the model-that the perceived
numerosity can be identified with the filled area-seems
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Figure 1. Four random-dot patterns whose perceived numerosi
ties are incorrectly predicted by the CODE model. According to
CODE, the 4O-dot pattern, A, should appear to be tbe least numer
ous (filled area is 2.4%), and tbe remaining three, B, C, and D,
should appear to be about equally numerous (approximately
13%-14% of the stimulus area is filled) despite the various number
of dots (20, 10, and 30 dots, respectively).

to be excellent, it is easy to devise dot patterns whose per
ceived numerosity cannot be predicted by the CODE
model, at least in its present form. In the CODE al
gorithm, the spread function shrinks as the distance to the
nearest neighbor diminishes, collapsing to approximately
zero in the extreme case when two dots occupy the two
closest positions in space. Figure lA illustrates a pattern
composed of 20 randomly distributed dots, each sup
plemented by a satellite dot shifted a few positions to the
left or right.

According to the CODE algorithm, these 40 dots ought
to appear to fill approximately 2.4% of the stimulus area,
which is much less than the 13.3% filled by the 20 ran
domly distributed dots in Figure lB. The filled area
predictions are 13.0% and 13.8%, respectively, for the
other two random distributions of 10 (Figure 1C) and 30
(Figure 10) dots. Despite a substantial difference between
these two patterns, the CODE model predicts their per
ceived numerosity to be about equal. In fact, Pattern C
appears to be clearly less numerous than all the remain
ing patterns, and Pattern B, in its tum, appears to be less
numerous than Patterns A and D.

These simple examples demonstrate two obvious weak
nesses of the CODE model: First, it overemphasizes the
nearest neighbor distance in the satellite patterns
(Figure 1A), and, second, it is quite insensitive to large
increases or decreases in the number of elements in the
random patterns (Figures lB-1D). Van Oeffelen and Vos
(1983) stressed that since CODE considers only the rela
tive proximity between dots, not their absolute distances,
it is invariant under similarity transformations such as
changes of size. Of course, the independence from the
number of elements per square area may be a desirable
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property by itself, but certainly not for a model expected
to explain perceived numerosity. From these observations,
we can conclude that CODE cannot pretend to be a realis
tic model of perceived numerosity and that its success in
the prediction of the sign of some numerosity illusions
is first and foremost founded on a fortunate selection of
stimulus material.

Ginsburg and Goldstein (1987) offered another set of
spatial statistics with which to predict perceived
numerosity. Divide the stimulus field into a large num
ber of equally sized probe areas. The number of dots per
probe area is a random variable with mean p. and vari
ance (J2. The ratio between the second and the first mo
ments of this distribution, (J2/p., is frequently used as an
index of deviation from a completely random (Poisson)
distribution of elements (Diggle, 1977; Ripley, 1981). If
this ratio is smaller than that of a completely random dis
tribution, the pattern appears to be more regular, and if
the ratio is larger, the pattern appears to be more
clustered. Ginsburg and Goldstein (1987) demonstrated
that regular patterns were judged to be more numerous
than random ones, and random patterns, in tum, more·
numerous than clustered ones. Although the ratio of
c1usteredness, (J2/u, is associated with perceived
numerosity somewhat, it is not suited in principle for dis
crimination of numerosity. Two patterns with a substan
tially different number of elements can have exactly the
same value of (J2/p., yet still be discriminated quite well
(Ginsburg & Goldstein devised patterns of 37, 74, and
111 elements that had identical indexes of clusteredness).
Thus, although the dependence of perceived numerosity
on spatial organization as indexed by the ratio (J2/p. is an
interesting empirical observation, it does not provide a
full quantitative model of perceived numerosity. Also, it
is rather doubtful that the mean number of dots per probe
area p. (or any of its derivatives) is used as an index of
numerosity, because p. is completely insensitive to the spa
tial configuration of elements.

Proposed model. Our aim in the present study is to pro
pose a sufficientlygeneral model of perceived numerosity.
For that purpose, it is necessary, first, to have a broad
variety of dot patterns, differing from one another both
in the number and the spatial organization of their ele
ments. There are many ways to produce dot patterns with
different spatial organizations of elements. One of the sim
plest parameters characterizing a pattern of dots is the dis
tance from each dot to its neighbors (Diggle, 1983;
Ripley, 1981). In a completely random (Poisson) distri
bution, the expected number of neighbors within distance
t from a given dot is proportional to t 2 (Ripley, 1977;
Schachter & Ahuja, 1979)..

The expected number of neighbors within radius t can
be either smaller or larger than r . In the first case, the
dot appears to repel its neighbors as if it were an animal
defending its territory (Schachter & Ahuja, 1979). In the
second case, the dot appears to attract some other dots,
and, on the average, the nearest neighbor is closer than
it would be in a completely uniform distribution. We used
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RESULTS

Figure 2. Example of four test pattern types Wied in the experI
ment: (A) random, (B) Inbibltion, (C) satellite, and (D) lattice.

Figure 3 shows the test pattern choice probability in
standard normal deviates or z scores as a function of the

Procedure
The observer was instructed to indicate which of the two pat

terns, the left or the right one, contained more dots. No feedback
was provided. A new trial began a few seconds after the previous
answer was given. Two experimental sessions, each with one of
the two reference patterns (N = 20, N = 40), were carried out one
after the other. Both sessions were divided into 20 smaller succes
sive sessions, within each of which all 117 different test patterns
(9 random + 36 inhibition + 36 satellite + 36 lattice) were
presented in a completely random order. During the subsession,
each test pattern type was displayed 5 times, and only random pat
terns were presented 20 times each. In total, the subject proceeded
through 29,200 single trials on the basis of which 234 different test
pattern choice probabilities were determined.
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Random process (Figure 2A). The N dots were distributed ran
domly across the 14,400 possible positions in a hemifield. The prin
ciple of generation was the same as that of the reference pattern.

Inhibition process (Figure 28). This process prohibited any two
dots from being closer to each other than d. (inhibitory distance)
pixels vertically or horizontally. Each dot was centered in a DxD
pixel square, which no other dot could enter. The possible values
of d, were 2, 4, 6, and 8 pixels.

Satellite process (Figure 2C). Half of all the dots were randomly
distributed in the plane. Each of the remaining NI2 satellite dots
was assigned to its respective parent. The parent dot was centered
in a D x D pixel square, and the position of the satellite dot within
the square was randomly chosen. Consequently, every dot had at
least one neighbor not more than D/2 pixel away (the satellite dis
tance ds = 8, 16,24, and 32) vertically or horizontally.

Lattice process (Figure 20). A smaller set of possible positions
was selected by means of a superimposed grid. The intersection
of every nth column and every nth row provided a potential loca
tion. The number of possible locations decreases with lattice coarse
ness. An increase of the grid step (dL = 2, 4, 6, and 8) increases
the minimal distance between the two nearest neighbors, increas
ing the empty territory around each dot and making the regular lat
tice structure more apparent.

METHOD

various generation processes to obtain both types of dot
patterns, with neighbors closer or farther than would be
expected in the case of a completely uniform distribution.

The next step after building such patterns is to deter
mine the probability that each pattern will be judged as
being more numerous than some other members of the
set of patterns. Previous researchers have been content
to demonstrate that two dot patterns equal in number but
not in spatial arrangement of elements appear unequal in
their perceived numerosity. In the present study, we will
try to predict not only the sign of numerosity illusions,
but also the precise degree of under- and overestimation
of the numerosity.

Our goal, then, is to construct a formal model explain
ing how numerosity is perceived. By formal model, we
mean a precisely specified property of dot patterns from
which it is possible to predict every individual choice
probability. This unknown stimulus property, although
perfectly objective, may be relatively complex and does
not typically figure in the list of quantities that statisti
cians use to describe two-dimensional point processes. It
is even possible that such a single property does not exist
at all, because the observer could, in principle, rely on
one property in one situation and another property in
another. To our surprise, we discovered that a relatively
simple property of dot patterns, the occupancy index, ac
curately predicts all the observed individual choice prob
abilities.

Subjects
Two observers, T.T. (29, female) and Y.S. (24, male), both with

normal uncorrected vision, participated in this experiment. One of
the subjects was naive, having no knowledge about the types of
patterns used in this experiment.

Stimulus Materials
The patterns were generated and displayed on a screen with an

LSI-I I103-compatible microcomputer. At a distance of I m, the
full display was approximately 13.3 0 wide and 9.5 0 high. Each of
the possible stimulus dot locations on the graphic display was about
2' of arc in size, and when each dot was lit, it had a luminance
of 1.1 cd/m", Two random-dot patterns, confined within an invisi
ble square of 120 x 120 pixels each and separated from each other
by a 6O-pixel gap (2.1 0), were presented in every single trial. The
patterns were exposed for 400 msec and then replaced by a blank
field. This exposure time was chosen, on the basis of what had been
found in a preliminary experiment, to be comfortable for the ob
server and sufficiently short to prevent direct counting. One of the
two patterns was randomly chosen before each trial as a reference
pattern. The experiment was divided into two separate sessions,
and the number of reference dots was 20 in one session and 40 in
the other. The distribution of dots in the reference pattern was ran
dom; the x- and y-coordinates were obtained from a generator of
random numbers, and if the specified location in the hemifield was
not already occupied, a new dot was added to the pattern. Conse
quently, the location of each dot was independent of the location
of all the other dots. The second of the two patterns was the test
pattern. The number of dots in the test pattern relative to the num
ber in the reference pattern was varied across nine levels: -8, -6,
-4, -2, 0, 2, 4, 6, and 8. There were four different two
dimensional stochastic processes for test generation.



306 ALLIK AND TUULMETS

s
til

..
...

'"
<>

'"I..
I..
I

aI
I

0

I

0

Z
0
E:
iii

==~
0

0 0 ~ c "! 0 0
ri N .; ~ N ri

I I I

;:

'"
'"
...

'"
0

'"I..
I

'"I
aI

0 I
CII
II ;:
Z I

0

Z
0
E:
iiia
~ 0

0
~

'"
'"
...
CIl

0

CIl
I

...
I

'"I

'"I
;:

0
I

ri
I

o
N
I

;:

'"

'"
...

'"
0

CIl
I

...
I..
I

0 '"I
0

0 0
r

N ri
I I

a010qJ

o

o

o
.;

o

o

o
N

o•II
Z

o
CII
II
Z

Q ~ 0.... 0 ~
~ N 0 i
(sa.Ioos-z) A'HUq'8qo.Id



PERCEIVED NUMEROSITY 307

Cl

co..

... ..
I I

... ...
I I

... ...
I I

... ...
I I

0• ~ sII D 0
Z I • I

II
Z

§
II)
~

!iii 0
c a "0

~ § Cl-4
fIl 0

'"'~
..0

C> C>
~

C> C! C> co co co
~

co C! co co 8.. N ci I' N .. .. N ci j' <Ii ,.;
I I I I

=='
r:=

I ~ 2
I ~

\I ... .. :>
I ....

~

'" '" al-... • ~

~

... ...
C>

a ... ...
I I

... ...
I I

'" ...
I I

Cl Cl
I I

0
C\I ~ ~
II 0
Z

I C\I I

II
Z

!iii

§ !iii
t.l a

~ C §
fIl

C a

C! ~ ~ C! C! co
~ C! C! ~ ~

C! C! co.. co j' N .. ... r ... ..
I I I I

(sa.Ioos-z) Almquqo.Id ao!oqJ (sa.Ioos-z) Almquqo.Id ao!oqJ



308 ALLIK AND TUULMETS

~

III

'"
•
<II

Q

~
<II
I

III •I
'" '"I
• III

0 I
'<l'

0 '"
II ~

'<l' Z I
II
Z Q

<II
Z

I 0
::l'l E:
0 • iXll:::l I

~ III
til

I 2S
0 '"U'l I

~ 2
I

COl Q

~
COl ~ 0 0 COl COl s COl

~
0 0

.; tV C - tV .; .; ei C tV .;
I I I I I I

~ s
~

:>
'"~

~
'"tr:

o:l •0
<II

0

~
CII
I

0 '" •I
'" '"I
.. '"0 I

N
~0 0 II

N Z I

II
Z 0 Q

<II Z
0 I 0

::l'l E:
0 .. iXll:::l I -
~ '"

ttl
I 2S

0 III 0I

Q

~ Q
i'

Q QCOl ~ ~
<> ~ ~ Q

~ ~ ~.;
'" c r CII .; ., tV Q i' tV .,.;

I I I I

(S3.100S-Z) Almquqo.ld 3OI°l.{::> (S3.100S-Z) Almquqo.ld 3OI°l.{::>



c

I
l

I
•

I
,

I
1

-
T

1
-,-

--
--

--
--

--
--

-J

-1
0

-8
-8

-4
-2

0
2

4
8

8
10

N
=

-t
O

o

SA
T

E
L

L
IT

E

-3
.0
I
i
i
i
i
i
i
i
i

1
i

,
i

i

i
i
i

I
I

r
I

I
"

3.
0

2.
0

1.
0

P
0

0
.

-
/

/

0.
0

-1
.0

-2
.0

o
c

'r
-
r
-
r
r
-

,
,

I
.-

--
--

.-
--

,
~

r
1

I
•

I
I

-1
0

-8
-8

-4
-2

0
2

4
6

8
10

N
=

2
0

S
A

T
E

W
T

E

0
/
0

t> .... :::
::

0.
0

,Q Cll ,Q 0
-

1.
0

""l:l. ~
-2

.0

~
"
':

"
':

:
:

:"
U

-3
.0

I
i
i

i
i
i
,
i
i
i
~
.

~
3

.0
Q

,) "" 8
2.

0
III I N -
.-

1.
0

R
el

at
iv

e
n

u
m

b
e
r

o
f

d
o

ts

F
ig

ur
e

3
(p

p.
3

0
6

-3
(9

).
T

he
te

st
pa

tt
er

n
ch

oi
ce

pr
ob

ab
il

it
y

(i
n

st
an

da
rd

no
rm

al
de

vi
at

es
or

.l:
sc

or
es

)
as

a
fu

D
ct

io
n

of
th

e
re

la
tiv

e
nu

m
be

r
of

do
ts

Ii
.N

in
th

e
te

st
pa

tt
er

n,
fo

r
2

ob
se

rv
er

s
(T

.T
.

an
d

Y
.S

.)
an

d
tw

o
re

fe
re

nc
e

pa
tt

er
ns

(N
=

20
an

d
N

=
40

).
F

ro
m

to
p

to
bo

tt
om

,
th

e
fo

ur
te

st
-g

en
er

at
in

g
pr

oc
es

se
s

ar
e

sh
ow

n:
ra

nd
om

pr
oc

es
s;

in
hi

bi
ti

on
(t

he
si

ze
of

sy
m

bo
ls

co
rr

es
po

nd
s

to
th

e
de

cr
ea

se
of

th
e

in
hi

bi
ti

on
di

st
an

ce
;

fr
om

le
ft

to
ri

gh
t,

d.
'"'

8,
6,

4,
an

d
2)

;
sa

te
ll

it
e

(t
he

si
ze

of
sy

m
bo

ls
co

rr
es

po
nd

s
to

th
e

sa
te

lli
te

di
st

an
ce

;
fr

om
le

ft
to

ri
gh

t,
ds

=
32

,
24

,
16

,
an

d
8)

;
la

tti
ce

(t
he

si
ze

of
sy

m
bo

ls
co

rr
es

po
nd

s
to

th
e

de
cr

ea
se

of
th

e
gr

id
;

fr
om

le
ft

to
ri

gh
t,

d
L

=
8,

6,
4,

an
d

2)
.A

ll
d

at
a

se
ts

an
d

ab
sc

is
sa

s
co

rr
es

po
nd

in
g

to
th

em
ar

e
sh

if
te

d
by

4
ax

is
un

its
to

th
e

ri
gh

ta
s

th
e

va
lu

e
of

th
e

ge
ne

ra
ti

on
-p

ro
ce

ss
pa

ra
m

et
er

de
cr

ea
se

s.
T

he
st

ra
ig

ht
nn

es
ar

e
tb

e
le

as
t-

sq
ua

re
s

re
gr

es
si

on
fu

D
ct

io
ns

nt
te

d
to

th
e

ni
ne

d
at

a
po

in
ts

(z
sc

or
es

)
fo

r
ea

ch
se

t.
V

ol ~-e tT
l

:::t
l o tT
l :< tT
l o Z c: ~ tT
l

:::t
l o V
'J ::j -<

o

T
•

I
..

---
--r

--,
I

I
-
.

T
-
r
-
'
~

-1
0

-8
-8

-4
-2

0
2

4
8

8
10

oN
=

4
0

a

L
A

T
I'I

C
E

0.
0

1.
0

2.
0

3.
0

-2
.0

-1
.0

-3
.0
I
i
i

i
•
i
i
i
i
i
i

I
4

Y
i

i

I
i
i
i
i
i
'

I

r
i
i
i

I
i
i

I
i

o

~-
'-

"T
i~

i~
i-

'i
-'

-'
-'

-'
i-

'-
'-

'i
-'

''
''

''
i-

'

-1
0

-8
-8

..
:.

·.
.:

2
~
o

'2
4

.s
8

'
10

oN
=

2
0

a

L
A

T
I'I

C
E

o

~
3

.0
Q

,) "" 8
2

.0
III I N -
.-

1
.0

t> .... :::
::

0
.0

,Q Cll ,Q 0
-

1.
0

""l:l. I~
.

,,
,

'0
i

i
'~'

i

tL
s.o

I
i
i

~
.



310 ALLIK AND TUULMETS

relative number of dots tJ.Nin the test pattern, for subjects
T.T. (Figure 3A) and Y.S. (Figure 3B), for each refer
ence pattern (N = 20, N = 40).

In Figure 3, the best-fitting least-squares linear regres
sions are represented by straight lines. The fits are gener
ally quite good, and the Pearson product-moment corre
lation coefficient exceeds .9 in most cases (Table I). The
intercept of the regression line with the zero level (broken
lines) indicates the point of subjective equality (PSE). The
slope of the regression line indicates the differential sen
sitivity of visual number, and it can be used to determine
the just noticeable difference (JND)-that is, the increase
or decrease of the relative number tJ.N that is required
by subjects to correctly discriminate the test pattern from
the reference pattern in 75% of the cases. The numerical
values of the PSE and JND are given in Table 1.

The slope is steeper and the JND smaller for the smaller
reference pattern (N = 20) than for the larger one
(N = 40). On the average, approximately 3.0 (T.T.) or
3.4 (Y.S.) extra dots are just noticeably different from
20 reference dots, and 5.3 (T.T.) or 6.2 (Y.S.) from 40
reference dots. The corresponding Weber fractions, k
(k = JND/N), are .152 (N = 20) and .133 (N = 40) for
T.T. and .168 and .155, respectively, for Y.S. These
values are typical of numerosity discrimination experi
ments. The Weber fraction for numerosity discrimination
has been estimated to be .134 (N = 20) and .128
(N = 40) (Newman, 1974); .162 (N = 8+30) (van
Oeffelen & Vos, 1982); and .124 (N = 25) (Krueger,
1984). The observed decrease of the Weber fraction with
reference number has also been reported by most
researchers (Burgess & Barlow, 1983; Krueger, 1984;
Newman, 1974).

The PSE for the random distribution is generally moder
ately positive, reflecting an asymmetry of the psychomet
ric function; numerosity decrements are more noticeable
than increments (van Oeffelen & Vos, 1982). By contrast,
the normal distribution function used for approximation
is symmetric around zero. The PSEs for the inhibition
patterns are generally negative; these patterns look more
numerous than does the reference pattern with the same

. size. As the inhibitory distance di around each dot in
creases, this tendency increases (see Table 1). The nu
merosity overestimation of the inhibitory patterns is also
more conspicuous for patterns with a larger number of
dots (N = 40). The same type of overestimation is ob
served for the lattice patterns. As the grid step di. of the
invisible lattice increases, the apparent number of dots
increases, especially when N = 40. The dot patterns
generated by the inhibition and lattice processes are simi
lar, in that each dot is surrounded by an exclusionary ter
ritory within which no other dot can occur. Thus, both
numerosity illusions can be ascribed to inhibitory over
estimation.

The appearance of satellite patterns is different from
that of inhibitory patterns. All psychometric functions are

Table 1
Numerical Values of Best Linear Fit Shown in Figure 3

N = 20 N = 40

Process r PSE JND r PSE JND

SUBJECT T.T.

Random
.98 0.8 2.5 .97 -0.1 5.8

Inhibition

d. = 2 .96 -0.2 3.0 .93 -0.7 5.8
d. = 4 .97 0.1 3.1 .96 -2.0 5.0
d. = 6 .97 -0.3 3.4 .92 -5.0 5.6
d. = 8 .97 -1.2 3.2 .97 -6.7 3.9

Satellite

ds = 8 .98 6.9 3.6 .92 13.4 5.8
ds = 16 .95 6.2 4.4 .86 9.5 5.9
d« = 24 .98 4.3 2.9 .95 8.9 4.8
ds = 32 .98 4.2 3.2 .97 6.7 5.5

Lattice
dL = 2 .97 0.8 3.0 .93 0.0 5.2
dL = 4 .98 0.3 3.1 .96 -0.4 6.3
di: = 6 .98 -0.4 3.1 .96 -1.4 4.1
dL = 8 .98 0.1 2.9 .96 -4.0 5.2

SUBJECT Y.S.

Random
.98 0.5 4.0 .97 0.2 8.2

Inhibition

d. = 2 .99 0.2 3.1 .96 -0.4 4.4
d. = 4 .96 0.4 2.9 .95 -2.1 4.2
d. = 6 .98 -0.7 2.8 .96 -4.2 4.3
d. = 8 .99 -1.8 2.5 .98 -6.3 4.1

Satellite

ds = 8 .96 6.5 4.5 .78 24.3 15.9
ds = 16 .88 5.7 4.9 .88 6.5 6.9
ds = 24 .98 4.0 3.9 .83 7.1 6.5
ds = 32 .97 3.1 3.6 .98 5.3 5.6

Lattice

dL = 2 .98 0.9 3.0 .93 0.3 4.9
dL = 4 .95 0.5 3.2 .94 -0.8 4.7
dL = 6 .99 0.1 2.3 .96 -1.5 4.7
dL = 8 .98 0.2 2.7 .92 -3.3 6.2

Note-r = Pearson product-moment correlation. PSE = point of sub-
jective equality. JND = just noticeable difference.

shifted downward; the larger positive PSEs indicate that
the satellite patterns are underestimated, and the PSE
values decrease with satellite distance ds. Thus, the un-
derestimation peaks when the satellite dot is placed within
a 16 x 16 pixel rectangle (ds = 8) centered at the par-
ent dot, and the expected distance between a parent dot
and its satellite is 5.7 pixels. In this case, the function
generally lies below the dotted lines (see Figure 3); that
is, the apparent reduction in numerosity for patterns com-
posed from 48 dots (tJ.N = 8) exceeds 8 dots.

In general, the results agree with data reported by Gins-
burg and Goldstein (1987). The inhibitory patterns, which
have a more regular appearance, were judged to be more
numerous than were the completely random patterns,



which in tum were judged to be more numerous than the
satellite patterns, which have a more clustered (or ag
gregated) appearance.

THE OCCUPANCY MODEL

We believe that the main thrust of the Vos et al. (1988)
model is correct-perceived numerosity depends on the
area of the stimulus field apparently occupied by a con
stellation of dots. Although the brightness of each dot is
precisely localized, its influence is spread over a much
wider area. Our criticism was directed against the partic
ular CODE algorithm whose predictions contradict the
manifest appearance of some dot patterns (see Figure 1).
According to the CODE algorithm, the width of the dis
persion function depends on the distance between each
dot and its nearest neighbor. This appears to be incor
rect, at least for the estimation of numerosity. Our anal
ysis demonstrates that the spread function of each dot is
independent of the spatial proximity of dots. The impact
of any dot upon its surroundings appears to be constant,
irrespective of the spatial arrangement of the dots. Ac
cording to the proposed occupancy model, each dot oc
cupies a circular territory of radius R centered at the dot.
If two dots are less than distance R apart, their individual
territories overlap, and the contribution of the pair of dots
is reduced proportionally to the size of the overlap of their
occupied territories.

In Figure 4, the separation between the dots in the left
hand pair (A) is shorter than R, and, consequently, their
individual spaces overlap. In contrast, the distance be
tween the right-hand dots (B) exceeds the occupancy
radius R, and their occupied territories are isolated. It is
obvious that the area covered by both dots is larger in
the second case than it is in the first one. The occupancy
model postulates that the occupancy index (the total area
of the stimulus field occupied by dots) provides the basis
for the judgment of numerosity. If two patterns are
presented, the hemifield that is apparently occupied by
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more dots will, as a rule, be chosen as being more
numerous.

The proposed model seems intuitively plausible. If a
plane area A2 is randomly bombarded by N circles with
radius R, the expected proportion of the plane covered
by the circles is l-exp( -7fRWIA2

) (Schachter & Ahuja,
1979). The shape of the figure is not critical. The propor
tion of the plane covered by figures will be the same for
any collection of congruent convex figures, each of them
with the same area 7fR2, randomly distributed over the
plane. The proportion of the plane covered by circles can
be smaller or larger for pattern-generation processes
differing from completely random bombardment. In an
inhibitory pattern, circles overlap less than they do in a
random pattern, in which they in tum overlap less than
they do in a satellite pattern. Consequently, given the
amount of territory occupied, the apparent numerosity of
inhibitory patterns ought to be overestimated and that of
satellite patterns underestimated, compared with that of
entirely random patterns.

Let us now describe the occupancy model more for
mally. When the test and reference patterns are presented,
the observer is presumed to compute the occupancy in
dices for both of them. The pattern with the larger oc
cupancy value is chosen as being more numerous. Thus,
the sign of the relative occupancy index (test-reference)
determines the observer's numerosity judgments. The oc
cupancy index of stochastic patterns is a random variable.
Two samples of the same dot pattern type will in general
have different occupancy values. Given a large enough
sample size, the distribution will be close to normal, and
it is sufficient to know only the mean p,and the variance
u2 of the occupancy index distribution. Given these two
values, p,and a", for both members of the test and refer
ence pattern pairs, it is easy to find from them the test
pattern choice probability:

(1)

Figure 4. The basic tenet of the occupancy model: (A) Htwo dots
are close enough to each other Oess than radius R), the territories
they occupy overlap. (8) H the interdot distance exceeds the radius
R, there is no intersection between the two occupied territories. The
impression of numerosity is posited to be proportional to the total
area occupied by dots. This area is larger for Case 8 than for Case A.
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where ~ stands for the standard normal integral, and the
indexes T and R stand for the test and reference patterns,
respectively. It is cumbersome to obtain analytical esti
mates of the mean and variance of the numerosity index
for each random pattern-generation procedure. Therefore,
we generated 100 samples of each pattern type and de
termined directly for each pair of test and reference pat
terns its relative occupancy index /kr-P,R and its standard
deviation .,J(u}+ui). If numerosity judgments are indeed
based on the relative occupancy index, the test pattern
choice probability can be directly derived from this ob
jectively measured property of the pair of dot patterns.
One of the simplest ways to test this prediction is to plot
the relative occupancy indices as standard normal devi
ates (Jkr-P,R)I.,J(u}+ui) against the test pattern choice
probabilities also expressed in standard normal deviates
(z scores). If the hypothesis is correct, all 234 data points
can be described by a single linear function.
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FIgure S. The test pattern choice probability (z scores) predicted from the normalized relative occupancy index for 234 pairs of dot patterns.

Figure 5 shows the test pattern choice probability as
a function of the relative occupancy index (both expressed
in z scores) for the subjects T.T. (left panel) and Y.S.
(right panel). The proposed occupancy model has only
one free parameter: the occupancy radius R. The relative
occupancy index depends on the value of this parameter,
which was estimated using a grid search. The optimal
value R (i.e., the value of the occupancy radius R that
produced the maximum Pearson product-moment corre
lation coefficient in the grid search) was 11 pixels or ap
proximately 22' of arc for the observer T. T. and 9 pixels
or approximately 18' of arc for the observer Y.S. The
correlation coefficient for the best-fitting functions
(Figure 5) were highly significant in both cases (r = .940
and r = .946, respectively).

It might seem that the choice of a parameter describing
random-dot patterns is rather arbitrary and that some other
spatial statistics might predict the observer's choices just
as well as the occupancy index. For comparison, we chose
the two spatial statistics most frequently used to describe
spatial point processes: the nearest neighbor distance and
the number of elements per probe area (Diggle, 1977,
1983; Ripley, 1981). The procedure used for computing
these two statistics was analogous to that used for com
puting the relative occupancy index. For each pair of pat
terns, the relative mean nearest neighbor distance divided
by its standard deviation was found. The correlations with
the observer's choices were r = .779 (T.T.) and
r = .712 (Y.S.), which are considerably smaller than
those obtained in the case of the occupancy index. In order
to estimate the number of dots per probe area, each
hemifield was divided into 10 x 10 square cells. Again,
the mean and variance of the number of dots per probe

area were found, and then the difference between the test
and reference patterns normalized by their summary stan
dard deviation was found. The correlations between psy
chometrical values and these spatial statistics were
r = .798 (T.T.) and r = .838 (Y.S.). Thus, in both
cases, the fit is inferior to that of the occupancy index.
The perceived numerosity depends on neither the nearest
neighbor distance nor the number of elements per probe
area.

DISCUSSION

It is very satisfying that such a simple and completely
deterministic model with a single free parameter, the oc
cupancy radius R, is able to predict the numerosity choice
probabilities so well. The proposed occupancy model ac
counts for approximately 88%-89% of the variance in the
data-which is remarkable, considering the relatively
large random scatter of empirical psychometric functions.
According to the proposed explanation, every dot has an
impact on its proximal surroundings, occupying a terri
tory around it within a fixed radius R. The estimated radius
of occupancy is about 20' of visual angle (in absolute
terms) or about 2.2 % of the total stimulus area (in rela
tive terms), but the exact value seems not to be very crit
ical. On the basis of the present data alone, it is impossi
ble to say in which domain, absolute or relative, the
occupancy radius is defined. Also, other experiments are
needed to determine whether the occupancy radius R is
a constant or depends on some stimulus property. In the
present study, the same fixed value of R was assigned to
all dots, for each observer. It is more plausible to assume
that R is a random variable reflecting the internal noise



of the observer. If one takes into account this internal
noise, the predictions of the occupancy model could be
even more accurate.

What is the psychological meaning of the influence a
dot has upon its neighborhood in the radius R? Accord
ing to the occupancy model, two proximate dots have less
total impact on the numerosity decision than do two spa
tially distant ones. Perhaps this is simply another way of
saying that a dot is inhibited (or masked) by another
nearby dot. It is well known that the contrast sensitivity
of a dot is decreased by the presence of another dot at
some eccentricity from the first one (Westheimer, 1967).
But it is rather doubtful that the decrease in visual num
ber due to proximity of dots can be explained entirely by
contrast desensitization, which spreads no farther than
about 10' of arc. Moreover, as Mulligan and MacLeod
(1988) recently demonstrated, an increase in dot density
makes lit dots appear not dimmer, as desensitizationwould
predict, but brighter. The brightness appears to be in
tegrated over a distance of approximately 30' of arc in
radius. However, there is no information about how this
brightness enhancement might be related to apparent
numerosity. We suspect that the occupancy radius reflects
some more fundamental properties of spatial vision. It
seems that the occupancy modelcan be easily reinterpreted
in terms of the existing models of spatial vision. In par
ticular, the MIRAGE algorithm (Watt, 1988; Watt &
Morgan, 1985) assumes the convolution of the input lu
minance profile with spatial filters of different sizes. The
output of each filter, having symmetrical center-surround
organization, is further split into two separate components,
the zero-bounded positive T+ and negative T- portions
of the filter output. At an appropriate spatial scale, the
territory occupied by the T+ signal appears to be a good
approximation of the occupancy index proposed in this
study.

How can the total area occupied by dots be estimated?
It is known that the figures of equal area but different
shape are judged as differing in area (cf. Anastasi, 1936;
Smith, 1969). The perceived area depends not only on
the physical area but on other stimulus attributes, such
as the convex perimeter or the maximal linear extent of
the pattern as well. If we propose that the numerosity is
estimated on the basis of the phenomenal impression of
the area occupied, we have to devise an additional theory
to explain the perception of the area of irregular shapes.
To avoid such a complication, perceived numerosity and
the area apparently occupied by dots must not be consid
ered as two separate perceptual attributes. The area oc
cupied by dots is experienced, or simply seen, as
numerosity.

The occupancy model has some notable advantages over
the other explanations of perceived numerosity proposed
so far. It appears to be a sufficiently general model, be
cause it was tested on a set of 234 random-dot patterns
differing from each other both in their number and in the
spatial configuration of their elements. The occupancy
model can also be characterized as a formal model with
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a minimal number of parameters not specified in strictly
quantitative terms. In this respect, it can be compared only
with the CODE algorithm that was applied to the anal
ysis of various numerosity illusions (Vos et al., 1988).
Unfortunately, the computational complexityof the CODE
algorithm makes the direct comparison of these two
models difficult. There were 14,400 positions in each
hemifield and 1,404,000 dots in 234 different stimulus
pairs repeated at least 100 times each in our experiment.
Thus, the computation of about 2 x 1010 values of a nor
mal distribution function is required.

In fact, there may be no need for a rigorous test, be
cause the CODE model obviously fails to predict the per
ceived numerosity of patterns shown in Figure 1, which
are very similar to those used in the present experiment.
In any case, the occupancy model gives much more plau
sible numerosity estimates of these patterns. First, the oc
cupancy index clearly distinguishes random patterns with
different numbers of dots (Figures lC-ID): 19.4%
(N = 10), 37.1 % (N = 20), and 50.9% occupancy
(N = 30). Recall that the CODE algorithm regards them
all as about equal in perceived numerosity. Next, the 40
dot satellite pattern (Figure lA) is predicted by its oc
cupancy index (45.6%) to appear to be more numerous
than 20 but less numerous than 30 randomly distributed
dots. This estimate is definitely better than the CODE
prophecy that the satellite pattern appears to be even less
numerous than the 10 uncorrelated dots in Figure lC. In
addition, the occupancy model predicts the direction of
many known numerosity illusions at least as well as does
the CODE algorithm. In particular, dots arranged in a cir
cular pattern must appear to be less numerous than the
same number of randomly distributed dots (Taves, 1941),
because the occupied territories of two neighboring dots
overlap more in a circle than in a random distribution.
The "regular-random illusion" reported by Ginsburg
(1976) is in fact just one of many possible inhibitory pat
terns, whose numerosity overestimation has already been
explained in terms of the occupancy model.

The value of a new theory is revealed, in particular,
by its ability to anticipate unknown phenomena and to pro
vide better explanations of already known ones. For ex
ample, Burgess and Barlow (1983) demonstrated that two
regular (inhibitory) distributions of dots are discriminated
more precisely than two completely random arrays of
dots. If, for example, the number of dots increases from
40 to 46, then the proportion of the plane covered by a
completely random distribution of circles with a radius
of 10 pixels increases approximately 5.1 %. At the same
time, the proportion of the covered plane increases ap
proximately 6.7% for the inhibitory distribution with an
inhibition distance of 8 pixels. Consequently, the same
increase in the number of dots is more salient in a regu
lar (inhibitory) distribution than in a completely random
array of dots. Thus, the occupancy model can explain why
numerosity is discriminated better in regular distributions.
Next, Burgess and Barlow (1983) found that the JND
varies approximately as the 0.75 power of N (i.e.,
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JND = kN 0. 75, where k is the coefficient of proportion
ality). They write:

We cannot find any easy explanation for the exponent of
about 0.7 in this relationship. Since the variance of the num
ber of dots in each small area is Poisson distributed and
therefore proportional to dot density, it would be relatively
easy to explain an exponent of 0.5: indeed such a relation
ship could be explained in a number of ways. There are
also some grounds for expecting an exponent of unity, since
this is the prediction of Weber's Law. All that can be said
is that the empirical value lies between these "explainable"
values. (p. 816)

The occupancy index is not a linear function of the dot
number N. For a Poisson distribution of dots, the expected
proportion of a unit plane covered by the circles of radius
R is I-exp( -7rR2N). We found that the power relation
between the number of randomly distributed dots (N = 12
to 48) and the proportion of the plane 5 covered by cir
cles (R = 10) was well described by a power function
(r = .990) with the exponent of 0.731 (5 = kNo. 731

) .

However, the latter is not a constant, because it depends
on the occupancy radius R. In this particular case, the size
of the JND is approximately a linear function of the oc
cupancy index (0.75/0.731"" 1). In other words, an ex
ponent of unity (Weber's law) may not be expected be
tween the number of reference dots per se but the areas
they appear to occupy in the stimulus plane. This can also
explain why psychophysical scales for numerosity are
typically highly compressive functions of N (lndow & Ida,
1977; Krueger, 1984); the perceived numerosity is not
directly connected with the dot number but with an at
tribute that itself is a compressive function of the dot
number.
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