Behavior Research Methods, Instruments, & Computers
1997, 29 (2), 194-199

AT AND STATISTICAL APPLICATIONS

Chaired by Paula Goolkasian, University of North Carolina, Charlotte

Mathematica: A flexible design environment
for neural networks

SEAN C. DUNCAN and RYAN D. TWENEY
Bowling Green State University, Bowling Green, Ohio

Several neural networks were developed in Mathematica in order to explore the role of “spiky”
neurons in neural network memory simulations. Using Mathematica for this task confirmed its value
as a powerful tool for neural network development: It exhibited distinct advantages over other en-
vironments in programming ease, flexibility of data structures, and the graphical assessment of net-

work performance.

Neural networks have received an enormous amount
of attention from psychologists in recent years. Rumel-
hart and McClelland (1986) first showed that powerful
techniques for training networks, combined with the in-
creasing speed and memory of modern computers, per-
mitted theoretical models to be developed that exceeded
by orders of magnitude the complexity possible even a
few years earlier. At present, a large number of software
and freeware packages that can quickly and efficiently
support a variety of network configurations are available
to psychologists. Nevertheless, it is still a major challenge
to develop and use any nonstandard network architecture;
such development generally demands facility in a power-
ful computing language such as C or C++ (e.g., Masters,
1993). In the present paper, we argue the merits of using
Mathematica (Wolfram, 1994), a high-level interpreted
language, for the development of novel neural network
architectures.

Ratcliff (1994) indicated that use of Mathematica can
be advantageous for modeling purposes, even given its
computational slowness relative to compiled languages.
In the particular instance of neural networks, even though
a compiled network will always be faster than an inter-
preted network, the ease with which one can modify sim-
ulations in some interpreted language programming en-

Acknowledgment is made to In Jae Myung and Cheongtag Kim for
graciously sharing their neural network code and their advice in help-
ing the authors to understand the principles underlying “spiky” neural
nets. The authors also thank Elke M. Kurz, Mark Rivardo, and Rose
Strasser for their criticisms and suggestions. Correspondence should
be addressed to either of the authors at the Department of Psychology.
Bowling Green State University, Bowling Green, OH 43403 (email:
seand@bgnet.bgsu.edu or tweney@bgnet.bgsu.edu).

Copyright 1997 Psychonomic Society, Inc.

vironments makes them useful in the construction of neural
networks. In the present paper, we thus extend Ratcliff’s
point by using Mathematica for a series of simulations
based on a nonstandard network design.

Mathematica is a symbolic programming environment
especially suitable for applications that involve the pro-
cessing of mathematical expressions. It can evaluate sym-
bolic expressions, and it has powerful, high-precision,
computational capabilities and flexible graphics routines.
Developed and used primarily by and for physical scien-
tists, mathematicians, and engineers, it is relatively un-
derused by psychologists, even as it goes into its third—
greatly enhanced—version (Wolfram, 1996). Finally,
although developed originally on a Macintosh platform,
it is available on a large variety of platforms, and 1t can
be obtained for any of a variety of operating systems, in-
cluding Windows and UNIX.

Mathematica has had some exposure in the behavioral
sciences. Gronlund, Sheu, and Ratcliff (1990) showed that
it was useful in the modeling of global familiarity mod-
els. More recently, Lorig and Urbach (1995) utilized it
for the analysis of event-related potentials. In these cases,
Mathematica was shown to be quite useful for modeling
psychological phenomena. In the present paper, this util-
ity is extended further.

Freeman (1994) wrote a textbook introduction to neural
networks that included a series of useful neural network
routines in Mathematica. Freeman chose Mathematica as
the means of presentation because of the clarity with which
its expressions can be related to the more abstract equa-
tions that generally define neural networks. In using Free-
man’s text in a graduate psychological modeling course,
we confirmed his point: Relatively straightforward code
1s provided by Freeman for standard neural net architec-

194

NEURAL NETWORK DESIGN IN MATHEMATICA

tures, such as perceptrons, multilayer networks, and even
adaptive resonance networks, as well as for learning rou-
tines, such as backpropagation. The “transparency” of
the code, a function of Mathematica’s highly mnemonic
design, made it especially powerful for bridging the gap
between the theoretical statement of a net’s function, gen-
erally given in the form of vector and matrix equations,
and functioning code that actually runs the network. Fur-
thermore, the ease with which Mathematica can be
learned meant that attention could be focused upon the
design of the networks rather than the language of their
implementation.

According to Freeman (1994, p. iii), “the ease and
speed with which [one is] able to implement a new net-
work spoke highly of using Mathematica as a tool for ex-
ploring neural-network technology.” Despite its rela-
tively slow speed in the modeling of large networks,
Mathematica’s flexible front-end environment made it
clear that it might have utility in the design of neural net-
works and for explorations of novel network designs.
With this in mind, we decided to try our hand at the mod-
eling of a small, unconventional connectionist model.

We began by attempting to replicate results obtained
by Kim and Myung (1995), in which temporal summa-
tion was used in a simple two-layer network to simulate
semantic priming effects. Our goal in studying their net-
work design was initially didactic; we wished to “test and
stretch” our skills—and Mathematica’s efficacy as a de-
velopment environment—by replicating a published find-
ing based on a nonstandard network design.

“Spiky” Neural Networks

Kim and Myung (1995) built a two-layer network
using an activation function that mimicked the “spiky”
firings of real neurons. Such a network manifests grad-
ual activation across time when presented with an input;
an input item is “recognized” when the associated output
activation exceeds a predetermined threshold level. In
spite of the network’s simplicity, Kim and Myung showed
that such a network could manifest semantic priming ef-
fects; when given a “prime” item to recognize, a subse-
quent similar item would reach threshold more quickly
than if the prime had not been presented. The finding is
interesting because it suggests that even very simple net-
works can manifest these well-known priming effects.

Furthermore, because they used spiky neurons, their
work suggests that neuronally realistic nets may have an
important contribution to make in modeling cognition us-
ing neural nets. For us, Kim and Myung’s results seemed
appropriate as a test case, first, because the network was
simple and small and, second, because its use of spiky
neuron activation functions resembled actual neurons
more than did the usual nonlinear activation function.

Kim and Myung found that a two-layer (24 input node,
6 output node) network utilizing this function, with
weights trained using the Hebb rule, exhibited a seman-
tic priming effect. The network’s output activations were
cumulative and built upon the previous states of the net-
work, allowing one to study the rising activation of a pat-

195

tern as it was presented to the network over the course of
time. This differs from many other simple two-layer net-
works, in which the actual “running” of a network entails
the production of a single set of output activations from
one presentation of an input.

To determine whether or not an input “neuron” would
fire at a given time step, Kim and Myung used a Poisson-
distributed random process, thus adding what they called
a temporal summation dimension to the usual spatial
summation used in computing node activation. Their ac-
tivation function was defined by Equation L:

t+At

Anet ,(z):iw,.ja,.l [Si(h)dh}—f-netj(t)At. (1)
i=1 ;

The weights between each input unit (i) and output
unit (f) are represented by the w; ;, activations of the input
layer are represented by a,, the integral of S;(h)dh repre-
sents a Poisson-distributed random neuron firing pro-
cess, and & - net,(f)Az represents a leakage term for the
network. It should be noted that this equation represents
the change in the activation of the output nodes; the val-
ues of Anet; computed by this equation are added to the
previous time step’s output activation values.

With regard to the semantic priming effect, the amount
of time for the network output activations to reach thresh-
old was less for a “semantically similar” pair of input
patterns than for “semantically dissimilar” input pairs. In
addition, Kim and Myung showed that their network ex-
hibited, as expected, the usual pattern of effects due to
stimulus onset asynchrony (SOA), which we will describe
more fully below. Replicating this, Kim and Myung’s
major result, was a first goal for our initial Mathematica-
designed networks.

The Simulations

We began by loosely adapting Freeman’s code for an
adaptive linear combiner (Freeman, 1994, p. 40)—es-
sentially a two-layer perceptron network. Since Kim and
Myung’s networks (originally written in C) involved fol-
lowing the course of output activations over time and
used an activation function that included a probabilistic,
temporal summation aspect, we retained very little of
Freeman’s actual code while keeping many of his pro-
gramming conventions. The “style” of our Mathematica
network is quite similar to Freeman’s, but the specific cod-
ing used was a functional equivalent of that used by Kim
and Myung.

Replicating Kim and Myung’s results involved coding
the network using Mathematica’s Macintosh front end;
we created our networks in a graphical environment
within which we performed mathematical calculations,
ran the simulations, and viewed the resuits of the net-
work performance. Annotated code for the “prime presen-
tation” portion of the replication networks, as displayed
in Mathematica’s front end, can be found in Figure 1. (The
code is described more fully below.)

Mathematica is particularly useful in allowing one to
quickly modify code and to do “on-the-fly” calculations.

196 DUNCAN AND TWENEY

" ;". File Edit Cell Graph Find Rction Style

Wing. -
1. Declare
EE===ESSaaEaa Temporal Summation I local variables;

® The neural network.

primePres[inputs_, w
Module[{netlist,

outs=Table[OD,

netlist = Table]|

outs += wts. (inputs
outs, [numIters}];
Return[netlist];

-

rings,

{Length[wts]}].

firings=Table[poisson,
firings)

initialize outpufs T

, numIters] :=]|}
outs},

xi_,

2. Begin ‘
iterating; get vecto
of on-or-off input
firing events

{Length[inputs]}]’
- (x%i outs);

- 3. Compute

new output }
activationsand _JJJ§
store them i

B 4. Return
the list of outpul
activations

Figure 1. A screen grab of Mathematica’s front end, illustrating the “prime presentation”
portion of the temporal summation networks.

This follows from the fact that it is an “interpreted” lan-
guage—that is, one in which code is compiled and pro-
cessed by the programming language one line at a time—
rather than a “compiled” language such as C in which
source code must be compiled by the user before running
the program. While the runtime for a neural network in
an interpreted language is normally much higher than for
a compiled language, the ease with which we were able
to make minor adjustments and experiment with our net-
works justified the extra time needed to run the simula-
tions. Incidentally, though we did not need to use the op-
tion, Mathematica allows one to compile regularly used

Activation
RT
E . SOA (Pr'me).:’r,v-—n
= [o i e
I%g ”’/
Edb -7
=<z _,r"
mS5 p
gr /
o PRIME | PROBE
Activation
RT
o SOA (Prime)
= [
- — <= =
839 7
I0O
<
525
81.:.
o. PRIME | PROBE
PRIMING

functions in order to increase runtime speed. In addition,
it is relatively simple to embed calls to compiled routines
written in other languages; thus, were we to study the ef-
fects of “scaling up” the present network, to see if its be-
havior changed as the net grew in size, the logical way to
proceed would be to incorporate a C or C++ routine to do
any heavy number crunching.

We began by studying the network performance of
multiple replications of the networks. The heart of our
routine (the first half of which is illustrated in Figure 1)
was a function that continuously fed a given input to the
network and tracked its output activations over time.

Activation

PRIME | PROBE

Activation

PRIME

PROBE

Time

CONTROL

Figure 2. Examples of all four simulation conditions, with probabilistic function (priming and control) and without
probabilistic function (priming and control). Each “prime” and “probe™ consisted of 500 network iterations. The ordi-
nate is on an arbitrary activation scale. Reaction times for the priming conditions [RT (Prime)] are clearly shorter than

reaction times for the control conditions [RT (Control)|.

NEURAL NETWORK DESIGN IN MATHEMATICA

Networks were constructed and run in both the priming
condition and the control condition, in which either sim-
ilar or dissimilar pairs of inputs were successively pre-
sented to the network. Our simulations exhibited the same
priming effect as Kim and Myung’s, and we considered
the replication portion of our study a success.

To determine what aspect of the network was chiefly
responsible for the priming effect, we modified the net-
work in several steps, successively removing sections of
the network’s functionality and testing its performance.
The results of our simulations are reported in Duncan,
Kurz, Rivardo, and Strasser (1996). By removing the spiky
neurons from the network, we found strikingly similar
results to the network with spiky neurons included. We
concluded that the semantic priming effect is not a result
of the inclusion of a probabilistic element into the net-
work but rather was due to the fact that the network is a
gradual activation network in which each input item is
presented repeatedly over time. In the course of this work,
Mathematica was quite useful in presenting the results of
both the replication and the summation-removed networks.
Plotting the course of activations with Mathematica made
the similarity between the temporal summation networks
and spatial summation networks very clear. One set of
activation plots can be seen in Figure 2. With such plots,
we were able to conclude that the addition of the proba-
bilistic component of the temporal summation process
did not adversely affect the priming effect other than
adding a small amount of “noise.”

Kim and Myung also showed that the priming effect
increased with length of SOA—that is, the difference
between the time of presentation of the probe and the
prime. To assess the contribution of the temporal sum-
mation (the Poisson-distributed random process that dic-
tated whether or not a neuron would fire), we ran multi-
ple simulations with and without temporal summation
while varying the SOA length. A comparison of 200 rep-
lication networks and 20 networks without temporal sum-
mation can be seen in Figure 3. Except for the noise intro-
duced by the probabilistic character of the spiky neurons,
the two graphs appear nearly identical.

Again, Mathematica’s combination of a sophisticated
programming environment with data visualization tools
made the assessment of our networks’ performance quite
simple.

Using Mathematica

Following Freeman (1994), we implemented node
activations and weight matrices as Mathematica lists,
allowing us to capitalize on the language’s multiple rep-
resentations of lists as arrays and vectors. Similarly, Rat-
cliff (1994) briefly described a memory model of spread-
ing activation in which Mathematica lists were treated as
matrices and vectors, permitting activations to be com-
puted utilizing simple matrix multiplication.

The symbolic nature of Mathematica’s programming
language has several benefits for neural network model-
ing. Indexing capabilities are easily handled within the

197

RT

RT

Control

Priming

Time

Without
Temporal Summation

Figure 3. Results for the temporal summation and nontemporal
summation networks as a function of stimulus onset asynchrony
(SOA). SOA varied from 1 to 4,501 time steps for both simulations,
with activations plotted on an arbitrary scale.

framework of standard Mathematica commands. For ex-
ample, the command “Table” can take a symbolic expres-
sion and evaluate it for a symbolically expressed number
of times, placing the result in a list structure that can itself
be named as a symbolic expression. Thus, in the network
code shown in Figure 1, the line “firings = Table[pois-
son, {Length[inputs]}]” creates a table of values from
the output of “poisson” (here, the integral found in Equa-
tion 1), evaluates it for a number of times that corresponds
to the computed length of the input string (inputs), and
makes the result (i.e., the entire table) itself a new vari-
able called firings. Although iterative processing is ob-
viously not something specific to Mathematica, the man-
ner in which one can reference the result of the iterative
process as a single symbol is quite useful in neural network
programming.

With this in mind, we translated Kim and Myung’s ac-
tivation function into the following Mathematica code:

outs += wis.(inputs firings) — (xi outs);

In this code, we were able to treat the network input
activations (inputs) as a list of activations multiplied by
a Poisson-distributed on/off neuronal firing variable (fir-

198 DUNCAN AND TWENEY

6
o [
§5§s
_:=.9 rd
- o 4
=00 5
=852
ok 3°
e 2
1
0 200 400 600 S00 1000 0 200 400 600 800 1000
I
| =
5206 38
O:E=
£8% 3
§.ﬂ: &
o 3
o

0 200 400 &00 800 1000 0 200 400 6&00 800 1000
PRIME PROBE PRME PROBE
Priming Control
Condition Condition

Figure 4. Hinton diagrams of network performance over time, plotted using Mathematica’s ListDensity-
Plot command. Six prime/probe pair activations are shown from top to bottom; time is on the abscissa. The
change from prime presentation to probe presentation occurs at time step 500.

ings). The result was treated as a vector that was multi-
plied by the network weight matrix (wts) and added to
the previous output activation (outs) in, again, a list-like
manner.

Mathematica’s flexibility in this regard cannot be un-
derstated. In stepping through the above line of code,
first, note that the network takes the input activations (in-
puts, a vector of ones and zeros) and multiplies each el-
ement by a vector of equal length (firings, also consist-
ing of ones and zeros). This second vector represents, for
each time step, the Poisson-distributed random firing
events—that is, a value of 1 represents a fired node, and
a value of 0 represents a nonfired node. Then, the inner
product of the weight matrix and the resultant value of
the previous computation is calculated, from which a
decay term equal to a constant multiplied by the previous
output activation is subtracted.

Mathematica makes it easy to create Hinton diagrams
(Freeman, 1994, p. 23; Hinton, McClelland, & Rumel-
hart, 1986) of various portions of neural networks. Al-
though these diagrams are normally used to illustrate the
weights or activations of a network after a training pro-
cedure, they can also be used in small networks such as

ours to view the progress of output activations over time.
In Figure 4, a kind of “extended” Hinton diagram, we
can see the behavior (across time) of all 6 output nodes
for each of the four kinds of neural networks run (prim-
ing vs. control, temporal summation vs. no temporal sum-
mation). Although not shown here, the diagnosticity of
such plots can be enhanced even more when presented in
color. Whether black and white or color, Mathematica al-
lows one full control over display parameters, such as
density, color value, gray-scale range, and so on.

This illustrates another strength of Mathematica: the
ease with which one can take a set of data and represent
it multiple ways. Note that the density plots effectively
present the values of six variables over hundreds of time
steps; corresponding line plots (which can also be done
with Mathematica) are simply too cluttered to be useful.

In sum, we believe that Mathematica is a powerful en-
vironment for designing neural networks for psychologi-
cal research. As an interpreted language, it is much slower
than other programming environments, yet much more
easily modifiable than compiled languages, allowing the
experimenter to “explore” the behaviors of the networks.
The representation of data structures within the language

NEURAL NETWORK DESIGN IN MATHEMATICA

allows for the simple programming of computationally
complex neural network activation code. Finally, the com-
bination of programming ease and powerful visualiza-
tion tools permits a wide range of methods to assess the
performance of neural networks.

REFERENCES

DUNCcAN, S., Kurz, E., RivaRDO, M., & STRASSER, R. (1996, Novem-
ber). Semantic priming in a simple two-layer neural network. Poster
presented at 37th Annual Meeting of the Psychonomic Society,
Chicago.

FREEMAN, J. A. (1994). Simulating neural networks with Mathematica.
New York: Addison-Wesley.

GRONLUND, S. D, SHEU, C.-F,, & RATCLIFF, R. (1990). Implementation
of global memory models with software that does symbolic compu-
tation. Behavior Research Methods, Instruments, & Computers, 22,
228-235.

HinTON, G. E., MCCLELLAND, J. L., & RUMELHART, D. E. (1986). Dis-
tributed representations. In D. E. Rumelhart & J. L. McClelland
(Eds.), Parallel distributed processing: Explorations in the micro-
structure of cognition. Vol. I: Foundations (pp. 77-109). Cambridge,
MA: MIT Press.

199

KiM, C. & MYUNG, L. J. (1995). Incorporating real-time random time
effects in neural networks: A temporal summation mechanism. In
J. D. Moore & J. F. Lehman (Eds.), Proceedings of the Seventeenth
Annual Conference of the Cognitive Science Society (pp. 472-477).
Hillsdale, NJ: Erlbaum.

Lorig, T. S., & UrBacH, T. P. (1995). Event-related potential analysis
using Mathematica. Behavior Research Methods, Instruments, &
Computers, 27, 358-366.

MASTERS, T. (1993). Practical neural network recipes in C++. San
Diego: Academic Press.

RATCLIFF, R. (1994). Using computers in empirical and theoretical
work in cognitive psychology. Behavior Research Methods, Instru-
ments, & Computers, 26, 94-106. .

RUMELHART, D. E., MCCLELLAND, J. L. (Eds.) (1986). Parallel dis-
tributed processing: Explorations in the microstructure of cognition.
Vol. 1: Foundations. Cambridge, MA: MIT Press.

WOLFRAM, S. (1994). Mathematica (Version 2.2.2) [Computer pro-
gramming language]. Champaign, IL: Wolfram Research, Inc.

WoLFRAM, S. (1996). Mathematica (Version 3) [Computer program-
ming language]. Cambridge: Cambridge University Press.

(Manuscript received September 30, 1996;
revision accepted for publication January 6, 1997.)

