
Behavior Research Methads, Instruments, & Computers
/988, 20 (6), 560-565

C language functions for millisecond timing
on the IBM PC

JOSEPHG.DLHOPOLSKY
Computer Associates International, Garden City, New York

This article describes four C language functions for programming the IBM PC and compatibles
for timing with millisecond precision. The technique, which is based on a reprogramming of the
PC's real time clock, requires no additional hardware, no assembly language code, and no program­
ming of machine or software interrupts. One function restores the PC's time-of-day clock.

Solutions to timing with millisecond precision have been
presented for a number of microcomputers over the years,
from the early Apple II and Radio Shack TRS-80 to the
current IBM PC and Apple Macintosh. Authors have
generally relied on two approaches. One involves hard­
ware additions or modifications together with supporting
software (Emerson, 1988; Grice, 1981; Poltrock & Foltz,
1982; Rayfield, 1982). The other involves assembly lan­
guage or compiled high level language software timers
(Adams, 1985; Buhrer, Sparrer, & Weitkunat, 1987;
Dlhopolsky, 1983; Graves & Bradley, 1987, 1988; Hor­
mann & Allen, 1987; Westall, Perkey, & Chute, 1986).

Emerson (1988) reported a C language timer that uses
an IBM asynchronous serial interface, which is a com­
mon add-on board. It contains a hardware timer that can
be programmed to issue an interrupt to the CPU (central
processing unit) at the end of a programmed interval. De­
pending on the application, the timer's resolution can ap­
proach 1 msec. One characteristic of the technique, ac­
cording to Emerson, is that the more frequent the
interrupts, the more time the CPU takes in timekeeping
tasks. In other words, the better the resolution, the less
time the CPU has for other functions. For example,
greater resolution may be programmed for an event­
counter application. But screen intensive uses, such as the
tachistoscopic display of large or complex stimuli, would
involve a more restrictive tradeoff between timer resolu­
tion and stimulus size in bytes (see Usage Notes below).
Emerson recommended a resolution of 10 msec as a suita­
ble middle ground for general purposes.

Buhrer et al. (1987) described an assembly language
module that programs One of the hardware timers on the
IBM PC's Intel 8253 Programmable Interval Timer to is­
sue an interrupt every millisecond. The authors provided
other assembly language modules to be called from
BASIC programs to count the interrupts and read and reset
the clock buffer. While BASIC is not a good choice for
a programming language for real-time laboratory soft­
ware, anyone familiar with 8086 Assembly Language

This paper was not sponsored by Computer Associates International.
The author's mailing address is 27 Wilson Street, Port Jefferson Sta­
tion, New York 11776.

could readily modify the routines to be called from a fast
assembly language program. A by-product of Biihrer et al.
technique is the disruption of the time-of-day clock, which
would be a concern for those who want accurate date and
time stamps for their data files.

The timer functions described in this article program
the 8253 timer as in Buhrer et al., (1987), but they do
not directly handle the interrupt, thereby saving some
CPU processing overhead. Rather, they read and write
data to the 0 segment random access memory (RAM) ad­
dresses 46c and 46d hex of the IBM PC, which contain
the tally of timer ticks for the normally functioning time­
of-day clock software. Like Emerson's timing software,
the functions are written in the C language, which, when
appropriately used, produces programs that approach the
execution speed of assembly language programs. Unlike
Emerson's (1988) code, however, the serial interface
board is not required. The functions are modularly struc­
tured and three of them are 15 lines long or shorter, in­
cluding blank and comment lines. Most professional com­
pilers provide the capability of placing the functions in
permanent libraries that can then be linked with any num­
ber of application programs.

The functions have in common with Emerson's (1988)
and Biihrer et al.'s (1987) approaches the feature of isolat­
ing the application software from the duty of maintaining
timing loops. The program initially sets the timer, then
reads and writes data to the clock buffer in one-word
packets. Timing occurs in parallel with the execution of
the program statements, which may then be devoted more
fully to CPU-intensive operations such as the displaying
oflarge stimuli. One of the provided functions also cor­
rects the time-of-day clock.

In normal operation, the IBM PC's 8253 Timer 0 is­
sues an interrupt after it counts down from 65535 to 0,
paced by a 1.193l8-MHz time base. This results in an
interrupt every 54.9255-msec. The IBM PC uses this
value as the time base for updating the time-of-day clock.
It keeps a running total of timer ticks in memory addresses
46c and 46d hex.

By changing the Timer 0 clock event count from 65536
to 1193, the timer will produce an interrupt every
999.849 JLsec and the result will be tallied in the same

Copyright 1988 Psychonomic Society, Inc. 560

memory locations. Then, by storing zeroes in these ad­
dresses and reading the contents at various points in an
experiment trial, a program can monitor intervals with
close to millisecond accuracy. This makes the timing of
intervals easier and faster because elapsed time can be
compared directly with a terminal time instead of having
to subtract the start time from the current time before the
comparison can be made.

The functions keep track of the total elapsed millise­
conds between the start of timing and its termination. This
provides a value that may be used to restore the time-of­
day clock. If desired, the .015% timing error incurred
in the 999.849-/Lsec millisecond may be corrected by in­
corporating a correction equation in the software.

The timer software was compiled on the Aztec C86 C
Compiler, Developer version (Manx Software Systems,
Shrewsbury, NJ). However, C commands and standard
library functions are portable and will compile on any
compiler that conforms to the Kernighan and Ritchie
(1978) standard, or the forthcoming ANSI standard (such
as Lattice C, Turbo C, Microsoft C, and many others).

Aztec C86 also provides a library of IBM-specific func­
tions that operate more flexibly and have greater utility
on the IBM PC than the standard C library. Some of these
have been used in the timer software. Other C compilers
have the same capabilities, with only minor differences
between the analogous functions. The differences should
not dissuade the interested researcher from using other
compilers, because the intense competition among soft­
ware houses has resulted in C compilers that almost
universally produce very fast and very compact machine
language code.

The listing in the Appendix contains the source code
for the timer and related functions. The numbers in the
right-hand column of the listing are not normal to C code,
but have been included here to facilitate the description
of the code's operation (in fact, the program will not com­
pile with the numbers). The code consists of the follow­
ing functions:

set_timer()
fix_time_of_day()
reset_timer()
zero_timer()
main()

In addition, the timer is implemented with one macro:
GET_MSEC.

The "#include <stdio.h >" on line 001 is the first line
in all C programs. The stdio.h file contains standard in­
put/output declarations. The second line is an instruction
to load the Aztec C86 time.h header file. This contains
a declaration of the time-of-day data structure that is used
in the set_timer() and fix_time_of_day() functions.
Lines 007 and 008 declare the global elapsed_msec vari­
able and a global data structure of type tm: start_time.

The elapsed_msec variable counts milliseconds from
the initiation of the timer. This allows the time-of-day
clock to be restored when the program finishes its timing

MILLISECOND TIMING IN C 561

phase. An unsigned long integer (4 bytes) can tally milli­
seconds for 49.7 days before rolling over. This is con­
sidered more than ample for most laboratory applications.

The composition of the tm structure is declared in the
time.h file (see line 002). Several elements of the start_
time structure are used in various places in the code. They
appear in the form: start_time.tm_x (where the "x"
could be hour, min, sec, etc.). Note that the Aztec func­
tions that read and set time of day operate through IBM
PC BIOS (Basic Input/Output Services) calls and are not
unique to this compiler.

The GET _MSEC macro (line 005)
Whenever the GET_MSEC macro appears in the

source code, the compiler will replace it with the ex­
pression:

(unsigned int)peekw(O x46c,0)

The peekw() function works like the BASIC language
PEEK command. It returns the 2-byte signed integer
stored at the memory address indicated by the first argu­
ment at the segment offset indicated by the second argu­
ment. In this case, it reads the clock tick value at addresses
46c and 46d hex. The returned value is cast to an unsigned
integer to prevent values greater than 32767 from being
interpreted as negative numbers. Experiment intervals
such as interstimulus intervals may be timed by enclos­
ing the GET_MSEC macro in a while loop. Subject
response latencies may be timed by issuing the GET_
MSEC macro after a response is detected. The analogous
peekw() function of other compilers may have a differ­
ent name and format, but it will operate in a similar
fashion.

set_timerO (lines 011-026)
This function reprograms Timer 0 of the 8253 chip to

time in milliseconds by giving it a new loop constant of
1193 (4a9 hex). Line 014 declares two Aztec C86 func­
tions: Outportb() and dostime(). Outportb() is used to
output I byte of data to an I/O port. Dostime() is an Az­
tec function that reads the time-of-day clock. Both func­
tions are common in other compilers and can also be im­
plemented with direct BIOS calls. Lines 015 and 016
declare, respectively, for the set_timer() function, the
global elapsed_time variable and the start_time struc­
ture. Lines 018 through 025 contain the commands that
make up the function.

Elapsed_msec is set to 0 in line 0 I8. The current time
of day is read and stored in the start_time structure (line
019). The expression "&start_time" indicates to the
dostime() function the address of the start_time struc­
ture into which the dostime() function stores the current
time. (The fix_time_of_day() function restores the
time-of-day clock by adding the elapsed milliseconds to
the start time.)

In line 020, a control word (36 hex) is output to port
43 hex, which prepares the 8253 timer to receive a new
loop constant for Timer O. The new timer constant

562 TEDER, MUTZ, AND PFLEGER

(4a9 hex or 1193 decimal) is then sent over port 40 hex
(lines 021 and 022). Line 023 sets the timer buffer to O.
The pokew() function in this line is an Aztec C86 func­
tion that stores a 2-byte word, the first argument, in the
memory location and segment indicated in the second and
third arguments, respectively. Other compilers provide
an analogous capability.

When set_timer() returns, the clock is timing in ap­
proximate l-msec intervals (999.849 p.sec). The clock
count at addresses 46c and 46d will recycle when it
reaches 65535 (slightly over 1 min). Consequently, the
global elapsed_msec variable should be updated at least
every minute by calls to either the reset_timer() or the
zero_timer() function. If the clock count is allowed to
roll over without updating elapsed_msec, 65 sec will be
lost from the time-of-day clock.

Rollover counts from addresses 46c and 46d are avail­
able at addresses 46e and 46f, but setting and reading these
addresses would involve additional program statements.
This would involve a second peekw() function call ev­
ery time GET_MSEC was called, doubling the process­
ing time for this call. Considering that GET_MSEC
would likely be called repeatedly during while loops, this
would add considerably to the CPU processing time and
might affect the precision of the timer. The current con­
figuration was designed to optimize tachistoscopic appli­
cations, where intervals are timed in multiples of screen
refresh intervals (16.7 msec) and response latencies are
lower than 1 min. In such applications, the zero_timer()
function could be called during intertrial intervals to up­
date the elapsed_msec variable. It is unlikely that experi­
ments having intervals longer than a minute seriously re­
quire the precision of a millisecond timer. In such cases,
the overhead involved in setting and reading addresses
46e and 46f would be negligible, and the code could be
modified easily to accommodate this need.

Regardless of whether or not time of day is important,
the reset_timer() function must be called before any disk
access is performed and before the program is ended. The
disk drives will simply not work with the 1193 constant
in Timer O.

fix_time_of_dayO (lines 029-084)
This function is called by the reset_timer() function

to restore the correct time of day. It decomposes the
elapsed_msec variable into hundredths of a second, se­
conds, minutes, and hours (lines 038-044) and adds the
results to the appropriate elements of the global start_
time structure (lines 047-065). In the interest of brevity
and speedy execution, the updating of the clock stops at
hours; the day, month, and year are simply set back to
their starting values (lines 066-071 and 079-081). There­
fore, an experiment starting before midnight and continu­
ing until after midnight will result in the time's being set
back to 11:59:59 at its conclusion.

The bdosO function (lines 077 and 081) is the Az­
tec C86 function that calls the MS-DOS SET_DATE and

SET_TIME functions with interrupt 21 hex. The
"< < 8" expression (lines 075,076, and 080) is the C
syntax for a left shift of 8 bits. It has the effect of shifting
a low-order byte of a word into the high-order position.
(Multiplying the low order byte by 256 has the same ef­
fect, but it is a slower operation).

reseCtimerO (lines 087-102)
This function sets the 8253 Timer 0 back to the normal

timing mode. It therefore has the opposite effect of the
set_timer() function. It also updates elapsed_msec (line
093) and calls fix_time_of_day(). This function must
be called before the disk drives are used.

zero_timerO (lines 105-114)
This function sets the timer ticks at addresses 46c and

46d hex to O. Before it does so, however, it updates the
elapsed_msec variable with a call to GET_MSEC.

mainO (lines 117-141)
The main() function is the one from which every C pro­

gram begins its execution. In this case, it performs a sim­
ple exercise of the millisecond timer functions to test them
for proper operation. It consists of a while loop that con­
tinues until the ESC key is pressed. In the course of the
loop, it displays the start time, counts milliseconds be­
tween key presses, and displays the corrected time at the
end of the interval. This function was used to test the timer
and time-of-day correction functions. Given the variance
expected from rounding errors and observer reaction time,
a comparison of the results with readings from a digital
stopwatch illustrated that the functions operate as ex­
pected.

The dostime() function puts the current time in a struc­
ture of type tm, called buffer. The asctime() function
returns a character string representation of the time that
is passed to it in the buffer structure. Scr_getc() causes
the computer to wait for a key press and returns the
character (similar to the BASIC language INKEY com­
mand). This function is in the Aztec C861ibrary, but is
implemented as a BIOS call. Other compilers offer a simi­
lar facility. The printf() function is a standard C format­
ted print command.

Usage Notes
The timer functions were tested on ffiM XT, AT, and

Tandy 1000 computers and functioned as expected. They
have also been incorporated into one published labora­
tory software package (Dlhopolsky, 1988). They may not
operate correctly on some ffiM PC compatibles that lack
hardware compatibility. Note that the CONFIG.SYS me
on the boot disk must have a line that reads: DEVICE
= ANSI.SYS, and the ANSI.SYS me must be present
on the disk. Memory resident programs should not be in­
stalled during the use of the timers, especially those that
issue interrupts (such as mouse driver software, or pro­
grams that provide so-called "hot keys"). Users should

MILLISECOND TIMING IN C 563

also refrain from random or rapid keyboard entries other
than those intended by the program design, as the key­
board issues an interrupt every time a key is pressed. Fi­
nally, although used in the main() function in this paper,
the printf() function should not be used in tachistoscopic
applications because it is too slow. Direct pokes to video
memory are more appropriate.

It should be noted that the maximum size of a stimulus
(in bytes) in tachistoscopic applications is governed by
the number of bytes that can be moved to video RAM
within the span of one video refresh cycle, which is
16.7 msec on most American monitors. The speed of
transfer is dependent on the storage speed of the com­
puter's RAM chips and on its system clock frequency.
The faster the RAM chips and clock frequency, the larger
the maximum stimulus size. A 3-year-01d Tandy 1000
with an 8088 chip operating at 4.77 MHz can move about
128 words to video RAM in 15 msec. More recently in­
troduced computers with faster memory chips and 80286
or 80386 microprocessors operating at up to 25 MHz can
do much better. However, the various system clock fre­
quencies should have little impact on the timer described
here, because ffiM has announced that it will maintain
the Timer 0 frequency of 1.19318 MHz in future prod­
ucts, regardless of the system clock frequency (ffiM,
1984, p. 9-11).

Availability
Readers may acquire an MS-DOS compatible disk copy

of the source code and executable program by sending
$7 to the author at 27 Wilson Street, Port Jefferson Sta­
tion, New York 11776, or by sending a formatted disk
and $2 to cover postage.

REFERENCES

ADAMS, J. K. (1985). Visually presented verbal stimuli by assembly
language on the Apple U computer. Behavior Research Methods, In­
struments, & Computers, 17, 489-502.

BUHRER, M., SPARRER, B., '" WEITKUNAT, R. (1987). Interval timing
routines for the mM PC/XTIAT microcomputer family. Behavior
Research Methods, Instruments, & Computers, 19, 327-334.

DLHOPOLSKY, J. G. (1983). Machine language millisecond timers for
the Z-80 microprocessor. Behavior Research Methods & Instrumen­
tation, 15, 511-520.

DLHOPOLSKY, J. G. (1988). PC-HEMIP: Hemispheric information
processing on the IBM Pc. Bayport, NY: Life Sciences Associates.

EMERSON, P. L. (1988). Using serial interfaces and the C language for
real-time experiments. Behavior Research Methods, Instruments, &
Computers, 20, 330-336.

GRAVES, R., '" BRADLEY, R. (1987). Millisecond interval timer and au­
ditory reaction time programs for the mM PC. Behavior Research
Methods, Instruments, & Computers, 19, 30-35.

GRAVES, R., '" BRADLEY, R. (1988). More on millisecond timing and
tachistoscope applications for the mM PC. Behavior Research
Methods, Instruments, & Computers, 20, 408-412.

GRICE, G. R. (1981). Accurate reaction time research with the TRS-80
microcomputer. Behavior Research Methods & Instrumentation, 13,
674-676.

HORMANN, C. A., '" ALLEN, J. D. (1987). An accurate millisecond timer
for the Commodore 64 or 128. Behavior Research Methods, Instru­
ments, & Computers, 19, 36-41.

mM CORP. (1984). Technical reference: Personal computer AT, Part
1502243. Boca Raton, FL: Author.

KERNIGHAN, B. W., '" RITCHIE, D. M. (1978). The C Programming
Language. Englewood Cliffs, NJ: Prentice-Hall.

POLTROCK, S. E., '" FOLTZ, G. S. (1982). An experimental psychol­
ogy laboratory system for the Apple U microcomputer. Behavior
Research Methods & Instrumentation, 14, 103-108.

RAYflELD, F. (1982). Experimental control and data acquisition with
BASIC in the Apple computer. Behavior Research Methods & In­
strumentation, 14, 409-411.

WESTALL, R., PERKEY, M. N., '" CHUTE, D. L. (1986). Accurate milli­
second timing on Apple's Macintosh using Drexel's MilliTimer. Be­
havior Research Methods, Instruments, & Computers, 18, 307-311.

APPENDIX
Listing of Program

.define ESC t2Jxlb I' value of the escape key

.define GET_MSEC (unsigned int)peekw(t2Jxt2J46c,t2J)

unsigned long int elapsed_msec;
struct tm start_time;

int outportb(), dostime();
extern unsigned long int elapsed_msec;
extern struct tm start_time;

void set_timer ()

001
f1't2J2
f1't2J3

*/ f1't2J4
f1'f1'5
f1't2J6
f1'f1'7
f1'f1'8
f1't2J9
t2Jlt2J

*/ 12111
*/ t2J12

f1'13
f1'14
f1'15
f1'16
t2J17
f1'18
f1'19
02121
f1'21

I' reads clock at start *i
1* 8253 timer control word *1
1* new timer constant for 1.19318 MHz *1

I' sets timer 0 to time in milliseconds
1* normal clock tick is 55 msec

elapsed_msec ; t2J;
dostime(~start_time);

outportb (t2Jx43,f1'x36);
outportb (t2Jx4t2J,0xa9);

{

.include <stdio.h>

.include <time.h>

564 TEDER, MUTZ, AND PFLEGER

APPENDIX (Continued)

1* Get elapsed hsec, seconds, minutes, hours *1
hsec = elapsed_msec I llO;
hours = hsec I 36lO~lOlO;

hsec 7.= 36lOlOlOlO; 1* 70= is modulus operator
minutes = hsec I 6000;
hsec 7.= 6000;
seconds = hsec I 100;
hsec 7.= 100;

}

return;

1* put start date back (in case it changed) */
month_day = (start_time.tm_mon « 8) + start_time.tm_mday;
bdos(lOx2b, month_day, start_time.tm_year);

*1 022
*1 023

024
1025
1026
027
1028
029
1213@
031
lO32

*1 lO33
034
12135
~36

12137
lO38
039

*1 04@
041
12142
12143
lO44
12145
12146
12147
048
lO49
050
12151
052
12153
054
055
056
lO57
058
059
l2J6f2l
lO61
062
lO63
lO64
lO65

*/ 12166
12167
~68

lO69
lO7lO
12171
lO72
lO73

*1 074
12175
076

*1 lO77
078
12179
121812l
lO81
12182
12183
12184
lO85
lO86

o

1* don·t turn over to next day

1* 4a9 hex = 1193
1* zero timer so elapsed msec

int seconds, minutes, hours;
unsigned int hour_min, second, month_day;
unsigned long int hsec; 1* hundredths of a second
extern unsigned long int elapsed_msec;
extern struct tm start_time;

return;

outportb (~x4lO,lOxlO4);

pokew(lOxlO46c,lO,lO);

}

}

1* Add elapsed time to start time *1
start_time.tm_hsec += hsec;
if (start_time.tm_hsec >= 100)
{

start_time.tm_sec++;
start_time.tm_hsec -= 100;

start_time.tm_sec += seconds;
if (start_time.tm_sec > 59)
{

start_time.tm_min++;
start_time.tm_sec 60;

}

start_time.tm_min += minutes;
if (start_time.tm_min > 59)
{

start_time.tm_hour++;
start_time.tm_min -= 60;

}

start_time.tm_hour += hours;
if (start_time.tm_hour > 23)
{

start_time.tm_hour = 23;
start_time.tm_min = 59;
start_time.tm_sec = 59;
start_time.tm_hsec = 99;

1* put new time value in clock .«. is left shift operator
second = «int)start_time.tm_sec « 8) + start_time.tm_hsec;
hour min = «int)start_time.tm_hour « 8) + start_time.tm_min;
bdos(0x2d, second, hour_min); 1* IBM function 2d sets time

}

void fix_time_of_day()
{

MILLISECOND TIMING IN C 565

APPENDIX (Continued)

*I ~87

088
~89

~9~

~91

~92

*1 ~93

~94

~95

*1 ~96

*I ~97

~98

*1 899
188
181
182
183
184

tl 185
186
1~7

1~8

1~9

*I 11~

111
112
113
114
115
116
117
118
119
12~

121
122
123
124
125
126
127
128
129
13~

131
132
133
134
135
136
137
138
139
14~

141

11 ESC key stops the test.

1* Keep track of elapsed milliseconds

1* tally last fe~ milliseconds

1* Go to fix time of day

ESC)

1* Puts timer back to normal

1* set timer to ~ and sum elapsed milliseconds

printf("Press a key to start the timer; press again to stop.\n");
key_press = scr_getc(); 1* ~ait for key press to start *1
set_timer();
if (key_press == ESC) break;
dostime(~buffer);

printf(IIStart: %s\n", asctime(~buffer»;

key_press = scr_getc(); 1* ~ait for key press to stop
msec = GET_MSEC;
printf("%u\n", msec);
dostime(~buffer);

printf("Stop: %s\n\n", asctime(~buffer»;

reset_timer();
}

~hile (key_press !=
{

elapsed_msec += GET_MSEC;
poke~(~x~46c,~,~);

i nt poke~ () ;
extern unsigned long int elapsed_msec;

void set_timer(), reset_timer(), zero_timer();
char *asctime(), scr_getc(), key_press;
int printf(), dostime();
unsigned int msec;
struct tm buffer;

return;

void fix_time_of_day();
i nt outportb () ;
extern unsigned long int elapsed_msec;

return;

1* Put timer back to normal *1
outportb (~x43,~x36); 1* 8253 control ~ord

outportb (~x4~,~); 1* old timer ~ constant
outportb (~x4~,~);

fix_time_of_day();

}

}

main ()
{

void zero_timer()
{

}

void reset_timer()
{

(Manuscript received August 12, 1988;
revision accepted for publication October IS, 1988.)

