
Behavior Research Methods, Instruments, & Computers
1989, 21 (4), 441-446

COMPUTER TECHNOLOGY

Synchronizing stimulus displays with
millisecond timer software for the IBM PC

JOSEPH G. DLHOPOLSKY
Radiation Dynamics, Inc., Melville, New York

A C language technique for synchronizing millisecond timer software to the appearance of the
stimulus on the IBM PC's video monitor is described. Tachistoscopic programs that use the tech­
nique can correct the mean 8.3-msec bias normally found in reported response latencies and reduce
the associated error variance.

Researchers considering the use of the IBM PC for
tachistoscopic applications should know that the appear­
ance of a stimulus on the video monitor is controlled by
two asynchronous processes: the computer program and
the video display circuitry. The program executes instruc­
tions that result in the storage of character data (or pixel
images) in random access memory (RAM) that is dedi­
cated to the video display. The display processing hard­
ware recurrently reads video RAM and controls the in­
tensity of the monitor's electron beam as it "draws"
images. The result: the computer program-which also
initiates the timing of response latencies-normally does
not know the precise moment at which the display process
causes the stimulus to appear on the screen.

The decoupling of the program and video processes has
a number of effects of interest to researchers who require
precise control over brief stimulus displays and milli­
second interval timing. As the vertical dimension of the
stimulus increases, it becomes more likely that the stimu­
lus will be drawn on the screen in parts. For example,
the electron beam might be aimed at the middle of the
screen when the program transfers the stimulus data to
video RAM. The bottom portion of the stimulus would
then appear first, followed by an interval during which
the electron beam would be scanning the bottom and then
the top of the screen (both areas presumably empty of
stimulus parts). Finally, the top portion of the stimulus
would appear. The interval between the appearance of
first- and last-drawn portions would be 16.7 msec (assum­
ing a monitor with a 6O-Hz refresh frequency).

The situation for response latencies produces both bi­
ased results and increased error variance. If the program
starts a millisecond timer following the execution of the
commands to display the stimulus, the timer will have
been running an average of 8.3 msec before the stimulus

Correspondence may be addressed to Joseph G. Dlhopolsky, 27 Wilson
Street, Port Jefferson, NY 11776.

appears on the screen. Thus the measured response laten­
cies will be too large by an average of 8 msec. This is
easy enough to correct by simply subtracting 8 msec from
all the values. However, some of the latencies will ap­
proach an error of 16.7 msec, whereas others will have
very small errors. Researchers who expect small indepen­
dent variable effects would want to eliminate or at least
reduce this source of error variance.

The decoupling of the program and display processes
was recognized at an early point in the use of micro­
computers for tachistoscopic laboratory applications (Dlho­
polsky, 1982; Grice, 1981; Lincoln & Lane, 1980;
Merikle, Cheesman, & Bray, 1982; Reed, 1979). Past
solutions involved either hardware or software techniques
in the Apple II and Commodore PET, and Models I and
ill of the TRS-80. However, similar techniques are not
well known for the IBM PC. This article describes such
a technique.

Method
I/O addresses 3DOh through 3DFh in the ffiM PC, PC

AT, and many compatibles are mapped to the color
graphics adapter or CGA (3BOh-3BFh for the mono­
chrome display adapter or MDA) (IBM, 1984; Tandy,
1984). The on/off state of bit 3 of address 3DAh reflects
the state of the vertical retrace signal produced by the
CGA video circuitry. This signal provides the ability to
synchronize stimulus displays with timer software.

To grasp the usefulness of the vertical retrace signal,
one must understand the operation of the CRT's electron
beam as it "draws" an image. The beam is a stream of
electrons that energizes phosphors on the inner surface
of the monitor screen. Its "starting" position is at the top
of the screen, from which it successively scans each of
the 200 horizontal lines of the standard CGA monitor
(more for MDA, EGA, and VGA). When it gets to the
bottom, there is a pause during which it is turned off and
reaimed back at the top. This pause is called the vertical

441 Copyright 1989 Psychonomic Society, Inc.

442 DLHOPOLSKY

retrace interval. The whole process is done 60 times a
second on CGA monitors (50 Hz on TTL monitors and
in Europe and in other countries; 70 Hz on some high­
resolution monitors, e.g., EGA and VGA).

Bit 3 of port 3DAh is on during the retrace interval (it
reads as 1). This state can be detected by having the pro­
gram repeatedly input a byte from this port and perform
a logical AND operation between it and 8 (2 raised to the
third power). A TRUE result indicates that the electron
beam is currently engaged in a retrace interval. A FALSE
result indicates that the beam is energizing the screen
phosphors.

A program that synchronizes timer onset with the synch
bit of 3DAh should loop until it detects the onset of the
retrace interval. At this point, it should execute the com­
mands to store the stimulus data in video RAM. Assum­
ing that the researcher has established the time it takes
for the beam to get to the stimulus location, the millisecond
timer could be started at the proper moment. Alterna­
tively, the program could start the timer at the vertical
retrace signal and then use it to pace stimulus intervals
and response latencies from the first signal. This tech­
nique is used in the C language demonstration program
listed in the Appendix and described below.

The program was written for the Turbo C 1.5 Com­
piler. Although other C compilers have similar capabili­
ties, this one combines attributes of cost and versatility.

The program demonstrates the detection of the vertical
retrace signal and its use in providing synchronized stimu­
lus displays. It may also be used to determine the loca­
tion of the electron beam at various intervals following
the onset of the signal. This information is useful for de­
termining the proper time to start a latency timer, or for
making postexperiment corrections in latency data. For
example, if the researcher establishes that the stimulus
location is reached 5 msec after the retrace signal, he or
she can adjust the measured response latencies by 5 msec.

The program's operation is straightforward. It requests
the user to enter a delay value, the most informative values
being between 0 and 16 msec. The computer then draws
a scale that indicates the location of the 25 text lines. It
then waits for a vertical retrace signal, upon which it
pauses for the time entered by the user. At the end of this
interval, it sends the values for a light blue vertical bar
to video RAM. It pauses for the remainder of one screen
scan (as 17 msec) and then sends blanks to the vertical
bar's video RAM. It repeats this loop 100 times. The sub­
jective effect is a rapidly flashing blue bar that has a rela­
tively consistent top position and a consistent termination
at the screen bottom.

Program Description
The lines in the program have been numbered to aid

in the description. Lines 001 and 002 identify two header
files that are included in the source module. The stdio.h
file is universally included in C programs. The conio.h
file is an ANSI Standard C header file that contains in­
formation specific to the handling of screen output.

Three macros are defined in lines 004-009. Their use
makes later portions of the code more readable. The com­
piler substitutes the text in these macros for the macro
name. For example, whenever the macro GET_MSEC
appears in the source code, the compiler will replace it
with the following text: (unsigned)peek(O, Ox046c).

The GET_MSEC macro is used to read the millisecond
timer. The ZERO_TIMER macro sets the timer to O.
These macros, together with the two functions,
seUimer() and reseUimer() (lines 012-026), have been
described elsewhere (Dlhopolsky, 1988). They constitute
the millisecond timer.

The VID_SYNC_OFF macro is used to test the state
of the vertical retrace signal. Its construction, which is
somewhat indirect, will become obvious when described
below.

Consistent with C Language practice, the entry func­
tion in the program-main()-appears at the end of the
listing (lines 122-140). The first few lines of main()
declare the functions called by main(). Line 128 is the
beginning of a do loop that continues until the user enters
a negative delay value. In executing this loop, the com­
puter requests a delay value, which should be in the range
0-16 msec. It reads this value from the keyboard as a
string and converts it to an integer (line 132).

If the user enters a positive number, main() calls three
functions that successively clear the screen, display a scale
in the center of the screen, and flash the vertical bar. The
clrscr() function (line 135) is the Turbo function that
clears the screen. Being in the Turbo library, it does not
appear in the listing. The other two functions are listed.

The draw_scale() function (lines 108-119) carries out
a straightforward display of a scale that identifies the lo­
cation of the 25 screen text lines. A printer output of this

1- -1
2- -2
3- -3
4- -4
5- -5
6- -6
7- -7
8- -8
9- -9

~~=:::::~~
1 2 -:~1~~~~ 12
13 -~:~:~:~ 13
14-:U-14
15-{J-15
16-(J-16
17-:1-17
18-/;"'18
19-~J-19

20 -~~:~:~~20
21-::=+-21
22-:n\-22
23-:~J~23
24-rJ-24
25-Ul-25

Figure 1. Sample time-delayed CRT electron beam locator scale.
The numbers represent text lines. The central bar depicts the ap­
pearance of the screen with a delay of 7 msec on a Tandy 1000.

scale appears in Figure I. Readers who are unfamiliar
with the C language should refer to a textbook for a
description of the printf() function in line 116.

The draw_vert_bar() function (lines 030-105) carries
out the flashing of the vertical bar. The main() function
passes to it the integer delay value that the user entered.
This value is declared in the first line of the function in
a format consistent with function prototyping provision
of the forthcoming ANSI C Standard.

The first few lines of draw_vert_bar() contain decla­
ration and initialization of variables. The integer variable,
bar_chr, is the attribute and IBM PC character set code
for a short vertical light blue bar. This is the building block
of the full screen bar. The integer array, vidram, con­
sists of the segment offsets of the video RAM addresses
for the area of the screen on which the vertical bar will
appear. The segment base for the IBM PC's video RAM
is B800h for CGA graphics.

Line 041 starts the loop that carries out 100 displays
and erasures of the vertical bar. The call to seLtimer()
in line 043 programs the IBM hardware timer to time in
I msec increments, instead of the normal 55 msec. The
computer then waits for a vertical retrace to occur, as
programmed in line 044. As this line reads, the computer
loops as long as the vertical retrace signal is off. The semi­
colon at the end of the while statement indicates that the
loop is self-contained. When the vertical retrace signal
goes on, the computer breaks out of the loop and exe­
cutes the succeeding instructions.

The operation of the while loop in line 044 explains
the somewhat cryptic definition of the VID_SYNC_OFF
macro: The bitwise AND operation (&) between input
from I/O address 3DAh and 8 returns FALSE during ac­
tive screen scanning (bit 3 of port 3DAh is 0 and bit 3
of the digit 8 is I). The logical negation operator (!)
changes this to TRUE. Used in a while statement, the loop
will continue as long as active screen scanning continues.
As soon as the vertical retrace occurs, bit 3 becomes I,
the bitwise AND then returns TRUE, and the logical ne­
gation changes this to FALSE. Accordingly, the loop in
line 044 breaks upon detecting this FALSE condition.

Line 045 sets the millisecond timer to O. Line 046
causes the computer to pause for the chosen delay inter­
val. The while loop will execute as long as the timer read­
ing is less than the value of delay.

The 25 poke() function calls in lines 048-072 progres­
sively store the vertical-bar-segment character code in the
video RAM locations for inside the scale. The sequence
is from the screen top to bottom in order to stay ahead
of the advancing electron beam.

The program uses the sequence of pokes rather than
a single poke within a loop, because a loop entails a count
variable that must be incremented or decremented for each
iteration. This adds processing overhead to the program's
transfer of data to video RAM. Remember, this transfer
is literally racing the electron beam, so compactness of
code has been sacrificed to speed of operation. It is quite
possible that a loop would have been fast enough, but the
poke method used here emphasizes the need for speed.

IBM PC VIDEO SYNCHRONIZAnON 443

(See Usage Notes for more information on the poke
method.)

There are several other alternatives to transferring the
stimulus data to video RAM. Some compilers may be bet­
ter than others at efficient use of the CPU registers, and
the test program could be written to capitalize on this.
The fastest approach, of course, would be to substitute
in-line assembly code that would make maximal use of
the registers.

Line 73 causes the computer to wait for 17 msec since
the start of the vertical retrace interval. Then 25 poke()
calls (lines 075-099) send blanks (' ') to the video RAM
addresses for the vertical bar. The computer then pauses
until 55 msec have passed since the first vertical retrace
was detected. This takes it past the signal that would have
been detected at 50 msec. Then the cycle is repeated
another 99 times. The net effect is that a portion of the
vertical bar will appear each time for 17 msec (actually
16.7 msec), followed by a 50-msec blank interval.

Results
The program was tested on a Tandy 1000, an IBM PC

XT, and an IBM PC AT. The data for the Tandy 1000
are in Table I. There was some scattering of the position
of the top of the vertical bar. The scattering covered about
1.5 text lines-equivalent to about l-msec variation-but
it was easy to identify a line for which the bar was al­
ways solid for a particular delay value. Moreover, the
I-msec variation compares favorably with the 16.7-msec
variation that would occur without the synchronization
technique.

The scattering could be due to the fact that the rou­
tine executes every fourth refresh cycle, that is, every
66.667 msec. The first few vertical synch signals would
arrive at 0, 66.667, 133.333, 200.000, 266.667, 333.333,
... msec from the first signal that was detected. Because
the timer counts in milliseconds, it will not match the oc­
currence of the vertical synch signal precisely. Rather,

Table 1
Observed Location of Top of the Solid Portion of Vertical Bar After

Various Delays from the Vertical Retrace Signal

Delay (msec) Highest Solid Line

0 I
I. I
2................................. I
3 3
4 4
5 6
6 8
7 10
8 12
9 13

10 15
11. 17
12 19
13 21
14......................... . .. 23
15....................... . 24
16 none

Note-These data were recorded from a Tandy 1000.

444 DLHOPOLSKY

it will match the signal on one third of the cycles, but
be off by .333 and .667 msec on the other two thirds.
The net effect would be a varying visible starting point
for the vertical bar with a variation on the order of a milli­
second, which was found. This effect is amplified in the
test program with its rapidly repeated 100 cycles.
However, it could be circumvented with software imple­
mented to run tachistoscopic experiments.

It is interesting to compare the synchronization tech­
nique with the test program running without it. To do this,
the user could recompile and link the source code without
the synchronization section (line 044). Alternatively, the
program could be coded with a query to the user to set
a flag that would determine whether or not to use the syn­
chronization code. Either way, the results are dramatic:
The nonsynchronized code chaotically draws the bar in
random locations on the screen in contrast to the orderly
synchronized process. One has only to imagine stimuli
being presented in the two ways to ascertain the more ap­
propriate method to use in research-grade software.

Usage Notes
The video synchronization technique described here

will perform as described as long as the computer has
no other active software that also reprograms the timer
hardware. Such a program could be present without the
user's knowing about it, if the computer loaded it as a
memory-resident program during the execution of the
AUTOEXEC.BAT fJle during boot-up. Ifuncertain about
a line in the AUTOEXEC.BAT file, try comparing the
performance of the test program with the current AUTO­
EXEC.BAT fJle and with an AUTOEXEC.BAT fJle with­
out the questionable line (you must reboot the computer
each time). If the questionable program degrades the per­
formance of the test program, it should be removed from
any computers that run tachistoscopic programs, even if
the techniques in this article are not used.

Some peripherals also issue interrupts to the CPU.
Among these are the keyboard and mouse interfaces.
Although these devices only issue interrupts when they
are used, and these interrupts will not interfere with the
millisecond timer, operating them during the transfer of
stimulus data to video memory could extend the transfer
time beyond 16.7 msec. Of course, a computer that is
capable of multitasking should not have other tasks
ongoing.

The method that the program uses to display the verti­
cal bar directly stores values in RAM, which is an ap­
proach that bypasses the ffiM Basic Input/Output System
resources (BIOS). The standard BIOS function calls and
interrupt calls are, unfortunately, too slow-a previous
version of the program, using BIOS calls, gave spurious
results. The poke method, however, relies on video RAM
located starting at B800h. Some PC-eompatible computers

do not use the same memory locations. The ffiM EGA,
VGA, and monochromatic display adapters also use dif­
ferent locations. The technique will work with this hard­
ware if given the correct video RAM origin, which can
be found in the technical manual for the adapter or
computer.

The mapping of screen positions to millisecond laten­
cies will be the same when the display is switched to a
graphics mode of the same resolution in pixels. However,
because there are more bytes involved, the problem of
ensuring that a display is completed within a single beam
scan becomes greater.

The direct high-speed pokes to video RAM will, with
some adaptors, result in "snow" appearing on the screen.
This by-product of the test program does not invalidate
the results when applied to displays written through the
BIOS calls.

While the technique described in this article will en­
sure that stimuli will be displayed synchronously with the
video display's electron beam, researchers should ascer­
tain that the stimulus data can be stored in video RAM
quickly enough to stay ahead of the electron beam. The
16.7-msec time limit places constraints on the size of the
stimulus: Computers with faster system clocks and faster
RAM chips will be able to display larger stimuli. The
storage time can be determined by embedding the stimu­
lus display commands in a loop and then checking start
and stop times with the millisecond timer functions used
in this article.

Program Availability
A floppy disk containing the program and source code

is available from the author for $10.

REFERENCES

DLHOPOLSKY, J. G. (1982). Software synchronizing of video displays
and Z-80 processing in the Model ill TRS-80. Behavior Research
Methods & Instrumentation, 14, 539-544.

DLHOPOLSKY, J. G. (1988). C language functions for millisecond tim­
ing on the ffiM PC. Behavior Research Methods, Instruments, & Com­
puters, 20, 560-565.

GRICE, G. R. (1981). Accurate reaction time research with the TRS-80
microcomputer. Behavior Research Methods & Instrumentation, 13,
674-676.

mM CORP. (1984). Technical Reference: Personal Computer AT (Part
1502243). Boca Raton, FL: Author.

LINCOLN, C. E. & LANE, D. M. (1980). Reaction time measurement
errors resulting from the use of CRT displays. Behavior Research
Methods & Instrumentation, U, 55-57.

MERIKLE, P. M., CHEESMAN, J., & BRAY, J. (1982). PET Flasher:
A machine language subroutine for timing visual displays and response
latencies. Behavior Research Methods & Instrumentation, 14,26-28.

REED, A. V. (1979). Microcomputer display timing: Problems and so­
lutions. Behavior Research Methods & Instrumentation, 11,572-576.

TANDY CORP. (1984). Tandy J()OO Technical Reference Manual. Fort
Worth, TX: Author.

IBM PC VIDEO SYNCHRONIZAnON 445

APPENDIX
*include <stdio.h>
*include <conio.h>

int i;
static int bar_chr = 0>:0bdb; 1* blue bar character *1

1* Video ram offset for vertical bar *1
static int vidram[25J = { 0>:4e, ~h:ee, (i:h:18e, ~}:22e~ Ilh:2ce,

10>: 36e, ilt>:4~e, 0>:4ae, I!h:54e~ ~l>:5ee,

0x6Se, I1Ix72e, 11I>:7ce, "h:S6e, Qh:90e,
0x9ae, 0>:a4e, 0xaee, "h:bSe, 0>:c2e,
0>:cce, 0>:d6e, 0xe0e, 0>:eae. 0>:f4e };

set_timerll; 1* set timer to time in msec *1

while lVID_SYNC_OFF); It loop until vertical retrace signal
ZERO_TIMER;
while IGET_MSEC < delay); 1* wait for programmed delay *1

It send vertical bar characters to video RAM *1
poke 10xbS00, vidram[0J, bar_chrl;
poke 10xbS00, vidram[IJ, bar_chrl;
poke 10xbS00, vidram[2J, bar_chrl;
poke 10>:bS00, vidram[3J, bar_chrl;
poke 10>:bS00, vidram[4J, bar_chr);
poke l0>:bS00, vidram[5J. bar_chrl;
poke 10xbS00, vidram[6J, bar_chr);
poke 10xbS00, vidram[7J, bar_chrl;
poke 10xbS00, vidram[SJ, bar_chr);
poke 10xbS00, vidram[9J, bar_chr);
poke 10xbS00, vidram[10J, bar_chr);
poke 10>:bS00, vidram[IIJ, bar_chrl;
poke 10xbS00, vidram[12J, bar_chr);
poke 10>:bS00, vidram[13J, bar_chr);
poke l0>:bS00, vidram[14J, bar_chr);
poke 10>:b800, vidram[15J, bar_chr);
poke 10>:b800, vidram[16J, bar_chrl;
poke 10xb800, vidram[17J, bar_chrl;
poke 10>:b800, vidram[18J, bar_chrl;
poke l0xb800, vidram[19J, bar_chrl;
poke 10>:b800, vidram[20J, bar_chrl;
poke 10>:b800, vidram[21J, bar_chr);
poke 10xb800, vidram[22J, bar_chr);
poke 10xb800, vidram[23J, bar_chrl;
poke 10>:b800, vidram[24J, bar_chrl;
while IGET_MSEC < 171; 1* wait for end of screen scan *1

It then erase central vertical bar *1
pol:e (Qh:b80@. vi dram[0J, ' j

poke 10xb800, vidram[IJ, 'j

poke 10>:b8@0, vidram[2J, 'I
poke 10xb800, vidram[3J, 'I
poke 10>:b800, vidram[4J, ')
poke 10>:b800, vidram[5J. ')
poke 10xb800, vidram[6J, , I
poke 10>:b800, vidram[7J, , I

001
0QI2
003
004
005
~'06

el07
008
0@9
010
011
012
013
014
015
016
11117
018
019
02~J

el21
022
023
024
~'25

02b
el27
028
029
,,13el
031
!~32

el33
el34
12f35
,,136
037
@38
039
040
1<141
042
043

*1 "144
045
,,146
047
048
049
050
051
fl152
053
l"54
055
056
057
058
059
060
061
062
063
064
065
066
1<167
06S
@69
070
el71
072
073
\<174
@75
076
077
078
079
080
081
082

*1

*1

1* flash central bar 100 times *1

It Puts timer back to normal

It sets timer 0 to time in milliseconds

lunsigned)peekI0, 0x046c)
OFF 'linportbI0x3dal. SI

It VID_SYNC_OFF returns 0 during retrace, which
is the signal to start transferring stimulus
data to video RAM tl

poke 10, 0x046c, 01

for Ii = 0; i < 100; i++1
(

outportb 10x43,0x361;
outportb 10x40,0xa91;
outportb 10x40,0x041;
return;

outportb 10x43,l1Ix361;
outportb 10x40,01;
outportb 10x40,01;
return;

}

*define GET_MSEC
*define VID_SYNC

void set_timer I)
{

*define ZERO_TIMER

void reset_timerll
{

void draw_vert_barlint delayl
{

446 DLHOPOLSKY

APPENDIX (Continued)

}

while (delay >= 0);

do
(

goto>:y (37, i);
printf(1I 'l..2d'l.c I.c'l..d ll

, i, eh-:c4, '3>:c4, i);

083
084
085
086
087
088
12189
090
091
092
12193
094
11195
096
097
098
11199
100

*I 101
11112
11113
104
105
106
107
1138
109
110
111
112
113
114
115
116
117
118
119
12111
121
1':)':>

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

*/

I' 55 msec gets past ne>:t two retraces

I' draws line locator scale *1

vidram[8J, ' ');
vidram[9J, ' ');
vi dramU0J, ') ;
vidram[llJ, ');
vidram[12J, ');
vidram[13l, 7);

vidram[14J, ');
vidramU5J, ');
vidram[16J, ');
vidram[17J, ');
vidram[18J, ');
vidram[19J, ');
vidram[20J, ~);

vidram[21J, 7);

vidram[22J, 7);

vidram[23J, 7);
vidram[24J, 7);

I' Program e>:ecution starts here

whi I e <GET MSEC < 55);

poke (0xb800,
poke l0xb800,
poke (0):b800,
poke l0>:b800,
poke (0):b800,
poke l0>:b800,
poke (0):b800,
poke l0>:b800,
poke (l1h:b800,
poke (0):b800,
poke (l1h:b800,
poke (0):b800,
poke (l1h:b800,
poke (0):b800,
poke (0xb800,
poke (0):b800,
poke (0xb800,

cl scr();
printf("Enter delay from video synch signal (-1 to quit): ");
delay = atoi (gets(buffer»; I' get delay from user *1
if (delay >= 0)

clrscr ();
draw_seal e () ;
draw_vert_bar(delay);

for (i = 1; i <= 25; i ++)
(

reset_timer(); I' MUST be called for disk drives to operate .1
return;

void clrscrl), draw_scale(), draw_vert_bar();
char 'gets(), buffer[5J;
int delay, atoiO, printfO;

void goto>:y ();
int i, printfO;

}

void draw_scale()
(

return;

main ()
(

(Manuscript received January 27, 1989;
revision accepted for publication May II, 1989.)

