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Mental addition: A test of three
verification models
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Three explanations of adults' mental addition performance, a counting-based model, a direct
access model with a backup counting procedure, and a network retrieval model, were tested.
Whereas important predictions of the two counting models were not upheld, reaction times
(RTs) to simple addition problems were consistent with the network retrieval model. RT both
increased with problem size and was progressively attenuated to false stimuli as the split
(numerical difference between the false and correct sums) increased. For large problems, the
extreme level of split (13) yielded an RT advantage for false over true problems, suggestive
of a global evaluation process operating in parallel with retrieval. RTs to the more complex
addition problems in Experiment 2 exhibited a similar pattern of significance and, in regression
analyses, demonstrated that complex addition (e.g., 14 + 12 = 26) involves retrieval of the simple
addition components (4 + 2 =6). The network retrieval/decision model is discussed in terms of
its fit to the present data, and predictions concerning priming facilitation and inhibition are
specified. The similarities between mental arithmetic results and the areas of semantic memory
and mental comparisons indicate both the usefulness of the network approach to mental arith
metic and the usefulness of mental arithmetic to cognitive psychology.

Despite the pervasiveness of mental arithmetic in
adult cognition, little agreement can be found within
cognitive psychology as to the memory structures and
processes that underlie this performance. The models
that have been proposed for mental arithmetic merely
emphasize this lack of agreement; they range from
purely declarative or prestorage to purely computational
or counting explanations. The purpose of this research
was first to test these models in the domain of simple
mental addition and then to assess their generality
when slightly more complex mental addition is required.
A basic criterion in this evaluation is that any serious
model should not only account for results in mental
addition but also be compatible in form with other
arithmetic/number operations that adults perform
mentally.

The result of primary interest in mental addition
research is termed the "problem-size effect": Reaction
time (RT) to positives increases as the size of the prob
lem increases. Possibly the simplest explanation of this
effect, and the simplest definition of problem size, is
embodied in Groen and Parkman's (1972) "min" (for
minimum addend) model. According to this model,
mental addition is performed by setting an internal
counter to the larger (maximum) of the two addends in
a simple addition problem and then incrementing this
value, by ones, the number of times specified by the
smaller (minimum) addend. Since counter-setting time
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should be constant (but cf. Banks, Fujii, & Kayra
Stuart, 1976), increases in RT should be proportional
to the number of increments added, that is, to min.
More formally, this model predicts that RT =c +posi
tive f(min), where c is a combination of encoding,
counter-setting, decision, and response execution times,
and the positive function of min is linear.

Groen and Parkman's (1972) data clearly supported
this model for first-graders tested in a production task.
In Groen and Parkman's regression analysis, the min
model accounted for 80% of the variance in RT, whereas
no other model accounted for more than 32%. In a
true-false verification study with adults, however,
Parkman and Groen (1971) found that the sum of the
problem was almost as good a predictor as min (71%
vs. 73%, respectively).

While the Groen and Parkman (1972) counting
model could easily be revised to use sum rather than min
in the incrementing process (set counter to zero, incre
ment by one addend and then the other). Groen and
Parkman nonetheless doubted the generality of either a
min- or a sum-based counting model for adults. Primary
among their reasons was that incrementing time in the
first-graders was estimated to be 400 msec/increment,
but only 20 msec/increment for adults. Since increment
ing in this model was viewed as quite similar to "silent
counting," an adult rate of 20 msec seemed very unlikely
(although the possibility of a fast incrementing process
of unknown nature was left open). A second reason for
Groen and Parkman's doubts involved RT to ties, that
is, to problems in which a number is added to itself. In
both their child and adult samples, RT to ties appeared
to be a constant value, unaffected by the problem-
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size variables that seemed important for nontie prob
lems. As an explanation for this effect, Groen and
Parkman proposed that ties were exceptions to the rule,
that is, that they were retrieved from some "fast-access"
memory store.

Three further objections to the min model should be
noted here. First, evidence from a study by Winkelman
and Schmidt (1974) suggests strongly that addition and
multiplication are stored in interrelated fashion in
memory (Ashcraft & Battaglia, 1978, found suggestive
evidence of a similar interrelationship between addition
and subtraction). Such interrelationships are virtually
precluded in a computation/counting-based model,
however. Second, and regardless of the developmental
results, counting models as a class provide exceptionally
awkward explanations of other simple arithmetic opera
tions, such as multiplication (see also Parkman, 1972).
Finally, Ashcraft and Battaglia (1978) found in two
experiments that minimum addend was a less successful
predictor of adults' RTs than the square of the problem's
sum. While no special significance attaches to the
squared power per se, the importance of this effect was
that an exponentially increasing RT function is quite
difficult to reconcile with an incrementing-based process.

A more complex model, also suggested by Groen and
Parkman (1972), meets some of these criticisms. The
model was derived from the fast-access notion developed
for tie problems. According to this revised model,
most of adult performance should be viewed as the out
come of fast- or direct-access retrieval from memory,
such retrieval requiring an essentially constant amount
of time (i.e., a regression slope of zero). As such, the
20-msec slope across min was viewed as merely an
average of the many fast-access trials with those few
very slow counting trials on which direct access had
failed. In their data, direct access was estimated to fail
on about 5% of the trials, necessitating the backup
counting process, which proceeds at the child-like rate
of 400 msec (probability of retrieval failure = 20 msec/
400 msec = .05). Formally, then, the direct-access model
predicts that overall RT will be the average of two equa
tions, RT1 = c, with probability of .95, and RT2 =
c +positive f(min), with probability of .05. In these
equations, c is the combination of encoding, direct
access, decision, and response execution times; the
positive function of min is still a 400-msec linear slope.

Given a few generous assumptions, this direct-access/
counting model can handle two of the three objections
noted above with fair success. First, the direct-access
notion requires that some memory structure be available
for retrieval of addition answers, although Groen and
Parkman (1972) did not speculate about this structure
(but see Parkman, 1972). Given that a structure must be
present, it is probably not unreasonable to assume
further that other arithmetic operations would be
similarly represented in memory and that these repre
sentations would be interconnected in some relevant
fashion. This scheme could provide a framework within

which the confusion/interference effects found by
Winkelman and Schmidt (1974) could be explained
(although it is not entirely clear how direct access to one
portion of the representation could be influenced by the
interconnections in the representation itself). Second,
the direct-access model relies very little on a counting
based operation for adult performance, possibly as little
as 5%. As such, the general difficulties with counting
models are at least minimized. Substitution of a differ
ent backup process, say reattempted retrieval, could
preserve the direct-access component and achieve
generality to other operations simultaneously.

The final objection remains somewhat of a problem
for the direct-access model, however. The direct-access
model in fact makes the same RT predictions as the
simpler min model, a linear increase in RT as a function
of minimum addend. Thus Ashcraft and Battaglia's
(1978) finding of an exponential increase seems to dis
confirm a major prediction from the Groen and Parkman
(1972) direct-access model. (Unfortunately, it is not
possible to determine if there was an exponential trend
in Groen and Parkman's data, since they did not include
such a predictor variable in their analyses and since
their RTs were averaged across 4 days of practice.)

As a consequence of this disconfirmation, Ashcraft
and Battaglia (1978) proposed a four-stage retrieval/
decision model, in which time-consuming search through
a network representation accounts for the observed RT
increase to positives. This proposal was in fact quite
similar to one suggested by Parkman (1972) in a dis
cussion of multiplication. In both schemes, the mental
representation was hypothesized to be functionally
organized as a printed addition table, in which the sum
of two numbers is located at the intersection of the
appropriate column and row. After encoding of the
problem, retrieval of the sum from the network occurs,
with elapsed retrieval time proportional to the distance
traversed during the search. Ashcraft and Battaglia
further assumed that the mental table was "stretched" in
the region of larger sums, thus attributing (in post hoc
fashion) the exponentiality in RT to greater subjective
distance in the network structure. A decision stage
follows retrieval, during which the result of the memory
search, the sum of the problem, is compared with the
answer presented in the stimulus, thus enabling the
yes-no reponse. Decision time for true problems was
assumed to be essentially constant and quite rapid. Thus
for positives, RT = c +positive f(problem size), where c
is the combination of encoding, decision, and response
execution times, and the positive function of problem
size appears to be the exponentially increasing function
of sum squared. For problems presented with an incor
rect answer, however, the comparison of the retrieved
sum with the stated incorrect sum results in an inequal
ity judgment. Decision time in this situation is therefore
inversely proportional to the degree of mismatch or
"split" (the difference between correct and incorrect),
an RT effect found in addition by Ashcraft and Battaglia



and in the simpler inequality judgment paradigm used by
Banks and others (e.g., Banks et al., 1976). Thus, for
negatives, RT is both a positive function of problem size
and a negative function of split, with these functions
related to retrieval and decision, respectively. Note that
such a decision stage is appropriate only to the verifica
tion performance under consideration here; it would not
playa role in production tasks.

Regardless of the advantages of this retrieval/decision
model, a direct-access explanation (based on Groen &
Parkman, 1972) of Ashcraft and Battaglia's (1978) results
is in fact available, although it requires a modification of
Groen and Parkman's model. Rather than assume that
the probability of retrieval failure varies as "a function
of some structural variable other than the min," assume
instead that retrieval failure increases proportionally
with increases in min. Since the counting backup process
will be oflonger duration as problem size (min) increases,
the additional effect of more frequent retrieval failure
at large values of min could easily yield RTs that are best
fit by an exponential curve. Even the substitute process
of reattempted direct access might produce the same
exponentiality, given a positive relationship between
problem size and retrieval failure.

Therefore, the major purpose of Experiment 1 was a
test of these rival explanations of the problem-size
effect, direct-access retrieval vs. time-consuming search
through a network representation. If the data support
direct access, then attention must be devoted both to
the mechanisms that operate after retrieval failure as
well as to decision stage processes implied by the split
effect. Alternatively, if evidence against direct-access
processing is obtained, then attention can be directed
toward further specification of the Ashcraft and
Battaglia (1978) network model. We include both prob
lem size and split here to elaborate a process model of
verification performance in either situation.

EXPERIMENT 1

Method
Twenty undergraduates enrolled at the Cleveland State

University served as subjects in the 45-min sessions. All sub
jects were given credit in introductory psychology courses for
their participation.

A total of 200 addition problems, presented in column form,
served as stimuli. Of these, 100 were the true "basic 100 addi
tions facts," that is, the pairs 0 + 0 up to 9 + 9, along with the
correct sum. For the 100 false stimuli, the same addition prob
lems were assigned an incorrect answer, in which the difference
between correct and incorrect (the split) was ±1, 5, 9, or 13.
Incorrect answers came from the same range as the correct
sums, namely, 0 through 18, and to the extent possible mirrored
the frequency of correct sums. Given the range restriction,
notice that it is not possible to assign problems to the Split 13
condition in an entirely random fashion. That is, a problem such
as 5 + 4 cannot appear in the Split 13 condition, since the
possible incorrect answers (-4 or 22) are out of the admissible
range. As a result, the split 13 condition contained either small
or large problems, but none in the middle range of size. Despite
this, the Split 13 condition was deemed important enough to be
included in the study, since Ashcraft and Battaglia (1978) pro
posed that extreme splits might result in processing that is very
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different from, possibly parallel to, the processing that is normally
obtained. These Split 13 data, however, were not included in the
major analysis of variance due to the nonrandom assignment of
stimuli. Adjunct analyses, therefore, will be reported for these
data.

The 200 stimuli, preceded by 20 practice trials, were
sequenced randomly, with the constraints that no repetition of
numbers across consecutive problems be allowed and no more
than four consecutive trials require the same response. Stimuli
were rear-projected onto a screen approximately 75 em from the
subject. An electronic clock timer was activated at stimulus
presentation and was stopped by the subjects' responses to
either the "true" or the "false" button. Half of the subjects
responded "true" to the right button, and half to the left.
A 4-sec blank interval followed each response.

Results and Discussion
Overall error rate for the 20 subjects was 4.1%, and

extreme scores (for Dixon's test; see Wike, 1971)
accounted for only 2.7% of the data points. Errors and
extreme scores were positively related to RT, suggesting
no limitations on interpretation due to a speed-accuracy
tradeoff.

The design of the analysis of variance included three
within-subjects factors, true-false, split (±l, 5, 9), and
problem size (small vs. large; i.e., sums 0-9 vs, 10-18).
Each subject's mean RT to the appropriate set of prob
lems served as the dependent variable. Two points
should be made about this design (and that of Experi
ment 2). First, split is by definition manipulated only
in false stimuli, since only in false stimuli is there a dif
ference between the correct and stated sums. While the
present design yokes each false problem (e.g., 4 + 5 = 7)
to its corresponding true version (4 + 5 = 9), no split
effect is possible, of course, on true problems. Thus
the paradoxical "true/small-split" condition in the
figures, for example, merely refers to those true prob
lems (4 + 5 = 9) that appeared with a small split in the
false stimulus set. Second, the separation of problems
into small vs. large is admittedly somewhat crude
(although probably no more so than similar dichotomous
manipulations in semantic memory research, for
example). On the other hand, information concerning
interactions between problem size and other factors is
more conveniently represented and understood in the
analysis of variance framework. Further, we rely on the
results of regression analyses for detailed information
about the problem-size effect per se.

It seems appropriate at this point to mention the
procedures and advice that guided the regression
analyses reported here, as well as our definitions and
criteria of significance. We follow the terminology and
suggestions of Draper and Smith (1966) and Myers
(1979) in selecting "the best regression equation" for
the present data, that is, data involving a set of highly
intercorrelated predictor variables, only two of which
have been advanced as central to theory. In the absense
of well-developed theory, Draper and Smith recommend
the forward stepwise regression procedure, in which
variables are (1) selected one by one on the basis of the
variables' predictive relationship to unaccounted for
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Figure 1. Mean reaction time (RT) to true and false problems
as a function of size of sum (8 =small, 0-9, L =large, 10-18)
and split. *Analyzed separately.

effect was magnified to 210 msec for true problems, but
it declined to 130 msec for false problems [for the
interaction, F(I ,19) =10.59, MSe =8,420.4] .

The main effect of split [F(2,38) =39.99, MSe =
10,303.7] was qualified by its interaction with true-false
[F(2,38) =17.01, MSe =7,821.7]. The interaction
revealed a significant RT decline for false problems as
split increased (from 1,247 msec to 1,040 msec), but, of
course, there was no change in true RT as a function of
split. Further, the Split by Problem-Sizeinteraction was
significant [F(2,38) = 9.20, MSe= 7,908.3]. At Split 1,
RT increased from 1,030 msec to 1,275 msec for small
to large problems. At Splits 5 and 9, this pattern was
attenuated, from 960 msec to approximately 1,100 msec
for small to large problems. Splits 5 and 9 did not differ
from each other, but both differed from Split 1.

Matched t tests (all conducted at the .01 level to
adjust the experimentwise error rate) were performed
to pursue the suggestion by Ashcraft and Battaglia
(1978) that extreme levels of split might lead to parallel
operation of retrieval and decision stages. Figure 1 pre
sents the following RT data for the different conditions.
For small problems, mean RTs were significantly slower
to false problems at the lower levelsof split (all ps< .001);
at Split 13, true and false RTs were essentially equiva
lent (921 vs. 918 msec). For large problems, however,
false RTs at Split 13 were over 200 msec faster than true
RTs (t = 3.85, P < .01). In contrast, no RT differences
were obtained at the Split 5 or 9 levelshere, although at
Split 1 the false problems were again significantly slower
than trues.

In order to examine more detailed aspects of perfor
mance, in particular the problem-size effect, mean RT
was calculated for each of the 200 stimulus problems
and was used as the dependent variable in several for
ward stepwise multiple regressions. The same set of
predictor variable used by Ashcraft and Battaglia (1978)
was employed here as well. Briefly, these variableswere
as follows (starred variables apply to false stimuli only):
numerical values of the first and second addends, of the

variance and (2) reexamined after each additional vari
able is selected, to insure the continued significance of
each individual predictor. Any variable that is rendered
nonsignificant at a later point in the regressionis removed
from the model (in fact, this situation was never
encountered in the present results). Such a procedure
necessitates three classes of F tests for each regression
analysis. First, the normal test of the equation's signifi
cance is required, Freg. Second, a variable's contribu
tion to the prediction equation must be tested before it
is entered into the model. This test is referred to as
"F-to-enter" or "sequential F," and it tests the null
hypothesis that the increment in variance accounted for
by the added variable is zero.' Finally, each variable
currently in a regression equation must be tested as to
its independent significance; this partial F test is the
basis for either keeping or removing a variable from an
equation. All three classes of F tests are reported here,
with the understanding that the partial F value for a
variable that entered the equation at that step is identi
cal to that variable's F-to-enter (see Draper & Smith,
1966).

Having specified our methods and criteria, it must be
admitted that this does not truly ameliorate the prob
lem of intercorrelations among the predictor variables.
Such multicollinearity, particularly with a large number
of predictors, may lead to several difficulties, including
spurious significance,unreliable estimates of coefficients,
and different orders of inclusion when new samples are
tested. We would argue that these potential problems
are in fact probably not severe in these data, for the
following reasons. First, three independent samples of
adult subjects have been tested (two in Ashcraft &
Battaglia, 1978; one here in Experiment 1), with remark
ably similar regression results, in terms of both inclu
sion orders and the actual values of coefficients (the
inclusion orders have been replicated in fourth- and
sixth-grade samples as well; see Ashcraft & Fierman,
Note 1). Second, the subsets of predictor variables
behave in a very consistent fashion; for example, one of
the problem-size variables has always entered the equa
tion first, and apparently trivial variables (odd-even, first
and second addends) have almost never played a signifi
cant role in any equation. Third, Experiment 2 here
demonstrates consistency and generality of results when
new samples of both subjects and stimuli are tested.
These reasons suggest that interpretations of the present
results may not be as tenuous as would otherwise be
expected. Finally, a major goal of the present research
is to specify a theoretical approach to mental arithmetic,
specifically a model that will dictate the a priori basis
for selecting and evaluating predictor variables in future
research.

In the analysis of variance, all main effects and two
way interactions were significant beyond the .01 level.
Briefly, true problems were 100 msec faster than false
problems [F(1 ,19) =35.03, MSe = 17,486.1] , and small
problems were 175 msec faster than large problems
[F(1,19) =49.53, MSe =36,628.5]. This problem-size



rrumrnum and maximum addends, of the correct sum
and *stated sum, of the *difference between correct and
stated sums as well as the *absolute value of this dif
ference (the split), and of the square of the problem's
sum. Dummy variables were used to represent true vs.
false, one- vs. two-digit sum, and the odd/evenness of the
two addends, correct sum, and *stated sum.

Mean RT to ties, that is, to problems in which a num
ber is added to itself, was considered first. In this analy
sis, no significant linear relationship between RT and
any considered variable was found. This is a consistent
finding in this research, that RT to ties remains constant
regardless of problem size. The result suggests that ties
enjoy a high degree of accessibility in memory, much
more so than nontie problems, or, under a direct
access model, that ties are uniformly processed via direct
access, whereas other problems occasionally experience
retrieval failure. Interestingly, RT to false ties was not
invariant but varied inversely with split. While this is
a potentially important result, it is based on too few
cases here to support any major interpretation.

The first major regression analysis involved RTs to
true, nontie problems (mean =1,039 msec). Table I
presents the correlation matrix from this analysis. As
found in previous research, the problem-size variables of
correct sum, correct sum squared, and minimum addend
were the variables most strongly related to RT. In the
regression, the slight difference in correlation between
RT and min/correct sum squared (.777 vs..775) led to
the inclusion of min on the first step (see Table 2 for
statistical summaries of the regression analyses). Despite
their high degree of overlap (intercorrelation = .889),
correct sum squared was the next significant variable
to enter the equation. In this two-variable prediction
equation, each variable independently contributes a
significant amount of predictive accuracy, and no other
variable in the considered set improved the equation
significantly. Notice that this pattern was almost exactly
repeated when correct sum squared was forced as the
first variable: on the first step, correct sum squared
accounted for 60% of the variance; then minimum
addend was selected on Step 2, increasing the variance
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accounted for to 63%. In either case, the raw-score
prediction formula in milliseconds was RT = 823 +39.2
(min) + 1.17 (correct sum squared). Multiple R was
.796, and the standard error of the estimate was 127.8.

For the false, nontie problems (mean = 1,094 msec),
the history of the best regression solution was as follows:
Minimum addend, with a slightly higher correlation
(.446) than correct sum (.439) or split (-.445), was
selected on the first step. On Step 2, split was selected,
joined by the stated but incorrect sum on the third
step. The three-term equation was significant and
accounted for 55% of the variance in RT (see Table 2).
These results replicate the Ashcraft and Battaglia (1978)
results on false problems in the general sense that a
problem-size variable, correct sum in Ashcraft and
Battaglia and min here, then the manipulated split
factor, and then the stated sum were selected.

In general, then, RT to both true and false problems
is quite sensitive to problem size, regardless of the
precise nature of the size variable (min, sum, etc.).
This suggests, of course, that at least some of the same
processes occur for both types of stimuli, although the
nature of those processes is disputed. The following
section discusses aspects of the data that are especially
relevant as tests of the direct access vs. network retrieval
models. Equally important as the problem-size effect for
this discussion is the significant influence of split and
stated sum on RT to false problems. Such a result
strongly indicates the operation of a decision-like stage
in verification performance, and this possibility is also
explored below.

Specific Tests of the Models
Since Groen and Parkman (1972) themselves suggested

that the min counting model was probably inappropriate
for adults, only brief mention of the present disconfirm
ing results will be made. In the regression of true, nontie
problems, both minimum addend and correct sum
squared were significant predictors of RT. As such, this
result alone disconfirms the min model for adults,
since the model predicts that all of the RT increase
should be accounted for by min.

Table I
Correlation Matrix for Reaction Time (RT) and 10 Predictor Variables: True, Nontie Problems (Experiment l)

1 2 3 4 5 6 7 8 9 10

RT .446 .536 .777 .499 -.692 .737 .775 .042 .137 .064
1 -.111 .577 .577 -.545 .667 .647 .174 -.019 .000
2 .577 .577 -.545 .667 .647 -.019 .174 .000
3 .500 -.742 .866 .899 .100 .100 .067
4 -.674 .866 .781 .100 .100 -.067
5 -.817 -.816 -.089 -.089 .100
6 .971 .116 .116 .000
7 .113 .113 .021
8 -.Ill .000
9 .000

Note-1 =first addend, 2 =second addend, 3 =minimum addend, 4 =maximum addend; 5 =number of digits in sum, 6 =correct
sum; 7=sum squared; 8 =odd/evenness of first addend; 9 =odd/evenness of second addend; 10 =odd/evenness of correct sum.
The critical values of r for 90 casesare .207 for p < .05 and .270 fo« P < .01. Odd/evenness was coded .5 for odd, -.5 for even.
Number ofdigits in the sum (Variable 5) wascoded .5 for a one-digit sum. -.5 for a two-digit sum.
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Table 2
Statistical Summaries of Regression Analyses (Experiment 1)

Step Variable Partial F Prediction Equation SE Mult R Freg df

True,Nontie
1 Min 133.96 RT=845 + 72.9 (Min) 132.2 .777 133.96 1,88
2 SumSq 7.88,7.24 RT=823 + 39.2 (Min) + 1.17 (SumSq) 127.8 .796 75.35 2,87

True,Nontie, Sum Squared Forced
1 SumSq 132.45 RT=822 + 2.26 (SumSq) 132.7 .775 132.45 1,88
2 Min 7.24,7.88 RT=823 + 1.17 (SumSq) + 39.2 (Min) 127.8 .796 75.35 2,87

False, Nontie
1 Min 21.92 RT=996 + 36.5 (Min) 163.8 .446 21.92 1,88
2 Split 53.94,53.72 RT=1,125 + 46.4 (Min) - 23.4 (Split) 129.5 .711 44.39 2,87
3 SSum 68.45,56.64,9.92 RT=1,046 + 51.7 (Min) - 22.9 (Split) + 7.3 (SSum) 123.4 .746 35.93 3,86

Note-Min = minimum addend; SumSq = sum squared; SSum = stated sum. The final reported step in each analysis represents the
best regression solution to that subanalysis. All included variables had significant Fs-to-enter (the last partial F at each step) and were
all individually significant in the best equations (p values of .05 or less). The partial Fs are listed for each step and apply to the
variables in their order of inclusion.

Two empirical arguments can be presented against
Groen and Parkman's (1972) direct-access/counting
model. The first of these relates to the split effects,
both in the analysis of variance and the regression
analysis. Stated simply, these results indicate that part
of verification performance involves a decision-like stage
of processing, a stage that operates in an equality
inequality judgment fashion. No such stage is included
in Groen and Parkman's model, however; Parkman and
Groen (1971) do discuss a "comparison" stage, but it
was apparently thought to be influenced only by the
true-false variable. While the direct-access (or min)
model might be "patched" by adding a split-driven
decision stage, this modification would still not explain
how the false Split 13 problems could be 200 msec
faster than the corresponding trues. Since the direct
access model was in fact developed to account for verifi
cation performance, this deficiency represents a serious
shortcoming.

The second criticism of the direct-access/counting
model pertains only to true problems and, as such, does
not depend on a decision-stage argument. Recall that the
obtained slope of Groen and Parkman's (1972) regres
sion line across min was 20 msec for adults but 400 msec
for first-graders. Given these values, and the direct
access assumption of constant retrieval time, the prob
ability of retrieval failure was estimated to be .05. In
other words, the fastest 95% of a subject's trials should
reveal a min slope of zero, due to direct access; the
remaining 5% of the trials should show much slower
processing, that is, a 400-msec slope across min."

The present data were examined for exactly this
pattern. That is, for each subject individually, the RT at
the 95th percentile was determined, and all of that sub
ject's RTs at and above this cutoff point were eliminated.
The remaining RTs (91 RTs per subject, on the average)
were averaged as before, and resubjected to a regression
analysis. This procedure should, according to the direct
access model, result in a nonincreasing RT pattern across
problem size, since the analyzed RTs should reflect

only direct-access retrieval. Such was not the case. In
fact, in this reanalysis, all of the problem-size variables
had significant positive correlations with RT (min = .658,
correct sum = .690, sum squared = .720). The best
regression solution involved only correct sum squared,
[Frell(1,98) = 105.5, p<.OOl, R2 =.52]. This result
is all the more compelling because the test was per
formed after the extreme scores were removed, and
because the cutoff criterion falls somewhat more heavily
on large problems, those originally thought to be most
responsible for the squared factor's significance.

A more lenient reanalysis was also performed. The
slope of RT across min for true problems was 72.9 msec
here, not 20 msec as in Groen and Parkman's (1972)
report (note, however, that the results here also included
sum squared in the best prediction equation). Anew,
internally consistent percentile criterion was determined
with this value (Le., 72.9 msec/400 msec = .182). With
a probability of retrieval failure equal to .182, approxi
mately 82% of the trials should have been direct-access
trials. Following the same procedure as above, the 80th
(for convenience) percentile RT was used as a cutoff,
new means were calculated (based on 76 RTs per sub
ject, on the average), and a new regression was per
formed. Again, all three of the problem-size variables
had significant positive correlations to RT (min = .459,
correct sum = .454, sum squared = .447). In fact, a
retrieval failure probability of about .50 must be
adopted in order to eliminate significant RT increases
on the faster set of trials. This is a strikingly unreasonable
value to accept in order to support the notion of direct
access retrieval.

The point with these reanalyses is not just that
elimination of some proportion of the slowest trials
yields similar results to the original analysis, although
this is in fact what is obtained (along with a drop in the
standard error of the estimate). The point instead is that
significant increases in RT are obtained on those trials
for which the direct-access model predicts no increases
whatsoever. Thus the present results disconfirm the



direct-access/counting model from two standpoints, the
lack of an adequate decision stage to explain the split
effects and the lack of evidence that direct-access
retrieval, at least as defined by Groen and Parkman's
(1972) parameters, takes place at all.

While the present results do lend support to the
Ashcraft and Battaglia (1978) network retrieval model,
they also indicate the need for further specification of
the proposed four-stage process model described above.
At issue here is the question of serial vs. parallel opera
tion of retrieval and decision. Recall that the Split 13
results showed that for large, and hence slow, problems,
an extreme value of split led to faster (by 200 msec)
performance than on the same problems presented as
true (e.g., 9 + 7 = 3 vs. 9 + 7 = 16). Under the standard
assumptions of sequential and independent stages in the
additive-factors method (e.g., Sternberg, 1969), retrieval
of a sum must be completely finished before any decision
like operation begins. Thus, RTs to both 9 + 7 =3 and
9 + 7 = 16 must include the same retrieval time, and any
remaining difference in RT can be attributed to decision
stage time. Such an interpretation forces the rather
problematic conclusion that upon occasion a false/
mismatch decision can be made more quickly than a
true/match decision. In other words, any sequential
explanation of the present results must assert that a
false decision based on a large mismatch follows com
pleted retrieval of the sum and is the fastest decision
type, whereas true/match decisions, also following
completed retrieval, are significantly slower. Slowest of
all would be false decisions with lesser degrees of
mismatch/split.

We do not favor this explanation, partly because it
seems counterintuitive that a decision based on a match
would be slower than a mismatch. More critically, this
explanation does not suggest why large-mismatch
decisions for small problems were not faster than corre
sponding trues, as these decisions were for large prob
lems. Instead, we favor an interpretation that involves
the operation of an evaluation or decision-like process
in parallel with retrieval.

Consider the standard four-stage processing model of
encoding, retrieval, decision, and response execution
that has been presented. Normally, retrieval through the
mental representation is required before a decision can
be reached, and as such, the retrieval phase would
contribute variable amounts of time, depending on the
size of the problem. At the end of retrieval, the decision
stage performs a comparison between the retrieved sum
and the sum stated in the stimulus, yielding a true deci
sion immediately, but a false decision that varies in
duration as a function of split. Now add to this model an
executive or evaluation process, a process that co-occurs
with retrieval. Such a process might perform what we
have called global evaluations of the sum of the problem,
simply coming up with a progressively more refined
region within which the sum is likely to fall. At some
point during retrieval, this global evaluation process will
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react to an extreme mismatch between the stated
sum and the estimated sum, triggering an early decision
prior to the completion of retrieval. In Ashcraft and
Battaglia's (1978) words, this is a "short-circuiting"
of retrieval, based on the magnitude estimations. A
simpler possibility here is that subjects responded
quickly since the stated sums for large Split 13 problems
contained only one digit, whereas the addends were
fairly large. In this situation, subjects may have termi
nated ongoing retrieval based on general arithmetic
knowledge that a one-digit sum is highly unlikely with
large addends. Even this simpler process, note, involves
parallel operation of the evaluation mechanism.

In either case, the decision stage in this model is
reserved for the comparison of retrieved and stated
sums; that is, the decision stage operates after retrieval
is completed. The global evaluation process, however,
may operate during retrieval to terminate ongoing
processes in situations in which various "rules of arith
metic" are violated. Such an early evaluation process is
in principle quite similar to the "fast-no" decision
mechanism in the Smith, Rips, and Shoben (1974)
model of semantic memory and to the initial search for
commonality found in the Collins and Loftus (1975)
model. We are proposing simply that other information
is retrieved by the subject aside from the correct answer
to the problem. This other information, drawn from
general knowledge about arithmetic, becomes available
during the processing of a stimulus and may influence
performance on even simple addition tasks.

From one perspective, this issue of serial vs. parallel
processing is of secondary importance here. That is,
mental addition generally does not involve the sort of
verification of a stated sum that was tested here, and
which led to the question of serial vs. parallel processing.
For the topic of mental addition, it is undoubtedly more
important that the retrieval stage be understood, and the
operation of this stage has been addressed specifically
by this research. On the other hand, the serial vs. parallel
issue is important to a broader understanding of human
cognition. While the present research does not provide
a definitive answer to this admittedly complex question,
the task under investigation does seem potentially useful
for this purpose.

EXPERIMENT 2

The purpose of Experiment 2 was to extend the
empirical evaluation of mental addition beyond the
simple "basic facts," in order to determine the nature of
processing for larger addition problems. In order to
provide continuity between the studies, Experiment 2
used both simple and complex problems, that is both the
basic 100 facts and problems with at least one two
digit addend.

A simple extension of the hypothesized retrieval
model to complex addition would claim that RT should
be composed of at least the same stages that are neces-
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sary for simpler problems, plus other possible mech
anisms related to place-keeping and carrying operations.
More critically, similar variables should account for RT
in both the simple and complex additions. Note that
the retrieval model does not suggest that all possible
addition problems are stored, but merely that the basic
100 problems are. As such, the extension of the model
to complex addition would predict that adults calculate
the sum of 14 + 12, for example, by retrieving the
separate sums for the components of the problem,
4 + 2 and 1 + 1. In other words, while RT was expected
to increase with problem size, it was not expected that
the sum of a problem would necessarily provide the best
prediction of RT. Instead, the sum of the component
addition, or its square, and possibly a constant amount
of time for the carry and the 10's column addition
might be better predictors of RT.

There is, however, an alternate model for complex
addition that deserves attention. Restle (1970) proposed
that large complex additions are processed in an analog
format, with addends transformed into line segments of
varying lengths. His evidence for such a proposal came
from an experiment in which subjects had to choose
the larger of two quantities, either the sum of two
numbers or a comparison number (A + B vs. C). In his
results, problem size (essentially the sum of A + B)
and split (difference between C and the sum of A + B)
exhibited their usual effects. A third factor in the
experiment, here termed "addend split" (the difference
between A and B) was unique in its effect. With the
exception of ties, subjects were faster at adding a rela
tively small and a relatively large number together, say
72 +8, than at adding two more nearly equal numbers,
48 +32. It was primarily this inverse effect of addend
split that led to Restle's proposal of the analog process
for addition: A shorter line segment is more easily
"transported" and "concatenated" to the longer line seg
ment, thereby allowing arrival at the sum more quickly
than when a longer line segment is involved.

While the present experiment will evaluate the
possibility of this addend split effect (but with some
what smaller problems than those of Restle, 1970),
it should be noted that there are aspects of Restle's
results that make a test of his model rather difficult.
First, Restle's task seems to involve more steps or
processes than the present verification task, in that both
a multi digit addition and then an inequality judgment
were necessarily part of subjects' RTs. As such, the RT
effects did not reflect addition processes alone. Second,
the nature of his task and stimuli may have increased the
likelihood of responding based on, if not informed
guessing, then at least less-than-completed addition
processing (see Groen & Parkman, 1972, for a similar
argument). It is unclear how such a possibility may have
altered the results. In the present paradigm, RTs to true
problems are assumed to provide a more direct examina
tion of addition processing per se, as they neither include
an inequality judgment nor lead to responding based

primarily on magnitude estimations. Finally, Restle
merely graphed the RT results and did not present any
statistical analyses. This is a problem for two reasons;
one, the effect of addend split was the major evidence
of analog processing, but appeared to be a fairly weak
RT effect, and two, no information regarding possible
interactions was presented. The latter is the more severe
problem here, in that Experiment 1 showed a significant
interaction of problem size and split. It is not at all
clear how the interaction of these two factors, both
included in Restle's design, can be interpreted within the
framework of his data and model.

Method
Twenty different undergraduates from the same population

used in Experiment 1 served as subjects in the 45-min sessions.
All were given extra creditfor their participation.

The range of correct sums considered in this experiment was
o to 30. One hundred true problems were randomly selected
from the possible pool such that approximately equal numbers
came from the three ranges 1-10, 11-20, and 21-30. As a conse
quence, 46 of the sampled problems were basic 100 facts, and
the remaining 54 contained at least one two-digit addend. No
attempt was made to eliminate problems requiring the carry
operation. Each of the 100 problems was also randomly assigned
an incorrect sum that differed from correct by ±1,5 ,9, or 13.
The only restrictions on incorrect sums were first that they fall
in the allowable range, and second that they be approximately
equal in frequency of occurrence to sums in the true condition.
Notice that these restrictions did not bias the assignment of
problems to the Split13 condition, ashappened in Experiment 1.
Aside from these aspects of the stimulus pool, all other pro
cedures were identical to thoseof the first experiment.

Resultsand Discussion
Error rate was 2.8%, and extreme scores (Dixon's test)

accounted for another 1.3% of the data, a total missing
observation rate of 4.1%. Errors and extreme scores were
positively related to RT and to problem size and were
especially likely in problems with an addend of nine.

The analysis of variance evaluated RT in a problem
size (sums of 1-10 vs. 11-20 vs. 21-30) by true-false by
split (ii,S, 9, 13) within-subjects design. All main
effects and interactions were significant at the .05 level
or beyond and essentially duplicated the patterns
obtained in Experiment 1.

Most relevant to present purposes, both the True-False
by Problem Size interaction [F(2,38) =20.13, MSe =
16,443.4] and the True-False by Problem Size by Split
interaction [F(6,114) =3.17, MSe =10,074.4] were sig
nificant. In the two-way interaction, RT increased
sharply, from 959 to 1,378 msec, across increasing
problem size in the true problems, but not as sharply
for false problems, from 1,093 to 1,332 msec. While this
pattern of differences is readily apparent in the three
factor interaction as well (see Figure 2), the qualification
of the pattern by split is that the increase in false RT
across problem size is progressively attenuated as split
increases. In other words, only at the larger values of
split did RT to large problems show a speed advantage
for false over true stimuli. As the figure shows, true



MENTALADDITION MODELS 193

factor from Restle's (1970) model, and two "com
ponent" variables for the complex (nonbasic 100)
problems. "Component sum" was the sum of the digits
in the one's column of the problem; for 14 + 12, com
ponent sum was 6. "Component time" was the mean RT
from Experiment 1 to the component addition; using
the same example, component time was the mean RT
from Experiment 1 to the problem 4 + 2 = 6.

The major regression analysis evaluated true, nontie
problems, including both the basic 100 and the larger
complex problems (see Table 3 for the correlation
matrix). In this analysis, correct sum was selected first,
followed by component sum and then the variable that
indicated a carry was or was not required (see Table 4
for summaries of the regression results). The significant
three-variable equation yielded an intercept estimate of
837 msec, slopes of 17.5 across correct sum and 13.8
across component sum, and an increment of 131 msec
when the carry operation was required. The standard
error of the equation was 132 msec, and multiple R
was .812. Qualitatively similar results, involving com
ponent time and correct sum, were found when only the
complex true problems were analyzed ("carry" was
selected next, but it missed the .05 level of significance).

Given our intent of testing the several verification
models of addition, three versions of a general min-like
model were also evaluated for these true nontie prob
lems. First, when the standard minimum addend factor
was forced into the regression equation alone, it
accounted for 43.5% of the variance (as opposed to
54.2% for correct sum alone and 49% for sum squared
alone). When minimum addend and the carry factor are
forced into the equation, percent variance increases to
57; the significance of minimum addend drops dramati
cally (partial F =63.99, then 5.42), however, when
correct sum is freely selected on the following step
(F-to-enter = 17.12). A much more adequate solution

1395splits =1
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Figure 2. Mean reaction time (RT) to true and false problems
as a function of size of sum (8 =small, 0-10; M=medium
11-20; L = large, 21-30) and split. (Note-Neither the medium
nor the large levels are directly comparable to conditions in
Experiment 1.
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problems revealed a more or less constant effect of
problem size, an approximately 400-msec effect, whereas
RT to false problems was simultaneously increased by

'problem size but decreased by larger and larger splits.
The fact that RT increased dramatically with this

larger range of problem size is clearly consistent with
previous research but, of course, does not identify the
processing responsible for the increase. Accordingly,
mean RTs were calculated for each problem and sub
jected to multiple-regression analysis. In addition to the
variables evaluated in Experiment 1, six new variables
were coded: the number of digits (one or two) in the
first addend and in the second addend, whether or not
the problem included a carry operation, the addend split

Table 3
Correlation Matrix for Reaction Time (RT) and 14 Predictor Variables: True, Nontie Problems (Experiment 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

RT .513 .519 .660 .630 .258 -.423 -.341 -.665 .736 .702 .453 .501 .622 .479
I -.018 .558 .592 .286 -.824 -.049 -.529 .665 .635 .170 .274 .584 .084
2 .543 .700 .419 -.046 -.819 -.544 .735 .729 .138 .181 .578 .163
3 .491 -.137 -.591 -.552 -.649 .784 .753 .260 .217 .625 .233
4 .796 -.472 -.569 -.678 .925 .911 .148 .319 .781 .109
5 -.126 -.264 -.320 .507 .513 -.013 .212 .454 -.038
6 .077 .457 -.593 -.580 .144 -.155 -.643 .164
7 .446 -.645 -.650 .158 -.093 -.603 .116
8 -.765 -.654 -.324 -.235 -.673 -.325
9 .976 .218 .321 .828 .179

10 .137 .294 .787 .102
11 .466 -.006 .837
12 .473 .465
13 .043

Note-J = first addend, 2 =second addend, 3 =minimum addend, 4 = maximum addend, 5 =addend split, 6 =number of digits in
first addend, 7 =number of digits in second addend; 8 =number of digits in sum, 9 =correct sum, 10 =sum squared, 11 =com
ponent sum; 12 =carry; 13 =component RT; 14 = minimum addend in ones column. The critical values of r for 90 cases are .207
for p < .05 and .270 for p < .OJ. Number of digits (Variables 6, 7, and 8) were coded .5 for one digit, -.5 for two digits. Carry
(Variable 12) was coded .5 ifa carry was required. -.5 otherwise. Odd/evenness variables have been omitted here.
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Table 4
StatisticalSummaries of Regression Analyses (Experiment 2)

Step Variable Partial F PredictionEquation SE MultR Freg df

True, Nontie
1 CSum 102.87 RT =849 + 20.7 (CSum) 151.3 .736 102.87 1,87
2 ComSum 99.49,20.99 RT=727 + 18.8 (CSum) + 18.8 (ComSum) 136.5 .795 73.75 2,86
3 C 86.58,9.90,7.00 RT=837 + 17.5 (CSum) + 13.8 (ComSum) + 131.4 (C) 131.9 .812 54.93 3,85

True, Nontie,with Min-Ones
1 CSum 102.87 RT=849 + 20.7 (CSum) 151.3 .736 102.87 1,87
2 Min-Ones 112.77,32.24 RT=790 + 18.9 (CSum) + 38.6 (Min-Qnes) 129.8 .816 86.02 2,86
3 C 96.76,17.89,5.25 RT=866 + 17.8 (CSum) + 31.2 (Min-Ones) + 109.8 (C) 126.7 .828 61.94 3,85

True, Nontie,Non-"Basic 100"
1 ComRT 25.01 RT=535 + .76 (ComRT) 165.2 .589 25.01 1,47
2 CSum 27.33,19.26 RT=203 + .68 (ComRT) + 18.9 (CSum) 140.2 .735 27.00 2,46

False, Nontie,"Basic 100"
1 CSum 18.53 RT=952 + 18.1 (CSum) 100.5 .572 18.53 1,38
2 Split 31.50,9.66 RT=969 + 23.2 (CSum) - 11.1 (Split) 90.7 .683 16.20 2,37

False,Nontie
1 CSum 64.67 RT=1,001+ 13.0 (CSum) 120.3 .653 64.67 1,87
2 Split 85.29,12.31 RT=1,034+ 15.5 (CSum) - 10.2 (Split) 113.0 .706 42.69 2,86
3 Min-Ones 87.60,16.47,15.75 RT =1,003+ 14.6 (CSum) - 10.9 (Split)+ 104.0 .759 38.59 3,85

21.7 (Min-Ones)
4 ComRT 11.59,16.50,20.64,7.27 RT= 1,029 + 8.88 (CSum) - 10.5 (Split)+ 100.9 .781 32.89 4,84

24.5(Min-Qnes) + .10 (ComRT)

Note-Csum v correct sum; ComSum=component sum; C=carry; Min-Ones = min in ones column; ComRT=component RT.
The final reported step in each analysis represents the best regression solution to that subanalysis. All included variableshad signifi
cant Fs-to-enter (the last partial F at each step) and were all individually significant in the best equations (p values of .05 or less).
The partial Fs are listed for each step and apply to the variables in their order of inclusion.

is achieved when a new minimum addend variable is
used, the smaller of the two addends in the one's column
of the problem (for 12 +9, this new min-ones factor = 2).
This min-ones factor joins correct sum and the carry
factor in a free stepwise solution, replacing component
sum in the process, and improves the prediction equa
tion slightly (see Table 4). In this model, however,
correct sum plays a more important role than the min
ones factor (see the partial Fs in the table). This rela
tionship is in close agreement with the equivalent equa
tion in Experiment 1; that is, minimum addend must be
augmented by some other problem-size factor like sum
to obtain an optimum solution.

These results were judged to be quite consistent with
the extended network retrieval model. Our hypothesis
was that processing larger additions would involve
retrieval of the one's column sum, plus a possible carry
operation, and still reveal the general problem-size effect.
In fact, just these variables were selected for the best
regression equation. As in simpler problems, RT experi
ences a significant increase as the problem becomes
larger. This increase for large problems is affected by
both absolute problem size and the size of the com
ponent addition. Note here that correct sum and
component sum (or correct sum and min-ones) not only
contributed independently to the equation but also were
in fact minimally interrelated factors (intercorrelations =
.218 and .179, respectively). Finally, the significance of
the carry variable is particularly interesting, first because
it is such an intuitively appealing result, and second

because it emerged so strongly in competition with other
structural variables (and despite the fact that only
12 true problems involved the carry at all).

The results from the analyses of ties were consistent
with this pattern. Briefly, RT to ties was nearly invariant
across sum but was approximately 200 msec slower for
large vs. small ties. In other words, processing of true
large ties seems to involve retrieval of the component
sum, just as for nonties. Note in this case, however, that
retrieval of the component sum is a retrieval of a tie and,
therefore, contributes a relatively invariant amount of
time to the sequence.

Perhaps not surprisingly, the results of the regression
analyses on false stimuli were somewhat less clear-cut.

.This was apparently entirely attributable to the inclusion
of the larger, nonbasic fact problems. That is, analysis
of just the "basic 100" stimuli yielded a straightforward
solution that was quite similar to the Experiment I
results, involving correct sum and split. When all of the
false nontie stimuli are analyzed, however, two more
variables enter significantly into the equation, min-ones
and component time. Despite the respectable signifi
cance of the equation (61 % of the variance accounted
for), the values of the coefficients do not correspond
well to earlier estimates. Of course, this analysis, as
well as the analysis of variance, revealed a generally
increasing RT pattern across problem size and an attenua
tion of RT due to split on these larger problems.
Apparently, processing of these larger problems is
heterogeneous enough within these two effects that no



particularly compelling regression solution is to be
expected. As a justification for this, consider the variety
of falsification strategies available for a false problem
like 14+ 12= 17: for example, noting that the stated
sum 17 is too close to the addends to be reasonable,
retrieving the component sum and noting the mismatch
of 6 and 7, or even adding the 1s in the lOs column and
noting the mismatch of 2 and 1. Depending on the
specific problem, anyone of these or other strategies
might be interchangeably applied, resulting in RTs that
are not clearly indicative of any single process. Further
careful manipulation of the various dimensions possible
in such problems will be necessary to identify particular
strategies.

One final note concerning the results is necessary,
pertaining to Restle's (1970) notion about addition of
large numbers. Although this experiment did not specifi
cally manipulate addend split, a rather large range was in
fact sampled (from equal addend split in the ties up to
an addend split of 20). Given this, it is probably impor
tant that the addend split factor never approached
significance in any of the regression analyses (the highest
obtained correlation was .30). This is not to deny that
such a factor may playa role in more complex additions;
it certainly seems easier to add 72 + 8 than 48 + 32,
for example. This is merely to suggest that Restle's
addend split effect may have been composed of simpler
processes. In the above examples, identical additions in
the Is column are followed by very different lOs column
additions, 7 + the carried I in the first, but 4 + 3 + the
carried 1 in the second. In any event, addend split was
certainly not found to be the major component of all
mental additions predicted by Restle. Its influence, in
stead, may be limited to larger multidigit additions or
may be due to simpler component addition processes.

GENERAL DISCUSSION

We conclude from theoretical and empirical evidence
that simple mental addition is largely a memory retrieval
phenomenon. Despite children's apparent reliance on
counting, adults seem to rely on a stored systematic
structure of knowledge for their performance. Explana
tion of mental addition from the present network
viewpoint has several advantages; common experimental
results are conveniently described by the structure,
performance on more complex problems is predictable,
and knowledge and performance under other arithmetic
operations can be conceptualized in compatible terms.
When investigated under the conditions of a verification
task, this structure is revealed most directly in per
formance on true problems. Performance on false prob
lems in this situation also reveals the operation of
decision processes and, possibly, an evaluation stage
that co-occurs with retrieval.

The network retrieval/decision model we are propos
ing here is more than simply a conceptual framework for
thinking about mental arithmetic, however. By borrow-
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ing some standard assumptions from network approaches
in semantic memory, the present model generates some
specific predictions about RT performance. One hall
mark of network models in semantic memory, for
example, is the notion of interrelatedness among con
cepts (e.g., Collins & Loftus, 1975). In such models,
structural connections among concepts provide an
explanation for priming effects, either facilitation or
inhibition of some semantic judgment due to activation
of relevant information (e.g., Ashcraft, 1976; Loftus &
Loftus, 1974; Rosch, 1975). Given the assumption of
spreading activation, our model would predict several
priming/repetition effects, both within and across trials.
For example, the model claims that the search for a
sum results in activation of related column and row
information in the mental table. As such, we would
expect speeded verification (or production) of 5 +6 = 11
if it were preceded by 7 + 4 = 11, repetition/priming of
a sum, and speeded verification of 5 + 6 = 11 if it were
preceded by 2 + 6 = 8, repetition/priming of an addend.
In both cases, support for the predictions would involve
a reduction in the slope across problem size for primed
problems; a simple intercept difference might be due to
perceptual encoding facilitation (see Ashcraft & Battaglia,
1978). Going one step further, spreading activation also
implies decay of that activation, yielding predictions
about priming as a function of lag between prime and
target. These latter predictions become rather difficult
to test, unfortunately, since there are only 10 digits with
which to form all problems. As an example, at Lag 3 for
the prime and target of 4 + 3 =7 and 5 + 2 =7, only five
other digits are left to form the intervening stimuli (0, 1,
6, 8,9). Shorter levels of lag, or different decay intervals,
should nonetheless support the same conclusions.

Further, the network and priming assumptions pre
dict a slowing of RT when related but competing infor
mation is primed. Briefly, since column and row informa
tion is presumably activated during the search, using
an "activated sum" as the answer to a distractor/false
problem should result in an inhibition effect on that
distractor. Such an effect was in fact found by Winkelman
and Schmidt (1974) when the sum of two digits (7 for
3 + 4) was used as the false answer in a multiplication
fact (3 X 4 = 7). This prediction of intratrial inhibition
effects has been tested in a strictly multiplication task
(Stazyk, 1980; Ashcraft, Stazyk, & Fierman, Note 2);
the prediction was supported, and the results rule out
the switches between addition and multiplication as the
source of Winkelman and Schmidt's results (see also
Duffy & Fisher, Note 3, for a replication of this effect).

One final similarity between semantic and arithmetic
research involves the split effect obtained here on false
stimuli and its relationship to the semantic distance
effect on negatives (Kintsch, 1974). In general, RT to
negatives is slowed when two "close" concepts are
compared, but it is speeded when the concepts are
more distant; for example, RT is slow to "A robin is
a sparrow" but faster to a "A robin is a car." In the
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present research, we assume that the answer stated in
the problem is (usually) compared with the answer
retrieved from memory. When the two answers are
close, that is, with small values of split or with related
information, RT is significantly slowed; when they are
more distant (larger splits), RT is speeded. This split
effect is, of course, most directly related to the split
effect in research on inequality judgments (e.g., Banks
et al., 1976; Seku1er, Rubin, & Armstrong, 1971), but
it is certainly not limited to just this domain. For
example, Holyoak and Walker (1976) found this inverse
relationship of RT to "distance" when subjects com
pared the magnitudes of concepts on the semantic
orderings of time, quality, and temperature (see also
Friedman, 1978; Koss1yn, Murphy, Bemesderfer, &
Feinstein, 1977, for similar results). Walker (1975) has
found the same relationship in a verification task; a
less "reasonable," that is, a more distant, false sentence
yields faster RT. On the assumption that distance in
the semantic sense can be roughly equated to distance in
the numerical difference sense, the present research
seems to fit comfortably within both the mental com
parison and the verification approaches to research on
mental representations. These similarities also suggest
strongly that research on mental arithmetic is of more
than casual interest to cognitive psychology. Indeed,
it may be that mental arithmetic, with its more con
trolled acquisition and mastery, and without some of
the inconsistencies and fuzziness of semantic knowledge,
will prove to be a useful test case for investigating
general issues in cognitive representations and their
development.
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NOTES

1. Technically, this tests the null hypothesis that the coef
ficient (slope) of the new variable equals zero. The Fsto-enter
test is simply the ratio of additional variance accounted for by
the inclusion of the new variable, divided by the still unaccounted
for variance. Appropriate formulas are in Cohen and Cohen
(1975) and Myers (1979).

2. While both the constant and the multiplicative min term
will, of course, have associated variance in their distributions, the
absolute size of the multiplicative term, 400 msec, is so large
relative to obtained standard deviations/errors of the estimate
that no consideration of variance is necessary here.
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