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This article describes a DOS-based computer program
Jor making and testing perceptual maps. The program,
PERMAP, uses conventional metric multidimensional
scaling techniques. That is, it uses pairwise numerical
values (correlations, proximities, dissimilarities, etc.) to
construct a map showing the relationship between ob-
Jects. A unique feature of PERMAP is that it embeds the
mapping technigques in an interactive, graphical system
that minimizes several difficulties associated with mul-
tidimensional scaling practices. It is particularly effec-
tive at exposing artifacts due to local minima, incomplete
convergence, and the effects of outliers. It can associate

various attributes with the resultant groupings and pro--

vide line-linking options to help the researcher identify
the nature of perceived relationships. Problems involving
multiple matrices can be treated using three different ag-
gregation methods. The optional use of weighting factors
is available.

PERMAP is a program that uses multidimensional scal-
ing (MDS) to reduce multiple pairwise relationships to
2-D pictures, commonly called perceptual maps. Figure 1
shows a typical perceptual map. The data for Figure 1
were taken from the Table 17.11 of Churchill’s text (1995).
The Churchill data are in the form of correlation coeffi-
cients that show the relationships between 10 factors that
influence the image of a department store. These correla-
tion coefficients were calculated from responses to se-
mantic differential scale questions given to a random se-
lection of shoppers. Figure 1 illustrates how PERMAP can
succinctly summarize the relationships involved with 45
pairwise similarities (i.e., the number of independent
correlation coefficients between 10 factors).

Purpose of PERMAP. The use of MDS for the con-
struction of perceptual maps is well developed and sev-
eral computer programs are available. In fact, MDS was
one of the earliest uses of high-speed computers in psy-
chology and the social sciences. The purpose of PERMAP
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is to provide a particularly convenient method of produc-
ing perceptual maps and to do so in a way that helps the
researcher avoid a number of common mistakes, as de-
scribed in following sections. A fully interactive, visually
oriented tool has some important advantages for these
purposes and was a prime consideration in PERMAP’s
development. Interactive programs are becoming more
common, but those that visually aid the researcher in
understanding the nature of the solution are still rare.
Kaufman and Rousseeuw’s (1990) program for cluster
formation, CLUSPLOT, is an example of a program with
graphical output, but one that still only presents the so-
lution graphically instead of letting the researcher watch
and interact with the formation of the solution.

Usefulness of perceptual maps. A major advantage
of MDS and perceptual maps is that they deal with prob-
lems associated with substantiating and communicating
results based on data involving more than two dimensions.
Marcoulides and Drezner (1993) emphasized this point.
They discussed the importance of graphical communica-
tions and the role of the eye in interpreting and distin-
guishing object (factor, stimulus, characteristic) grouping.
Although experts may be able to extract the subtle rela-
tionships represented in a matrix of numbers, this skill is
not widespread.

Schiffman, Reynolds, and Young (1981) noted that an
additional advantage of using perceptual maps is that
they are low in experimental contamination. That is, the
method does not require a priori knowledge of the at-
tributes or stimuli to be mapped. Schiffman et al. also pro-
vided an outstanding example of the clarity that can result
when perceptual mapping is used to analyze a problem.
Perceptual mapping allowed them to clearly communicate
the results of a study of the similarity of colors, whereas
the corresponding factor analysis results were not easily
interpreted or communicated.

Another important aspect of perceptual maps is that
they are forgiving of missing or imprecise data points.
Whereas some analytical techniques cannot tolerate miss-
ing elements in the input matrix, MDS results are often
unaffected. This is because it is not uncommon for there
to be much redundancy in the information given by a com-
plete matrix of dissimilarities. For example, if the true re-
lationships involve only three dimensions and the matrix
of information contains the pairwise relationships be-
tween 10 factors, then much of the matrix’s information
must be repetitive and the map will not change if redun-
dant elements are missing. This redundancy is similar to
having identical, but repetitive, statements about a topic.

Existing perceptual mapping difficulties. Although
the theory behind making perceptual maps is well devel-
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Figure 1. A perceptual map of Churchill’s 10 factors control-
ling department store image.

oped, its application has been controversial. From its
early advocates (Shepard, Romney, & Nerlove, 1972) to
current advocates (e.g., Churchill, 1995; Hair, Anderson,
& Tatham, 1987), authors have routinely given re-
minders of pitfalls awaiting the indiscriminate user.
There are four major concerns that PERMAP can help
alleviate. These include avoiding local minima (i.e., con-
figurations that are optimal with respect to small
changes in configuration but not optimal with respect to
all possible changes), proving complete convergence,
minimizing the influence of outliers, and combining mul-
tiple correlation matrices. With care, batch-operated pro-
grams can be used in such a manner that all of these dif-
ficulties are properly addressed, but moving to a visually
interactive program renders these difficulties easier to
deal with.

Dimensionality of mapping results. Perceptual maps
are inherently 2-D because they are drawings on 2-D sur-
faces. However, this restriction to two dimensions on the
map does not mean that the mapped objects are related on
the basis of only two factors. The perceptual map simply
presents the data in the two dimensions that best explain
the variance. More precisely, the two dimensions used
are those that the algorithm calculates as the best at ex-
plaining all of the relationships involved.

Multidimensional relationships are common. These
can result from measuring independent pairwise relation-
ships for four or more objects, or they can result from com-
bining the results of several subjects giving 2-D place-
ments of objects. This last point is explained in the work of
Goldstone (1994), who showed how a multidimensional
system of perception of lettering styles can be deduced by
using 2-D drawings. Goldstone also provided a clear dis-
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cussion of the limitations and assumptions underlying the
use of spatial arrangements in experimental psychology.

Program Theory

PERMAP uses classical MDS metric scaling. The ad-
jective classical indicates that a minimization procedure
is applied to an objective function related to deviations
between distances on the map and psychological or per-
ceptual distances as given by a set of dissimilarity data.
The adjective metric indicates that the dissimilarity data
are accepted as ratio- or interval-level data, rather than
just being rankings or preferential relationships.

Objective function and data types. In mathematical
terms, the problem of reducing multidimensional rela-
tionships to two dimensions can be described in terms of
minimizing the following objective function:

MIN ObjFn =3 ¥ W, d;.

iJ

(1)

The indices i and j run from 1 to N, where N is the
number of objects in the analysis. The d;; factors are the
differences between the distances on the map between
the objects and the ideal distances specified in the dis-
similarity matrix, J,;. By definition, d,; is zero. The #;
factors are optional weights, or saliencies, assigned to
the dissimilarities of the objects.

Kaufman and Rousseeuw (1990) provided a compre-
hensive discussion of §;; matrices using nominal, ordi-
nal, interval, ratio, or mixed-data types. For present pur-
poses, it makes no difference if the §,; are generated using
direct comparisons—also referred to as “subjective com-
parisons”—or the onefold approach, or attribute-related
correlation coefficients, also referred to as “objective com-
parisons,” or the twofold approach. Davison (1983) dis-
cussed how §;; can be measured for a wide range of ex-
perimental conditions. Basically, they can be measured
using 1 subject, or a group of subjects, giving their opin-
ion about the relationship between objects, or they can
be measured by responding to questions about the at-
tributes of the objects and then using a correlation between
the attributes. Goldstone (1994) also examined traditional
means of measuring §; ;> and introduced a novel approach
using visual techniques.

Distance formulas. Several common formulations of
d;; are mentioned in the literature. The most common is
the Euclidian distance relationship:

dy=\(X; =X +(,-1) =8, @

The variables X and Y are measured using arbitrary orthog-
onal coordinates. The second measure is the city-block
distance formula:

d; =X, = X;|+|Y; = Y;| =

5. 3)

With a few notable exceptions (e.g., Arabie, 1991; Hu-
bert, Arabie, & Hesson-Mcinnis, 1992), the city-block
formula is not often used. However, it fits a niche in psy-
chometrics (Torgerson, 1965) and thus is included as an
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alternative. A third alternative is the square of the Eu-
clidian distance and dissimilarity measures:

dy= X=X +(Y, - V)2 =62 (4

PERMAP provides the option of using any of these
three distances formulas. This is important because most
behavioral situations do not have a clearly defined cor-
rect alternative. Although all three formulas give almost
the same results if the dissimilarity data have low sym-
metry, the city-block formula, given by Equation 3, can
produce significantly different results when highly sym-
metrical groupings are involved. Further, the city-block
form is more susceptible to numerical instabilities than
are the other two forms (Kruskal, 1964; Kruskal, Young, &
Seery, 1973). It is the least commonly used. The distance-
squared formula, given by Equation 4, is more sensitive
to outliers, but it is the most stable, in a numerical sense.
Overall, the Euclidian relationship, given by Equation 2,
is the most commonly used. Because no one of these
equations has been proven superior for all situations of
interest, it is advisable to experiment with all of them to
determine the sensitivity of the groupings to the choice.
PERMAP makes this experimentation easy.

Solution procedures. Extreme values in the objective
function are found by setting the function’s partial deriv-
atives, with respect to X; and Y;, equal to zero and solving
the set of 2N equations. This set of equations can be
solved with any nonlinear simultaneous equation solver,
and there are several such programs available, However, it
turns out to be beneficial not to use a sophisticated math-
ematical routine that presents only one result. This is be-
cause when there are near-optimal solutions (that is, local
minima exist), the researcher needs to know about them.
For instance, it sometimes happens that the objective func-
tion has almost identical values for two object mappings
that are different only by an interchange of the positions
of two objects. Understanding the near equivalence of
these multiple configurations might be important even
when the difference in objective function values is trivial.
A later section expands on the topic of local minima.

Goodness-of-fit. After converging to a solution, the
final values of the objective function and Kruskal’s
Stress-1 and Stress-2 parameters (Kruskal et al., 1973) are
displayed. Several different measures of goodness-of-fit
parameters are available in the literature. The Kruskal
stress parameters are some of the oldest, and most com-
monly mentioned, factors of merit so they are included to
provide a statistic that can be compared with the results
of other studies. Fitzgerald and Hubert (1987) provided
guidelines for judging mapping results on the basis of the
Kruskal stress parameter values.

Presentation orientation. The final groupings of ob-
jects are displayed graphically next to the values of the
objective function and stress parameters just mentioned.
When Equation 2 or 4 is used in the objective function,
only the positions of the objects relative to each other are
important. That is, the final arrangement can be trans-
lated or rotated anywhere on the graph without changing

the optimality of the groupings. This is equivalent to say-
ing that the grouping results are independent of how one
holds the map. Therefore, the display of coordinates is
optional. The overlaying of a coordinate system becomes
important only when one moves to the interpretation stage
and attempts to assign post hoc meanings to the relative
positions of the objects.

When Equation 3 is used in the objective function, the
situation is different. In this case, the final arrangement
can be translated, or reflected about horizontal or verti-
cal axes, without changing the optimality of the group-
ings, but rotation is not allowed. Thus, the city-block
distance formula produces less generalizable results than
does either of the other two formulas.

Program Features

The following description of PERMAP’s operation is
a condensed version of the information that is provided
in an operation manual file that comes with the program.
The detailed information in the operation manual file is
augmented by an on-line help file.

Availability. PERMAP is available free from the first
author by sending a preaddressed mailer with a DOS-
formatted disk (5.25 or 3.5 in.). Alternatively, it can be
downloaded from a World-Wide Web site (http://www.
ucs.usl.edw/~rbh8900/ permap.html). PERMAP runs on
any 386 or better IBM-compatible personal computer
using any DOS-compatible operating system. Having a
VGA or better monitor is preferable, although an EGA
color video system will work. A math coprocessor is ad-
visable for analyzing problems with more than about a
dozen objects or if many cases are tc be aggregated.

Program Control. PERMAP is controlled by using ei-
ther a mouse or a keyboard. All options are presented
through a series of menu selections, which are made by
either clicking on the item of interest or using the Alt key
to move the cursor to the menu list. Various special keys
are available to modify the problem’s parameters during
or immediately after the analysis. These special keys du-
plicate control features available through the menus.
They are useful for simplifying operation for experienced
users. A pop-up reminder screen is available to show the
various special control keys.

Problem size and system requirements. PERMAP
can analyze an unlimited number of cases (different dis-
similarity matrices), each representing the relationships
between up to 30 objects. A problem with 10 objects typ-
ically takes less than 5 sec of personal computer time with
a 50-MHz 486 machine.

No computer configuration procedures are required.
The executable program file is approximately 170,000
bytes in size and requires three accessory files: the default
file, the help file, and the data file. In addition, a text file
contains a manual describing all program details. All
files can fit on a single 3.5- or 5.25-in. floppy disk.

Data input. Input data are entered by using a standard
ASCII file, so importing data from a spreadsheet or word
processor is simple. Keyword identifiers announce the



presence of various data types. See Figure 2 for an exam-
ple of data used to generate the perceptual map of Figure 1.
This figure does not show all the input options available.
For instance, object naming, variable weights, multiple
cases, and others, are not shown. However, Figure 2 does
show all that is required to conduct a simple analysis.
Optional information is covered by default values. That
is, if one does not choose to use weights in the problem
formulation, they need not be mentioned in the data file.
The accompanying manual file provides detailed infor-
mation on the available options.

Data types. Dissimilarity information can be entered
as either dissimilarity or similarity values and can be
based on any linear scale. They can be entered as half ma-
trices (lower triangle) or whole symmetrical matrices.
The whole matrix option is useful when one is download-
ing information from another program. It contains a sig-
nificant amount of redundant information that one would
not want to enter manually, but that need not be elimi-
nated if the mechanics of data transfer cause it to be pre-
sent. PERMAP deduces from the data context which
kind of data is being entered (similarities or dissimilari-
ties, values shifted or not shifted from zero, values ex-
panded or contracted by a constant multiplier) and whether
or not a full matrix is being entered. If PERMAP cannot
make a safe deduction concerning the nature of the input
data, it asks for more information. Asymmetrical matri-
ces are not directly supported because they violate the as-
sumption that there is a one-to-one correspondence be-
tween dissimilarity and distance on the map. However,
asymmetrical matrices can be handled by either averag-
ing the two sides or by splitting the matrix into two or
more cases. Missing values cause no difficulties. They
are simply specified by “NA” in the input matrix.

Solution display. If a particular problem shows nu-
merical instabilities, it is possible to follow the conver-
gence in slow motion, or stepped motion, to understand
the dynamics of the solution procedure better. If the user
wants to see the solution as quickly as possible, the dis-
play can be turned off until the solution is found.

This is a PERMAP data file.
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The object groupings can be graphed using several
different backgrounds, object coloring options, and nam-
ing options. User-supplied names are acceptable, or PER-
MAP can supply object numbers. Names or numbers can
be placed in the circles representing the objects, or on
pointers identifying the objects, or not displayed at all,
according to the wishes of the operator. These options, as
well as other miscellaneous options, are all controlled
through the menu system. If there are many objects and
a map becomes congested, it can be simplified by elim-
inating the names or by changing the scale of presenta-
tion. The plus and minus keys, along with the arrow keys,
can be used to zoom in or out, and to translate the display.
This allows examining the results in great detail.

Objective function options. Any of the three objective
functions (Euclidian, Euclidian squared, city-block) can
be specified for analysis. This is important for determining
the effect of the objective function choice. Choice of ob-
jective function can be made from the menu system or by
cycling through all possibilities by striking certain keys.

Local minima. Local minima are frequent in MDS
analyses. By identifying local versus global minima, the
existence of local minima can be changed from a point
of difficulty to an opportunity. That is, they may provide
insight into the nature of which intergroup relationships
are controlling and which are secondary. Local minima
sometimes produce objective function values quite close
to the optimal objective function value. Other times, local
minima can produce groupings that are far from optimal
and can sidetrack the unsuspecting researcher into erro-
neous conclusions. For example, if all members of a group
of four objects have equal dissimilarities with respect
to each other, the relationship is accurately represented
by a 3-D regular tetrahedron (a pyramid with equal-
length edges). If this group is presented as a perceptual
map using the city-block metric, one of two results usu-
ally occurs. One result has an objective function value
of zero and a Kruskal Stress-1 value of zero. The other
has an objective function value of 0.1667, and a Kruskal
Stress-1 value of 0.2425. The first case is the true mini-

MESSAGE=DEPARTMENT STORE IMAGE PERCEPTIONS: Churchill's Data

NOBIJECTS=10

CASE1

0

21,0

59,.68,0

74,.79,.2,0

88,.8,.24,.25,0
11,.1,.66,.7,.89,0
13,.17,.6,.72,.77,.22,0
63,.69,.18,.22,.26,.7,.71,0
68,.65,.22,.19,.23,.61,.74,.18,0
82,.77,.28,.2,.17,.84,.83,.22,.23,0

Figure 2. Example input data file showing the data used to make Figure 1.
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mum and clearly has better goodness-of-fit indicators,
but experimentation shows that it and the other case
are about equally likely to be the final result. This illus-
trates the importance of resolving the question of local
versus global minima before going on to the next stage of
analysis.

Other examples of local minima confounding the so-
lution process are easy to find. For instance, the Churchill
(1995) data used to construct Figure 1 are particularly
prone to lead to false solutions that are just local minima.
The configuration shown in Figure 1 has an objective
function value of 0.1726 and a Kruskal Stress-1 value of
0.0793 and is the true global minimum. However, there
are many configurations that are just slightly different from
that shown in Figure 1, most of which involve exchanging
the position of two objects and yield only slightly greater
objective function values. These neighboring configura-
tions are so stable numerically that it is somewhat te-
dious to identify the true optimal configuration.

The interactive nature of PERMAP helps in the recog-
nition of the existence of local minima. Each solution
can be watched as it develops. Then, it can be reanalyzed
with the same or a new set of starting points at the touch
of a key. By starting each analysis with a set of points
randomly distributed in the unit square, the analyst can
observe the convergence progress under widely varying
circumstances. When this is not done, as is the case with
some MDS programs, it is possible that the solution may
converge to the same local minima each time it is run.
This gives the appearance of the validity of the stable con-
figuration even though a better configuration is possible
and would have been found had a different set of starting
values been used.

Convergence accuracy. The accuracy with which PER-
MAP finds the minima, be they local or global, is con-
trolled by setting various convergence tolerance limits.
PERMAP offers three levels of convergence tolerance. The
first allows the fast screening of data, the second provides
a balance between speed and precision and is adequate
for most situations, and the third is so demanding that it
will always outstrip requirements that take into account
the accuracy of the input data. These levels of precision
are controlled using the menu system or by using special
keys during the analysis. Keyboard control allows the early
termination of a run if satisfactory convergence occurs be-
fore the convergence limits are met or if an oscillatory
pattern persists for more than a few cycles. Because of
its interactive nature, PERMAP does not need an itera-
tion limit.

Aggregation of multiple matrix information. Mul-
tiple matrix problems are important in many research
situations. A single matrix holds information that sum-
marizes the relationships among all objects in a study
and is referred to as a case. Multiple cases result when
there are multiple respondents, when a given respondent
reports at multiple times, or with multiple groups of re-
spondents when the average of each group is used as a

single case. Additionally, different cases may represent
dissimilarity relationships for different values of some
parameter of interest, different treatments, or measure-
ments made under different circumstances.

The analysis of multiple cases can be made by simply
averaging all matrices and using the average matrix in
the analysis. This is sometimes done, but it is generally
not recommended (Ashby, Maddox, & Lee, 1994). When
an averaged matrix is not appropriate, the average of the
resultant object placements, each case being treated sep-
arately, is sometimes used. The real key to a good analy-
sis, however, is to study each mapping separately before
any kind of aggregation is made. It makes little sense to
form clusters of characteristics on the basis of the eval-
uation of heterogeneous respondents or measurements
taken under fundamentally different circumstances.

PERMARP helps with questions of aggregation by of-
fering the options of averaging the matrices, averaging
the results of the analysis of the individual matrices, or
overlaying the results of various individual cases on a
single graph for visual comparison. If the last option is
selected, PERMAP moves each final solution to a stan-
dard orientation and position. Therefore, except for out-
liers, the overlaid objects fall nearly on top of each other.
By concentrating on the role of the outliers, the researcher
can segment the cases. Once homogeneous data sets
have been identified, it makes little difference how the
cases are aggregated.

Line linking. Kruskal and Wish (1978) discussed the
difficulties of proving that a 2-D representation of mul-
tidimensional data is adequate, focusing on the possibil-
ity of artifacts from higher dimensions confounding the
interpretation of a 2-D plot. They showed that linking the
objects with low §;; values, and subsequently those with
high §,; values, provides an effective test for consistency
and reasonableness. That is, if nearby objects on the per-
ceptual map are linked when the low §;; values are used,
and if far away objects on the perceptual map are linked
when the high J,; values are used, it is unlikely that some
higher dimensional relationship is forcing unrepresenta-
tive arrangements in the 2-D plane.

The pattern of the links not only provides evidence
about the suitability of the 2-D representation, but also,
it can sometimes reveal the existence of curvilinear cor-
relations that interconnect clusters and wind through the
perceptual map. Consider, for example, a series of objects
that plot roughly in the shape of the letter C. Are the two
end objects actually somewhat similar, or are they near
only because the rest of the chain of objects are similar
across the C? This question can be quickly answered using
the line-linking option.

Kruskal and Wish (1978) lamented that showing the
diagnostic links is so time-consuming. Of course, this kind
of analysis is simple for an interactive, visually orientated
computer program like PERMAP. At the touch of a key,
the object pairs with the lower one third of the J,; values
can be linked. At the touch of another key these links can



be erased, and then the highest one third of the J,; values
can be linked.

Cluster identification. After a perceptual map has
been constructed, the hard part starts. Additional progress
is dependent on the ability to form a clear, unequivocal de-
finition of the nature of the object groupings. As Schiffman
et al. pointed out, “Dimensions that cannot be interpreted
probably do not exist” (1981, p. 12). The identification
task is often difficult and demands creativity and a deep
understanding of the subject matter. This step cannot be
automated, but the computer can provide some help.

PERMAP helps in the cluster identification stage by
associating clusters and attributes. Up to nine attribute
values can be assigned to each of the objects. These can
be objective attributes or constructs. After the equilibrium
configuration is found, the circle representing an object
can be colored with an intensity that is proportional to
the value of the object’s attribute. Then, at the touch of a
key, a different attribute set can be used as the coloring
basis. The goal is to find attributes that form an 1dentifi-
able pattern of associations between clusters and colors.
As the analysis progresses, new combinations of the con-
trolling attributes can be entered into the data file so that
new construct hypotheses can be visually tested.

Conclusion

PERMAP provides an interactive, visual system for
the construction of perceptual maps from multidimen-
sional dissimilarity data. It can treat up to 30 objects and
can aggregate an unlimited number of matrices (cases)
describing the pairwise differences or similarities among
the objects. Aggregation can be accomplished using any
of three methods, and the use of weighting factors is
available.

PERMAP was designed to be simple and easy to use
by a novice and to offer enough advanced features that it
would be of value to the expert. Its major improvement
over existing perceptual mapping programs is that it was
designed specifically to combat certain common errors
associated with multidimensional scaling. For instance,
it is particularly effective at showing incomplete conver-
gence, trapping by a local minima, and outlier influence.
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It is also effective at revealing the importance, or lack of
importance, of the choice of the distance metric used in
the objective function. Overall, the program provides a
means for the researcher to go beyond just finding a so-
lution to developing a feel for the suitability, stability,
and variability of the solution.
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