
Psychonomic Bulletin & Review
2004, 11 (5), 791-806

A likelihood ratio statistic reflects the relative likeli-
hood of the data, given two competing models. Likelihood
ratios provide an intuitive approach to summarizing the
evidence provided by an experiment. Because they de-
scribe evidence, rather than embody a decision, they can
easily be adapted to the various goals for which inferential
statistics might be used. In contrast, the logic of null hy-
pothesis significance testing is often at odds with the goals
of the researcher, and that approach, despite its common
usage, is generally ill suited for the varied purposes to
which it is put.

We develop our thesis in three sections. In the first sec-
tion, we provide an introduction to the use of likelihood ra-
tios as model comparisons and describe how they relate to
more traditional statistics. In the second section, we report
the results of a small survey in which we identify some of
the common goals of significance testing in empirical psy-
chology. In the third section, we describe how likelihood
ratios can be used to achieve each of these goals more di-
rectly than traditional significance tests.

LIKELIHOOD RATIOS

A likelihood ratio can be thought of as a comparison of
two statistical models of the observed data. Each model
provides a probability density for the observations and a
set of unknown parameters that can be estimated from the
data. In a broad range of common situations, the density
is the multivariate normal distribution, and the param-
eters are the means in the various conditions, together
with the error variance. The two models differ in terms
of the constraints on the condition means. For example,
a model in which two condition means differ might be
compared with one in which the means are identical. The
match of each model to the observations can be indexed
by calculating the likelihood of the data, given the best
estimates of the model parameters: The more likely the
data are, the better the match. In this case, the best pa-
rameter estimates are those that maximize the likelihood
of the data, which are termed maximum-likelihood esti-
mates. The ratio of two such likelihoods is the maximum
likelihood ratio; it provides an index of the relative match
of the two models to the observed data. Formally, the
likelihood ratio can be written as

(1)

where f is the probability density, X is the vector of ob-
servations, and q̂1 and q̂ 2 are the vectors of parameter esti-
mates that maximize the likelihood under the two models.
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Viewing statistical inference as model comparison is a
well-established perspective. Judd and McClelland (1989),
for example, organized an entire introductory textbook
around this approach. Furthermore, the use of likelihood
ratios in statistical inference is common (e.g., Edwards,
1972; Royall, 1997), and the role of likelihood in model
comparison is well established (e.g., Akaike, 1973;
Schwartz, 1978). Furthermore, the likelihood ratio plays a
pivotal role in most approaches to hypothesis testing. In
Bayesian hypothesis testing, the posterior odds of two hy-
potheses are related to the products of the likelihood ratio
and the prior odds (e.g., Sivia, 1996). In the decision-
theoretic approach advocated by Neyman and Pearson
(1928, 1933), any suitable decision rule can be viewed as
a decision based on the value of the likelihood ratio.
Fisher (1955) advocated the use of the log likelihood ratio
as an index of the evidence against a null hypothesis. In
all of these approaches, the likelihood ratio represents the
evidence provided by the data with respect to two mod-
els. Although the form of the likelihood ratio varies to
some extent in these different approaches, they all have a
common conceptual basis.

Consider the hypothetical data shown in Figure 1. The
data points in each panel represent the effects of an inde-
pendent variable X on a dependent variable Y. The straight
line in the middle panel indicates the best fitting linear
model of the 21 observations, whereas the line in the right
panel shows the fit of a more complicated model that in-
cludes a quadratic component. The fit of the models can be

described by the correlation between the predicted and the
observed values, and the value of R2 for each model is in-
dicated in the figure. The standard deviation shown by the
error bars is an index of the residual variance that is not ex-
plained by the model and is proportional to ÷(1�R2). The
error bars are shown on the curve to indicate that the esti-
mate depends on which model is being fit (cf. Estes, 1997).

It appears from Figure 1 that the data are more likely
given the best-fitting quadratic model on the right than
given the best-fitting linear model. This is reflected in
the smaller deviations from the predicted values and the
larger value of R2. As a consequence, 1�R2 and the es-
timate of the standard error are smaller for the quadratic
model than for the linear model. In fact, the likelihood is
related to the inverse of the standard deviation. The ratio
of the likelihoods thus indexes the relative quality of the
two fits, and with normally distributed data, one can
write the likelihood ratio as

(2)

where s1 and s2 are the two estimates of the standard de-
viation, n is the number of observations, and R1

2 and R2
2

describe the quality of the fits of the two models. (A
proof is provided in Appendix A.) In this example, the R2

values are .689 and .837, and the value of the likelihood
ratio is 862.6. In simple terms, this means that the data
are 862.6 times as likely to occur if the second model
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Figure 1. Comparison of linear (middle panel) and quadratic (right panel) model fits of a theoretical data
set. Error bars indicate the standard deviations of the observations under the best-fitting model;  for clar-
ity, only six are shown.
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(and its best-fitting parameter values) is true than if the
first model (and its best-fitting parameter values) is true.

The 1�R2 terms correspond to residual variation that
is not explained by each model. Thus, an equivalent de-
scription of the likelihood is

(3)

This conceptual formula provides a straightforward ap-
proach to calculating likelihood ratios for many kinds of
model comparisons. In particular, when the models in
question are linear, the requisite information about un-
explained variation can typically be found in a factorial
analysis of variance (ANOVA) table.

Correcting for Model Complexity
Although arguments based on this form of the likeli-

hood ratio are sometimes possible, there is an obvious
problem apparent in this example: Because the quadratic
model includes an extra parameter, it will always fit the
data better than the linear model, regardless of what re-
sults are obtained. Generally, the likelihood ratio will al-
ways favor the more complex of two nested models. This
is a well-known issue in model comparison, and a vari-
ety of techniques have been devised to address it.

Two common approaches are the Akaike information
criterion (AIC; Akaike, 1973) and the Bayesian infor-
mation criterion (BIC; Schwartz, 1978). In both cases,
the assumption is that there is a (sometimes large) col-
lection of possible models, and one wishes to compute
an index that allows one to determine the “best” model.
The AIC measure derives from an information measure
of the expected discrepancy between the true model and
the model under consideration. It can be written as

(4)

where l is the maximum likelihood of the data and k is the
number of parameters. If one is considering only two
models, then, according to the AIC measure, Model 2
should be selected over Model 1 when lA � QA l  is greater
than 1, where l is the maximum likelihood ratio, QA is

(5)

and k1 and k2 are the number of parameters in Models 1
and 2. Hurvich and Tsai (1989) discussed a correction
of AIC for small samples. Using the corrected AIC cri-
terion, Model 2 should be selected over Model 1 when
lC � QC l  is greater than 1, where QC is

(6)

It is common to discuss the model selection problem
as one of picking the best model. However, we argue that
in experimental psychology, these indices are best used
merely to describe the evidence, rather than to make de-
cisions. Thus, for example, a value of lC � 1.2 might in-
deed indicate that Model 2 is preferable to Model 1 if
one of the two models has to be selected and if the re-

searcher is indifferent a priori. However, a likelihood
ratio of that magnitude could not be regarded as very
strong evidence one way or the other and should not be
persuasive if there were other reasons to prefer Model 1.

A comparable but somewhat different index can be de-
rived using principles of Bayesian inference. The alter-
native index is referred to as the BIC (Schwartz, 1978),
and is defined as

(7)

where n is the sample size. Using this criterion, Model 2
should be preferred over Model 1 when lB � QBl is
greater than 1, where QB is

(8)

In this case, lB can be viewed as an estimate of the Bayes-
ian posterior odds of the two models, assuming uninfor-
mative priors.

Pitt, Myung, and Zhang (2002) have argued convinc-
ingly that the number of parameters as captured by these
indices is only one aspect of model flexibility and that
when one is dealing with nonlinear models, the functional
form of the model also needs to be taken into account. For
example, they noted that in psychophysics, Stevens’s power
model is more flexible (i.e., can account for more varied
patterns of data) than Fechner’s logarithmic model, even
though they both have the same number of parameters. As
an alternative to such indices as AIC or BIC, they de-
scribed a measure based on minimum-description length
(MDL; Rissanen, 1996). With the MDL approach, Model
2 should be preferred over Model 1 when lM � QMl is
greater than 1, where QM is

(9)

Here, C1,2 indexes the relative complexity of the two mod-
els as determined by their functional forms; in many cases,
C1,2 must be estimated using numerical methods. The MDL
approach leads to a correction of the likelihood ratio that is
related to that found with AIC and BIC but also includes in-
formation about model form. Although this approach is im-
portant in some situations, it is our impression that many
theoretical distinctions in experimental psychology can be
cast in terms of linear models. (The standard factorial
ANOVA model is a prime example.) For these approaches,
an adjustment made purely on the basis of number of pa-
rameters (as in Equations 6 and 8) may be adequate.

All of these approaches to model comparisons incor-
porate the likelihood ratio because it captures the evi-
dence provided by the data with respect to the two pos-
sible models. The likelihood ratio is then adjusted to
reflect other aspects of the models (such as the number
of model parameters and their possible values). The ap-
proaches differ in how these other factors should be
weighed in arriving at a final assessment of the relative
merits of the two models. Such adjustments are crucial
in assessing the advantage a model might accrue on the
basis of additional parameters or degrees of freedom.
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However, the question of which adjustment one should
use is a difficult conceptual problem. Ultimately, the an-
swer may depend on relatively subtle distinctions in the
assumptions one makes about the goals of theory develop-
ment and model comparison. For example, a rough char-
acterization of the difference between the information-
theoretic and Bayesian approaches is that in the Bayesian
approach, one assumes that either of the models is po-
tentially true, and the goal is to estimate the odds that one
model is correct. On the other hand, in the information-
theoretic approach, one assumes that neither of the mod-
els is likely to be precisely correct and that the reality
could easily be different, at least in detail. Consequently,
the goal is to estimate the odds that one model provides
a better approximation.

The relative merits of these different perspectives are be-
yond the scope of the present article. Fortunately, in a wide
range of realistic situations, the choice of adjustment pro-
cedure has little impact on the conclusions one might draw
from the evidence. The reason is that empirical investiga-
tions are typically designed to provide overwhelming evi-
dence for a particular theoretical interpretation. In other
words, one usually attempts to find evidence that would
convince all possible observers, regardless of their initial
level of skepticism or how strongly committed they might
be to alternative perspectives. Such strong evidence will
often be compelling regardless of how the likelihood ratio
is corrected for number of parameters or model flexibility. 

As an illustration, the QC and QB adjustments can be
applied to the model fits shown in Figure 1. In this cal-
culation, the linear model has three parameters (the in-
tercept, the slope, and the error standard deviation), and
the quadratic model has an additional parameter for the
quadratic component, for a total of four. Thus, using 
the information-theoretic approach in Equation 6, lC
for the model fits in Figure 1 would be

On the other hand, using the Bayesian adjustment in
Equation 8, lB would be

Both values strongly favor the quadratic model over the
linear model. With large sample sizes, the values of lC
and lB would be expected to differ more substantially.
However, an experiment with a large sample size is also
likely to be powerful and to produce strong evidence re-
gardless of which adjustment is used. Generally, we be-

lieve that the choice of a correction factor will be criti-
cal only when the theoretical distinctions hinge on rela-
tively subtle aspects of the data.

Relations to Other Approaches
Because likelihood ratios are central to the develop-

ment of traditional inferential statistics, they can be read-
ily derived from those statistics. For example, in the re-
gression context illustrated in Figure 1, the likelihood
ratio is related to a significance test of the quadratic
component, and the F ratio for that test is given by

(10)

Equivalently,

(11)

(A proof is provided in Appendix B.) In this case, the test
of the quadratic component would yield F(1,18) � 16.27,
p � .001.

Although this result is related to the conclusion one
would draw on the basis of likelihood ratios, there are
important conceptual differences. The significance test
is a decision rule that presumably entails behavioral con-
sequences; the implication in this instance is that one
should behave as if the quadratic component exists. In
contrast, the likelihood ratio merely describes the evi-
dence obtained in the experiment that pertains to the two
models under consideration. Although it is possible to
identify likelihood ratio magnitudes with heuristic la-
bels, such labels should not be construed as decisions.
For example, we would usually regard an adjusted like-
lihood ratio of 3:1 as “clear” evidence in favor of one
model relative to another, and values of this size would
be considered moderate to strong evidence by Goodman
and Royall (1988). However, such labels in themselves
do not embody a decision rule, and their rhetorical use
must be a function of the broader theoretical and empir-
ical context. Indeed, we would concur with the critique
of Loftus (1996), Rozeboom (1960), and others that
drawing a fixed arbitrary distinction between significant
and nonsignificant (or even between clear evidence and
weak evidence) is misleading and unproductive. Rather,
what one may plausibly argue with respect to those two
models in the light of the evidence depends on a variety
of considerations beyond the results of a single study, in-
cluding the a priori plausibility of the interpretations, the
consistency of the results with previous findings, and
relative parsimony. More generally, the fact that likeli-
hood ratios merely describe the evidence, rather than
embody a decision rule, is central in adapting likelihood
ratios to a range of interpretational goals.

Other means of presenting evidence are also available.
For example, the use of confidence intervals has been
frequently proposed as an alternative to hypothesis test-
ing (e.g., Tyron, 2001). Loftus and his colleagues have
advocated the use of confidence intervals as a suitable
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index of variability in conjunction with a graphical pre-
sentation (e.g., Loftus, 1996, 2001; Masson & Loftus,
2003). This approach has the advantage of allowing a
quick visual evaluation of the size of an effect, relative to
the variability in the data. Consequently, confidence inter-
vals or related indices of variability can be especially use-
ful when graphs are used to present evidence for null ef-
fects. Generally, we believe that the graphical display of
evidence (incorporating suitable error bars) is an indis-
pensable component of intelligent data analysis and pre-
sentation. The likelihood ratio methods discussed here pro-
vide a quantitative complement to such visual techniques.

A SURVEY OF STATISTICAL GOALS IN
EMPIRICAL PSYCHOLOGY

Although the use of significance testing has remained
a controversial topic over the years, a large proportion of
the literature on significance testing has focused on the
analysis of relatively simple situations. For example, one
may be interested in whether a relationship exists be-
tween two variables, whether two means differ, and so
on (e.g., Lykken, 1968; Rozeboom, 1960). However, real
research in psychology is rarely this simple, and our im-
pression is that significance testing is used for a broad
range of purposes. In this section, we will present the re-
sults of a small survey in which the use of significance
tests within empirical psychology is explored.

Method
As our sample, we randomly selected two empirical ar-

ticles from each of six journals: Canadian Journal of Ex-
perimental Psychology, Experimental Brain Research,
Journal of Cognitive Neuroscience, Journal of Experi-
mental Psychology: Human Perception and Performance,
Nature Neuroscience, and Psychonomic Bulletin & Review
(see Table 1).

For each article, the reported significance tests (e.g.,
each t, F, or p value) were assigned to one or more of six
categories, as follows.

Tests of a single hypothesis. These tests include any
significance test that compares the author(s)’ hypothesis
against an unspecified alternative (i.e., the null). In this
case, there is a single theoretical interpretation for which
the results may provide evidence. Following in the con-
ceptual tradition of Fisher (e.g., 1925), evidence is gar-
nered by rejecting a null hypothesis of no difference. The
null hypothesis has no theoretical interpretation that is
clearly stated in the article. The following example de-
scribes a single hypothesis,

We hypothesized . . . that perception of the direction of eye
gaze would elicit activity in regions associated with spa-
tial perception and spatially directed attention, namely, the
intraparietal sulcus (IPS),

and the ensuing significance test:

. . . attention to gaze elicited a stronger response in the left
IPS than did attention to identity (0.99% versus 0.80%,
n � 7, p � .0001). (Hoffmann & Haxby, 2000, pp. 80–81)

Since Hoffmann and Haxby offered no theoretical alter-
native to the stated hypothesis, this was classified as a
test of a single hypothesis.

Exploratory tests. Exploratory tests are similar to
tests of a single hypothesis, except that the research hy-
pothesis is not justified a priori. Because these signifi-
cance tests are not explicitly motivated by a theoretical
account, when the null hypothesis is rejected, the authors
may conclude that the result is surprising. An example of
the use of exploratory tests is as follows:

Unexpectedly, there was a significant three-way inter-
action of response side, distractor position, and congru-
ency, F(2,28) � 15.57, p � .001. (Diedrichsen, Ivry, Cohen,
& Danziger, 2000, p. 115)

Table 1
Number of Significance Tests in Surveyed Articles by Category

Single Competing
Article Replication Hypothesis Replication Pro Forma Exploratory Methodological Total

Adolphs & Tranel, 2000 8 0 0 8 0 1 17
Arbuthnott & Frank, 2000 0 9 3 23 0 0 35
Chochon, Cohen,

van de Moortele, & Dehaene, 1999 109 0 0 60 6 1 176
De Gennaro, Ferrara,

Urbani, & Bertini, 2000 3 0 0 6 0 11 20
Diedrichsen, Ivry,

Cohen, & Danziger, 2000 8 10 6 10 6 1 40
Fugelsang & Thompson, 2000 21 3 12 3 0 1 46
Hoffmann & Haxby, 2000 13 0 8 7 0 2 30
Kinoshita, 2000 0 8 0 29 0 0 37
Prabhakaran, Narayanan,

Zhao, & Gabrieli, 2000 17 0 6 18 0 4 45
Servos, 2000 3 0 7 3 0 4 17
Soto-Faraco, 2000 3 33 49 58 0 0 95
Zheng, Myerson,

& Hale, 2000 11 0 0 3 0 0 14
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Such outcomes are often pursued in subsequent experi-
ments.

Tests of competing hypotheses. In this case, a signif-
icance test is used to compare two alternative hypotheses
described by the author(s). Competing-hypotheses tests
differ from single-hypothesis tests in that there is a the-
oretical interpretation both to rejecting the null hypoth-
esis and to accepting it. Consequently, the test result is
used as evidence in favor of one of two mutually incom-
patible theoretical alternatives. In the following exam-
ple, Diedrichsen et al. (2000) analyzed their data in the
context of two competing hypotheses:

For the different congruent conditions, this difference (in
reaction times) was only 4 msec. Although this difference
was in the direction predicted by the attentional-shift hy-
pothesis, it was not significant, t(37) � 1.29, p � .203. . . .
Thus, these results are in accord with the perceptual-
grouping hypothesis. (p. 119)

Replication tests. These tests are intended to confirm
the existence of effects or trends that are expected on the
basis of previous research. Generally, researchers indi-
cate that they expect such tests to confirm the hypothe-
sis in question. For example,

the findings of Experiment 1 were replicated in that a reli-
able negative correlation emerged for the “original” prob-
lem format r(93) � �.46, p � .001. (Fugelsang & Thomp-
son, 2000, pp. 22–23)

Methodological tests. These tests are performed to
confirm the presence or absence of a confound in the
analysis. In many cases, failing to reject the null hypoth-
esis is interpreted as evidence that the confound does not
exist. In the following example, the question of interest
is whether four classes of stimuli are rated similarly by
healthy control participants:

The two groups of normal controls did not differ in their
ratings of the four classes of stimuli, as confirmed by a
one-way multivariate analysis of variance (MANOVA) on
subject’s mean ratings [Wilkes lamda � 0.94; F(4) � 1.29;
p � 0.28]. (Adolphs & Tranel, 1999, p. 611)

Pro forma tests. These tests involve comparisons
among conditions that are not expected to differ and/or
for which there was no clear interpretation for an effect
if one were to be found. For example, after describing
the effects of interest from an ANOVA, the authors often
go on to say something such as the following: “No other
main effect or interaction was significant” (De Gennaro,
Ferrara, Urbani, & Bertini, 2000, p. 111).

Results and Discussion
The results of our survey are summarized in Figure 2

and broken down by study in Table 1. Figure 2 shows that
the large majority of the statistics used in these articles
belong to one of three main categories. First, nearly 40%
of the statistics were used for either single- or competing-
hypothesis testing. Second, about 15% of the statistics
were used to test whether previous findings had been
replicated. Third, roughly 40% of the statistics were at-

tributed to the pro forma category. Relatively few statis-
tics were assigned to either the exploratory (about 2%)
or the methodological (about 8%) category.

These results lead to several interesting observations.
First, the tests that conformed most closely to the logic of
significance testing were not overwhelmingly common.
Tests of a single hypothesis and exploratory tests involve
advancing a research hypothesis by rejecting a corre-
sponding null hypothesis, as was suggested by Fisher
(1925), and together these make up only about 35% of the
tabulated tests. Second, a substantial number of tests in-
volved, at least potentially, advancing a theoretical inter-
pretation by accepting the null hypothesis. This can happen
with either tests of competing hypotheses or methodolog-
ical tests when the null hypotheses are not rejected. The
potential pitfalls of this logic are well known (such as when
power is low; Cohen, 1977; Loftus, 1996). Finally, over
half the tests were conducted even though they had little
chance of affecting the beliefs or behavior of the re-
searchers. In particular, the null hypothesis is expected to
be false in replication tests, because the effect in question
has been previously obtained in similar research; with pro
forma tests, researchers have every reason to believe the
null hypothesis to be true. In some examples of pro forma
tests, researchers explicitly hold to the null hypothesis even
if the results are statistically significant (Dixon, 2001).

USING LIKELIHOOD RATIOS

Because likelihood ratios represent the evidence ob-
tained in the study, rather than embodying a rule or a pro-
cedure, they can be easily adapted to the various goals
with which researchers are concerned. Below, we will
describe how likelihood ratios can be used to address
each of the common uses of statistics we have identified.

Evaluating a Single Hypothesis
In order to evaluate the evidence for the hypothesis

that a given effect is present, the standard logic of sig-
nificance testing requires that one assess the evidence
against the hypothesis of no difference. If the null hy-
pothesis is rejected, one can then embrace the hypothe-
sis of interest. In effect, the goal of the researcher in
these situations is to compare two models: one based on
the assumption of no difference (the null model) and one
based on the existence of some real difference. The like-
lihood ratio provides precisely the information that
would be used in such a comparison.

Consider, as an example, the results of a 2 � 2 study
depicted in Figure 3. In order to make this example con-
crete, we might imagine that these data represent the
number of words recalled in a list-learning experiment
and that the factors correspond to the number of learn-
ing trials and whether the words were abstract or con-
crete. Suppose, in this context, that one were interested
in the hypothesis that the two factors interact. For exam-
ple, one might hold the hypothesis that learning trials have
a greater effect for abstract words than for concrete words.
Using a significance-testing procedure, one would calcu-
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late the F ratio for the ANOVA interaction and compare it
with the appropriate critical F value. The corresponding
approach using likelihood ratios would involve compar-
ing a model that included the interaction with an additive
model that included the main effects, but not the inter-
action. These two models are illustrated in Figure 3: The
left panel shows the fit of the additive model (not includ-
ing the interaction), and the panel on the right shows the
fit of a model that includes the interaction. As in Figure 1,
the results are graphed with the error bars depicting the
standard errors based on the residual variation. Note that
because the model on the right is a full model that includes
all possible degrees of freedom, it matches the condition
means exactly. However, the variation among the obser-
vations within each condition is error and is not predicted
by either model.

The likelihood ratio for comparing these two models
can be calculated from the unexplained sources of varia-
tion, as described by Equation 3, and these are readily
available from an ANOVA table (shown in Table 2). The
unexplained variation for the additive model would be the

error sum of squares (470.1), as well as the interaction
sum of squares (104.1). In contrast, the only source of
variation that is not explained by the second model
(which includes the interaction) is error. Consequently,
the likelihood ratio for comparing the two models would
be

In order to correct the likelihood ratio for the additional
complexity of the second model, one needs to identify
the number of parameters in each model. The first model
includes parameters for the variance, the overall mean,
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Figure 2. Results of the survey of the use of statistics in a sample of em-
pirical articles taken from experimental psychology and cognitive neu-
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and the two main effects, for a total of four; the second
model includes a parameter for the interaction as well,
for a total of five. Thus, using Equation 6 to correct for
the additional degree of freedom yields

Thus, the data are over 14 times more likely given the in-
teractive model than given the purely additive model,
even taking into account the additional degree of free-
dom. These data clearly favor the hypothesis that learn-
ing trials and word type interact.

Evaluating Competing Hypotheses
Because likelihood ratios can be thought of as compar-

isons of two statistical models, their use applies directly to
situations in which there are two competing theoretical in-
terpretations of the results of an experiment. As an exam-
ple of this use of likelihood ratios, we will consider a
slightly more complex situation, depicted in Figure 4.
Again, suppose that the dependent variable is the number
of words recalled in a list. In this case, though, suppose
that the factors consist of concreteness and familiarity of
the words. Here, one might wish to compare a theory that
says that there should simply be an effect of familiarity
with a theory that says that only unfamiliar abstract words
should be difficult to recall. The assumption in the latter
account is that familiar concrete, familiar abstract, and
unfamiliar concrete words should all have comparable re-
call, which in turn should be greater than that for unfa-
miliar abstract words. The fits of these two models is
shown in Figure 4: On the left, the prediction line depicts
the single main effect of familiarity, and on the right, the
prediction is that the upper three points are all equal and
larger than the lowest point. An ANOVA table for this de-
sign is shown in Table 3.

It is noteworthy here that the usual hypothesis-testing
approach to these data does not provide any tests that are
directly relevant. Nevertheless, the two fits depicted in
Figure 4 can be compared using likelihood ratios. To do
so, one would simply find the unexplained variation for
each and then apply Equation 3. From the ANOVA table
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Figure 3. Comparison of the fits of an additive model (left panel) and
an interactive model (right panel) in accounting for the effects of word
type in a hypothetical data set.

Table 2
ANOVA Table for Evaluating a Single Hypothesis

Source df Sums of Squares Mean Square F p

Trials (T) 1 383.1 383.1 29.34 	.0001
Concreteness (C) 1 376.9 376.9 28.86 	.0001
T � C 1 104.1 104.1 7.97 .0077
Error 36 470.1 13.1

Total 39 1,334.2
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shown in Table 3, the unexplained variation in the first
model consists of the sums of squares for concreteness,
the interaction, and the error term, or 58.4 � 184.0 �
1,271.9 � 1,514.4. To find the unexplained sum of squares
for the second model, one would begin by finding an
ANOVA contrast that captures the theoretical interpreta-
tion. In this case, the interpretation is that the three upper
points in Figure 3 are equal and greater than the lower
point; thus, the contrast would be �3, 1, 1, 1. The sum of
squares predicted by the contrast is given by

(12)

wherè Xi is the mean in the ith condition, ci is the contrast
coefficient for that condition, and n• is the number of ob-
servations in each condition. If the sample means shown
in Figure 3 are 20.4, 33.0, 27.1, and 31.1, the SScontrast
would be 753.9. The unexplained sum of squares would be
the total sum of squares minus that which is explained by

the contrast—that is, 2,208.6 � 753.9 � 1,454.74. Putting
these calculations together with Equation 3 yields the like-
lihood ratio

Thus, the data are only 2.2 times as likely given the second
model (which predicts lower recall only with unfamiliar
abstract words) than given the first model (which predicts
only a main effect of familiarity). (In this example, the two
models being considered have the same number of param-
eters, so no adjustment for model complexity is required.)
A likelihood ratio of 2.2 would likely be regarded as rela-
tively weak evidence in favor of the second model.

Evidence for Null Effects
Another advantage of using likelihood ratios is that

they can easily be adapted to provide evidence for the
lack of an effect. This allows one to avoid the pitfall of
accepting null results with low power. One approach
would be to correct the likelihood ratio, using QC or QB,
as in Equation 6 or 8; when so corrected, the likelihood
ratio may favor the simpler model. As an example, con-
sider the results presented in Figure 5. Suppose that these
data come from a study comparing the recall of a list of
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Table 3
ANOVA Table for Evaluating Competing Hypotheses

Source df Sums of Squares Mean Square F p

Concreteness (C) 1 58.4 58.4 1.65 .2067
Familiarity (F) 1 694.2 694.2 19.65 �.0001
C � F 1 184.0 184.0 5.21 .0285
Error 36 1,271.9 35.3

Total 39 2,208.6
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40 words presented in either normal or bold type. The
panel on the left shows the fit of the null model, in which
typeface is assumed to have no effect; the center panel
shows the fit assuming some difference between condi-
tions. Intuitively, the fit in the center does not seem much
better than the one on the left, and appropriately, the ad-
justed likelihood ratio favors the simpler null model.

In particular, the likelihood ratio can be calculated
from the ANOVA table in Table 4:

Correcting for model complexity using QB (based on the
BIC) yields

or a likelihood ratio of 3.28 in favor of the null model. Sim-
ilarly, if one corrects for model complexity using QC (based
on the information-theoretic approach), one obtains

or a likelihood ratio of 1.84 in favor of the null model.
Although both of these values favor the null model, the
evidence represented by lB in this example is not over-
whelming, and the value of lC is quite equivocal.

Another approach that can sometimes produce more
compelling evidence for null effects is to use one’s a priori
knowledge about effect magnitude. The critical step here is
to identify a minimal magnitude for a theoretically inter-
esting effect. Then a likelihood ratio can be constructed in
which a null model is compared with a model in which the
effect is assumed to be at least as large as that minimal ef-
fect magnitude. The null model becomes a plausible alter-
native when the observed effect is, in fact, smaller than the
minimal value. Under such circumstances, the difference
between the observed value and the minimal effect magni-
tude constitutes an overprediction and counts as unex-
plained variation for the theoretically interesting effect in
the likelihood ratio.
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As an illustration in the typeface example shown in
Figure 5, one might be able to argue that the effect of this
manipulation has to be at least 10% (i.e., 4 words) to be
theoretically interesting. The right-hand panel shows the
fit of a model in which such a 4-word effect is predicted.
As before, the error bars are derived from the residual
variation that is not explained by the model. Since the
obtained effect in the figure is 1.2 words, the null model
actually fits better. As before, the unexplained variation
for the null model includes the sum of squares for error
and that for the obtained effect, or 507.9 � 14.4 � 522.3.
The unexplained variation for a model that predicts an
effect of exactly 4 words includes the sum of squares for
error, as well as the sum of squares for the overpredic-
tion. When the effect involves the comparison of two
conditions, the overprediction sum of squares is

Thus, the total unexplained variation for the typeface
model is 507.9 � 78.4 � 586.3, and the likelihood ratio
in favor of the null model is

or a likelihood ratio of 10.1 in favor of the null model. In
other words, the study provides clear evidence for the
null model, relative to a model that predicts a 4-word ef-
fect. (Note that the magnitude of the effect is fixed in
both models: In the null model, the effect is assumed to
be 0, and in the typeface model, it is assumed to be 4.
Thus, the models have the same number of parameters,
and the likelihood ratio does not need to be corrected for
model complexity.) This use of likelihood ratios repre-
sents a straightforward and intuitive method of docu-
menting evidence for a null hypothesis over a theoreti-
cally plausible alternative. However, comparable uses of
prior knowledge would also be a natural element of Bayes-
ian inference methods.

Replication
Likelihood ratios represent a convenient means by

which one may evaluate evidence for replication of pre-
vious findings. We argue that a suitable approach to such
an evaluation is to combine the likelihood ratio derived
from the current results with that derived from the previ-
ous findings. The aggregate likelihood ratio then consti-
tutes an overall assessment of the evidence for the effect,
in light of both studies together. As will be outlined below,
likelihood ratios for independent sets of data can some-
times be combined simply by multiplying them together. 

Our view of replication is at variance with what is occa-
sionally suggested in some research reports, including
some examples from the present survey. It is sometimes
implied that replication involves finding significant effects
where significant effects had been found before or finding
nonsignificant effects where nonsignificant effects had
previously been found. However, thinking of replication in
terms of patterns of significance and nonsignificance is
fallacious. For example, failing to reject a null hypothesis
is often only weak evidence that the effect in question does
not exist, and when power is weak to moderate, there is a
substantial probability of failing to reject the null hypoth-
esis even if the effect is real. Thus, even if a test is signifi-
cant in one study, but not in another, the two studies could
be quite consistent with one another. As a consequence, it
is much better to think of replication in terms of patterns
of means, rather than patterns of significance; from this
perspective, one would say that a study replicates another
if the patterns of means are similar in the two studies.

Because likelihood ratios summarize the evidence,
rather than providing a binary decision, they lend them-
selves much more readily to cross-experiment compar-
isons of this sort. For example, suppose that one study
provided clear evidence for an effect with a (corrected)
likelihood ratio of 10 (which also happened to be statis-
tically significant) and that another study failed to find
clear evidence for that effect with a corrected likelihood
ratio of 2 (which was not statistically significant). If one
used patterns of significance to describe the results of
the experiments, one might be led to the conclusion that
the second study failed to replicate the first. However, an
examination of the likelihood ratios would make it clear
that the second study merely failed to find strong evi-
dence for the effect; it did not find any evidence against
the effect. Indeed, if it is sensible to assume that effect
size might vary across experiments, one could interpret
the two experiments as independent tests of whether an
effect of some magnitude exists, and one could simply
multiply the likelihood ratios to find the combined evi-
dence for that effect. In this case, strong evidence for an
effect (a likelihood ratio of 10), combined with weak ev-
idence (a likelihood ratio of 2), leads to even stronger evi-
dence for that effect (a likelihood ratio of 20). In a sense,
this amounts to a small-scale form of meta-analysis.

Under other circumstances, one could use likelihood
ratios to describe the evidence for failing to replicate,
something not easily done with traditional statistics. To
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ANOVA Table for Evaluating a Null Hypothesis

Source df Sums of Squares Mean Square F p

Typeface 1 14.4 14.4 1.08 .3058
Error 38 507.9 13.4

Total 39 522.3
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do this using likelihood ratios, one needs to explicitly
consider the patterns of means in the two experiments.
The data shown in Figure 5 provide an illustration of how
this might proceed. In this case, suppose that a prior
study had actually shown an effect of 4 words and that
one’s current study obtained an effect of 1.2 words under
comparable conditions. In order to assess the evidence
for failing to replicate, one would compare a typeface
model that predicts the obtained 1.2-word effect with a
typeface model that assumes an effect of 4 words. From
Table 4, the unexplained sum of squares for assuming the
obtained 1.2-word effect is 507.9. As calculated previ-
ously, the unexplained sum of squares assuming a 4-
word effect is 586.3. Thus, the likelihood ratio in favor
of the model assuming a 1.2-word effect is

In this case, the 1.2-word effect model has an additional
free parameter: Model 1, which predicts an effect of 4
words a priori, has two parameters (the mean and the
variance), whereas Model 2 has three (the mean, the
variance, and the effect of typeface). Using Equation 6 to
correct for this additional flexibility yields

Thus, one could conclude that there is clear evidence that
the study failed to replicate the 4-word effect size that had
been obtained previously. Because this claim refers to dif-
ferences in the patterns of means, it is not prey to the fal-
lacies involved in comparing patterns of significance.

Pro Forma Evaluations
Our survey of significance tests indicates that it is

quite common to report pro forma statistical tests—that
is, tests that do not correspond to plausible theoretical in-
terpretations. Our view is that pro forma tests do not cor-
respond to hypothesis testing in the usual sense. Indeed,
researchers may fail to embrace the alternative hypothesis
even when the results of the test are significant. Instead,
we believe these tests are often reported as an indirect
measure of the goodness of fit or the adequacy of a model.
In particular, if one has a compelling model of the data
that accounts for the important effects and interactions,
there should be little in the way of systematic deviations
among the remaining degrees of freedom. Thus, the rea-
soning might proceed as follows: Failing to show signif-
icant effects among those residual degrees of freedom

provides some indication of the adequacy of the model.
However, significance tests, being designed with other
goals in mind, do not usually provide a suitable measure
of goodness of fit, especially in an ANOVA context.

A more useful measure in this regard can be devised
using likelihood ratios. The general strategy would be to
compare a target model (specified, for example, in terms
of a particular constellation of effects and interactions)
with, for example, a full model that incorporates all pos-
sible degrees of freedom. Of course, because of the ad-
ditional degrees of freedom, the full model will match
the data better than will the target model, and the likeli-
hood ratio will reflect that superior fit. The critical ques-
tion is whether the additional degrees of freedom capture
important, systematic variation or whether the improve-
ment in fit is primarily due to fitting noise. Corrections
such as QC (Equation 6) provide an index of how much im-
provement might be expected by chance and can be used
to adjust the likelihood ratio. The adjusted likelihood ratio
then provides a measure of the adequacy of the target
model.

As a concrete example, suppose that one were inves-
tigating the effects of intervening activities on the recall
of word lists. Subjects first learn a list of words and then
perform one of two types of activities (solving anagrams
or arithmetic problems) for one of two durations. The in-
teresting results concern the recall of the words after this
potentially interfering activity. However, one might also
evaluate the subjects’ recall immediately, before any in-
tervening activity. These immediate recall data are shown
in Figure 6, and the corresponding ANOVA table is shown
in Table 5. In the figure, the groups of subjects are labeled
by assigned conditions, but these are merely “dummy” la-
bels, since the plotted data were collected prior to these
manipulations. Any tests of effects among these condi-
tions constitute pro forma tests, because there is no reason
to expect any particular constellation of effects prior to
the manipulations, and it is not clear what the interpreta-
tion would be if effects were found. However, one might
be tempted to use such tests in this instance to provide
evidence that the groups are comparable at the outset.

The alternative to significance tests that we propose
would involve first calculating the likelihood comparing
the target (null) model with a full model. The target model
explains none of the effects or interactions, whereas the
full model fails to explain only the error sum of square.
Thus, from the data in Table 5, the likelihood ratio in favor
of the full model would be
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In order to correct the likelihood ratio for the potentially
gratuitous additional degrees of freedom, one could use QC
from Equation 6. In this case, Model 1 has two parameters
(the variance and the overall mean), and Model 2 has five
(the variance plus the four condition means). Thus,

Because this value is less than 1, it suggests that the null
model (in which all the conditions are assumed to be the
same) provides a reasonable match to the data.

This approach to evaluating the adequacy of a model
is appropriate only if there is no specific, theoretically
motivated alternative. In contrast, if there is a sensible
alternative to the target model, the results could well be
different. For example, in the results depicted in Fig-
ure 6, if the experimental groups that performed ana-
grams and arithmetic were treated differently during ini-
tial learning, there would be good reason to evaluate the
evidence specifically for a main effect of that factor, and
the conclusions might well differ.

CONCLUSIONS

We have shown here how likelihood ratios are derived,
how they may be computed and interpreted, and how
they can be used to fulfill the most common purposes of
reporting statistics in empirical psychology. The critical
ingredient in this approach is the incorporation of theo-
retical and conceptual knowledge in the reporting of ev-
idence. We emphasize that the appropriate analysis of
data cannot be described in the abstract and that there is
no mechanical or “cook-book” method for dealing with
empirical results. Rather, the analysis must depend on
the theoretical context that motivated the experiment and
its interpretation. In sum, the analysis and reporting of
results is not a mechanical or purely objective process; it
depends on the goals and arguments of the researcher.
Likelihood ratios provide a useful tool from this per-
spective, because they merely summarize the evidence
and can be readily adapted to various goals and argu-
ments as the need arises.
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APPENDIX A
Proof of Equation 2

The likelihood function for a normally distributed random variable is

For n independent random variables, the likelihood is the product of the likelihood functions for
each variable:

The maximum likelihood for a set of observations can be found by using the maximum likeli-
hood estimates for m1, m2, . . . , mn, s. The maximum likelihood estimates m̂1, m̂2, . . ., m̂n will be
constrained by the model under consideration. For example, if two conditions are not expected
to differ, the estimated means for the observations in those conditions would be constrained to
be the same. Furthermore, the maximum likelihood estimate of s 2 is

Substituting this value for ŝ 2 in the expression for the maximum likelihood yields

where Bn depends only on n. Notice that SSE is the sum of the squared deviations from the means
predicted by the model. The ratio of two likelihood functions, constrained by different models,
is thus

Because the sample variance is s2 � SSE/n � 1, this is equivalent to

l =
-
-

Ê
Ë
Á

ˆ
¯
˜

=
Ê

Ë
Á

ˆ

¯
˜

SSE n
SSE n

s

s

n

n

1

2

2

1
2

2
2

2

1
1

.

l =

Ê
Ë
Á

ˆ
¯
˜

Ê
Ë
Á

ˆ
¯
˜

=
Ê
Ë
Á

ˆ
¯
˜

1

1

2

2

1

2

1

2

2

SSE
B

SSE
B

SSE
SSE

n

n

n

n

n

.

f x x x
x n

x

x n

x

n n

i i
i

n

n i i
i

i i
i

i i
i

1 2 1 2 2

2

2

2

2

2

1 1
2

1
2

1

, , . . . , ˆ , ˆ , . . . , ˆ , ˆ
ˆ

exp

ˆ

ˆ

ˆ

m m m s
m p

m

m

m

( ) =
-( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê
Ë

ˆ
¯ -

-( )

-( )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-( )

Â

Â

Â

ÂÂ

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê
Ë

ˆ
¯ -Ê

Ë
ˆ
¯

= Ê
Ë

ˆ
¯

n

n

n

n

n n

SSE
B

2

2

2

2 2

1

p
exp

,

ˆ
ˆ

.s
m

2

2

=
-( )Â x

n

i i
i

f x x x
x

x

n n
i

i i

n n i i
i

1 2 1 2 2

2

2

2

2 2

2

2

1

2

1
2

1 1
2

1
2

, , . . . , , , . . . , , exp

exp .

m m m s
ps

m

s

s p

m

s

( ) = -
-( )È

Î

Í
Í

˘

˚

˙
˙

= Ê
Ë
Á

ˆ
¯
˜ Ê

Ë
ˆ
¯ -

-( )È

Î

Í
Í
Í

˘

˚

˙
˙
˙

’

Â

f x
x

m s
ps

m

s
, exp .2

2

2

2
1

2

1
2( ) = -

-( )È

Î

Í
Í

˘

˚

˙
˙



806 GLOVER AND DIXON

APPENDIX A (Continued)

Also, because 1 � R2 � SSE/SStotal, this is the same as

APPENDIX B
Proof of Equations 10 and 11

The total sum of squares for the regression problem is

For the linear model, 1 � R2
l is

For the quadratic model, 1 � R2
2 is

So, from Equation 2,

This can be transformed into an F ratio for the quadratic trend as follows:

which is distributed as F(1,dferror) when there is no quadratic trend. Solving for l yields Equa-
tion 11.

(Manuscript received September 16, 2002;
revision accepted for publication October 20, 2003.)
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