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Signal detection theory (SDT) is a powerful, statisti-
cally based research tool that, if used properly, can en-
hance modern research. However, if used improperly,
SDT, like other important research tools (e.g., inferential
statistical tests), can lead to incorrect conclusions.Unfor-
tunately, SDT is poorly understood by many modern re-
searchers and thus is sometimes used inappropriately to
support or reject important conclusions.Many of the prob-
lems with modern uses of SDT, as well as recent argu-
ments against the use of SDT (e.g., Norris, 1995), appear
to stem from misunderstandings about the nature of the
underspecified decision variable and about the assump-
tions underlying specific descriptive statistics. For exam-
ple, having explicit assumptions for d9 and b, the respec-
tive descriptive statistics for sensitivity and bias that are
most typically associated with SDT is apparently of great
concern to some researchers, with many opting to use A9
and B 0 because these alternative measures are assumed to
be nonparametric and thus free from assumptions about
distribution. The goal of the present work is to examine

the nature of the aspects of SDT that seem to be most mis-
understood in modern research.

Origin of SDT: Statistical Decision Theory
In all aspects of psychology, the researcher is faced with

problems that stem from the need to use simple behavioral
measures to study the complex processes involved in all
human behavior. Furthermore, all decisions that lead to
overt behavioral responses are based on internal (thus un-
observable) and largely unspecified multidimensional
sources of evidence, and they are influenced by strategic
and motivationalconsiderations.Although the many prob-
lems faced by the researcher seem obvious for complex
behaviors, the same problems exist with supposedly sim-
ple tasks such as the detection of a stimulus, where the ob-
servable physical dimensions are anythingbut isomorphic
with unobservable sensory, perceptual, or cognitive di-
mensions. A major simplifying strategy throughout psy-
chology is to model behavior and decision-making statis-
tically, with the actualobserverviewedas a less thanperfect,
and sometimes biased, version of a computer or an ideal
observer modeled to process the same information. If the
multidimensional evidence were precise (without vari-
ability or uncertainty), the decision would not be statisti-
cal. Because the processes being studied are characterized
statistically, it makes sense to use descriptive statistics to
characterize the behavior of the processes and to use in-
ferential statistics to test hypotheses about the processes.
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Statistical decision theory, developed by Wald (1950),
provides models of optimum decision strategies for deal-
ing with complex and uncertain sources of evidence. Sta-
tistical decision theory is not a model of evidence, but a
model of optimum decisionsbased on statisticallydefined
(thus, imprecise, noisy, or variable) evidence.When the dis-
tribution of evidence is known, the optimum statistical de-
cision is a Bayesian solution that compares the probabil-
ity that each alternative decision is true or valid. The
optimum decision variable, then, is the probability ratio;
and the optimum solution is the choice of the alternative
with the greatest probability. Wald (1950) developed sta-
tistical decision theory to address statisticaldecisionprob-
lems that include conditions in which “an a priori distrib-
ution cannot be postulated, and, in those cases where the
existence of an a priori distribution can be assumed, it is
usually unknown to the experimenter and therefore the
Bayes solution cannot be determined” (Wald, 1950, p. 16).
These are the most commonconditionsfaced by researchers
in psychology and in many other disciplines. In his for-
mal derivation of statistical decision theory, Wald (1950)
demonstrated that most optimum decision strategies are
based on likelihoodestimates of the truth or validity of the
alternative decisions, with the likelihood estimates de-
rived from the available evidence. The optimal decision
solution is functionally equivalent to a Bayesian solution
and thus a ratio, but the ratio is now one of likelihood es-
timators rather than probabilities.1 The optimal statistical
decision variable is the likelihood ratio.

Statistical decision theory was intended to provide
models of experimentation (Wald, 1950), but the basic
principles of the theory can provide models of human de-
cision processes equallywell, and this is the basis for SDT.
SDT was originally derived from statistical decision the-
ory (Wald, 1950), with the goal “initially aimed at unify-
ing a considerable area of psychoacoustics within the
statistical-decision framework” (Licklider, 1964, p. 119).
Although SDT “stems from the direct application of Sta-
tistical Decision Theory to the detection of auditory sig-
nals embedded in noise (Peterson & Birdsall, 1953) . . . it
was immediately recognized that this approach could be
easily applied to other sensory domains” (Kadlec &
Townsend, 1992, p. 182), as well as to a wide range of dis-
crimination, recognition,and classification tasks in which
the stimuli are either simple or complex (see, e.g., Green &
Swets, 1966; Swets, 1964) and performance is assumed to
reflect either simple low-level sensory processing or com-
plex higher level (cognitive) processing, such as memory
(e.g., Egan, 1975) or even medical diagnosis (e.g., Swets,
1996). In keeping with this wide range of decision appli-
cations,Macmillanand Creelman (1991, p. 25) broadlyde-
fine “detection theory” to “mean a theory relating choice
behavior to a psychological decision space.”

The decision variable. A central concept in statistical
decision theory is the nature of the decision variable, and
the original, formal conceptualizationof the SDT decision
variable stems directly from that variable in statistical de-
cision theory. In its original, formal derivation,SDT “spec-

ifies as the optimal decision function either likelihood
ratio . . . or some monotonic function of likelihood ratio”
(Swets, Tanner, & Birdsall, 1961; p. 47 in Swets, 1964).2
For the present discussion,we will temporarily continue to
treat the decision variable as the likelihoodratio. As in sta-
tistical decision theory, a single observation can be repre-
sented “as a point in an m-dimensionalspace.” (Swets et al.,
1961; p. 8 in Swets, 1964), where m refers to the number
of dimensions in the observation. For each dimension, an
ideal statistical observer evaluates the likelihood that the
observed value has arisen from each of the possible deci-
sion alternatives or hypotheses (e.g., in a detection task,
the likelihood that the specific dimensional value arose
when the signal was present or absent). These evaluations
are combined statistically to produce an overall likelihood
that the specific m-dimensional event has arisen from
each of the alternative decision conditions. From the per-
spective of a statistical decision process, the optimal de-
cision should reflect the choice of the hypothesis with the
largest likelihood and thus should be based on a compar-
ison of the likelihoodof the multidimensionalobservation
arising from each of the alternative hypotheses.

For a decision between one pair of alternative hypothe-
ses (a binary choice), this likelihood comparison can be
expressed most effectively as a single variable, the ratio
of the contrasted likelihood values, and thus as the likeli-
hood ratio (e.g., Irwin & Hautus, 1997; Noreen, 1981;
Wald, 1950). A likelihoodratio decision variable is unidi-
mensional, but that unidimensional variable reflects an
evaluation of evidence distributed across many (i.e., m)
dimensions. For a given observation, the value of the de-
cision statistic reflects the evaluation by the observer of
the relative likelihood that the set of m dimensionalvalues
might have occurred if each of the contrasteddecisionout-
comes had been valid. For example, in a recognitionmem-
ory task, the old/new decision would be based on the rel-
ative likelihood that the strength of m dimensions of
evidence elicited by the presented stimulus would have
occurred if the stimulus had been, versus had not been,
previously presented.The unidimensionallikelihood-ratio
decision variable reflects the relative strength of the mul-
tidimensional evidence (as evaluated by the observer) fa-
voring the two possible decision alternatives. The unidi-
mensional nature of the decision variable for a binary
choice thus does not make SDT incapable of describing
the statisticalnature of complex,multidimensionalsources
of evidence (e.g., word–nonword lexical decisions), de-
spite claims to the contrary (see, e.g., Norris, 1995).

General concepts of sensitivity and decision crite-
rion. The distributions of observed (or expected) likeli-
hood values for alternative decisions reflect the statistical
properties of the evidence as evaluated by the decision
maker (e.g., in a simple detection task, the distribution of
noise and signal-plus-noise).3 The statistical properties of
evidence distributions across the decision variable (e.g.,
difference in central tendency [e.g., mean] relative to dis-
persion [e.g., variance]) set a limit on the maximum accu-
racy that the observer can achieve, and thus they deter-
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mine maximum abilityor sensitivity. The decision process
that we have described is directly analogous to inferential
statistics, where the decision variable is some measure of
evidence (t, F, etc.), and the distributions of evidence for
the pair of alternative decision outcomes determine the
sensitivityof the statistical test. Furthermore, the ability to
distinguish statistically between the alternatives reflects
the magnitude of the difference between the central ten-
dency of evidence for the alternatives and the variability
in evidence.

The other property of decision models is the decision
rule or criterion. A decision rule or decision process that
always selects the alternative with the larger likelihood is
described as unbiased; the decision is based only on the
available evidence. When the alternative decisions are
equallyprobable, the unbiaseddecision rule results in max-
imum accuracy. Expressed as a likelihood ratio decision
variable, unbiased performance reflects a decision crite-
rion of 1, accepting the numerator decision outcome when
the likelihood ratio is greater than 1, and accepting the al-
ternative outcome when the ratio is less than 1. Any other
decision rule (criterion) represents bias in favor of one of
the alternative decisions. Without getting into some sub-
tle mathematicaldistinctions(see, e.g., Egan, 1975;Wick-
ens, 2002) (and delaying a more detailed discussion of
other decision criteria until later), we can say that the SDT
criterion statistic, b, is functionally this likelihood ratio
decision criterion. Thus, the observer is unbiased when
b 5 1 and is biased for other values of b.

The analysis of variance (ANOVA) is a common exam-
ple of using a biasedcriteriondecision rule for an evidence-
ratio decision statistic. The F-ratio decision statistic re-
flects evidence for “noise” alone (denominator) versus an
effect of a manipulation superimposed on the noise. For
the ANOVA, the scientific community has accepted a cri-
terion ratio value that, on the basis of the expected distri-
bution of the decision statistic, specifies the maximum
false alarm rate (the probabilityof false positivedecision)
at .05 for a “significance” decision. The criterion value of
the (F statistic) evidence ratio is not 1; it is biased in favor
of incorrectly accepting the null hypothesis.

Specific Models of SDT: Assumptions
About Distribution of Evidence

Other than indicating that statistical decision theory
was developed to model optimal decision strategies for
situations in which the underlying distributions are un-
known, we have not discussed assumptions about the dis-
tributionof evidence.As a general theory derived from sta-
tistical decision theory, SDT does not make assumptions
about the underlying distribution. In contrast, specific
models of SDT are based on specific distributional as-
sumptions.The most common model of SDT is the Gauss-
ian equal variance model (hereafter, G-SDT), which is
based on the assumption that the two evidence distribu-
tions are Gaussian and equal in variance.4 This assump-
tion operationalizes a theoretical statistical theory into a
model that can be readily used in the study of human de-

cision processes. Specifically, it allows one to calculate
two separate descriptive statistics, d9 and b (or some other
criterion statistic; see immediately below). These respec-
tive statistics reflect sensitivity and criterion bias in the
manner described earlier for statistical decision theory
and for inferential statistics. The descriptive statistic for
sensitivity, d9, is the z-score distance between the means
of the evidence distributions and thus reflects separation
of the distributions in units of variance. The criterion sta-
tistic, b, the ratio of the ordinates of the two distributions
at the criterion, is in principle an instantiation of the
likelihood-based decision rule adopted by the observer
(McNicol, 1972). If the assumptions of G-SDT are valid,
the descriptive statistics for sensitivity and criterion will
be orthogonal.

For G-SDT, a number of alternative descriptive statis-
tics for criterion have been developed.The original statistic,
b, is excellent for use in mathematical models of decision
processes; it represents the Bayesian solution (Wald, 1950),
and it is not based on any assumptions about underlying
distributions. However, b is probably a poor choice for a
descriptive statistic in empirical research. By definition,b
is a ratio scale, and the appropriatemeasure of central ten-
dency for a ratio scale is the geometric mean. Because
most behavioral researchers have learned to use descrip-
tive and inferential statistics(e.g., arithmeticmean,ANOVA)
that assume an underlyinginterval metric, it is not unusual
for researchers to report the (arithmetic) mean value of b
and to use standard inferential statistics. Macmillan and
Creelman (1991) recommend the use of c, an alternative
descriptive criterion statistic. This statistic, with standard
G-SDT distribution assumptions, reflects the position of
the criterion in (interval scale) z-score units relative to the
midpoint between the two distribution means. The unbi-
ased criterion, corresponding to b 5 1, is at c 5 0. There
are a number of alternative descriptive criterion statistics
(see Irwin, Hautus, & Francis, 2001; Macmillan & Creel-
man, 1991; Snodgrass & Corwin, 1988).

Uniqueness of Gaussian assumptions. A number of
modern researchers appear to be extremely concerned
over the possibility that the assumptions of G-SDT, and,
specifically, Gaussian distributions with equal variance,
may be violated. Some researchers thus favor using “non-
parametric” SDT descriptive statistics (discussed later) or
question the validity of conclusions based on the use of
G-SDT measures (e.g., Norris, 1995). It is true that, if the
underlying distributions exhibit significant differences in
variance, the descriptive statistics for sensitivity and cri-
terion will not be fully independent, and large differences
in criteria can result in large changes in sensitivity. How
much concern should there be about possible violationsof
the assumptionsof the G-SDT model? We will answer this
question by looking at the assumptions of typical inferen-
tial statistics.

Statistics are an essential component to all empirical re-
search in many sciences, includingpsychology. Whenever
one uses statistics, whether inferential or descriptive, one
is making implicit, if not explicit, assumptions about un-
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derlying distributions. Researchers however, seem to be
more aware of the nature of these assumptions when they
are consideringsome descriptive statistics (e.g., d9, but not
either mean or standard error) than when they are using in-
ferential statistics, even when the assumptions are essen-
tially equivalent.Thus, one can easily find researchers re-
porting significance based on common statistical tests
while also expressing significant concern over the as-
sumptionsunderlying the use of d9 and either b or c. How-
ever, “the chi-square distribution rests directly on the as-
sumption that the population is normal” (Hays, 1963,
p. 353). Since “the F variable is the ratio of two indepen-
dent chi-square variables, each divided by its degrees of
freedom. . . . the F distribution also rests on the assump-
tion of two (or more) normal populations” (Hays, 1963,
p. 353). Furthermore, the error variance in each popula-
tion must be both independent and equal (e.g., Hays,
1963). The Student t statistic, the difference between dis-
tribution means scaled in standard error units, is based on
similar assumptions.Specifically, “in order to find the exact
distribution of t, one must assume that the basic popula-
tion distribution is normal,” and the actual t distribution
must be “a unimodal, symmetric, bell-shaped distribution
having a graphic form much like a normal distribution”
(Hays, 1963, p. 305) that, in its limit, becomes a normal
distribution.Thus, the researcher always needs to consider
whether the assumptions of equal-variance Gaussian dis-
tributionsare reasonable; but that considerationis no more
or less important for use of inferential statistics (statistical
tests) or descriptive statistics (mean, variance, d9, etc.).

Common Misconceptions About SDT
and the SDT Decision Variable

The formal foundation in statistical decision theory
provided a solid theoretical basis for SDT, but also ap-
pears to have contributed to many modern misconceptions
about SDT. The nature of the decision variable is at the
heart of both statistical decision theory and SDT, and
many of the modern misconceptionsabout SDT appear to
reflect problems in researchers’ understanding of the de-
cision variable. In its derivation within statistical decision
theory, the decision variable is probably overspecified as
a statistical concept and underspecified as a concept that
can be easily understood and operationalized. Our brief
summary of statistical decision theory should provide a
solid foundation for identifying and correcting modern
misconceptions about the decision variable.

In many modern textbooks, the SDT has become G-
SDT, and the decisionvariable is characterized as a single,
simple sensory dimension. There are probably two rea-
sons for this characterization. First, because the decision
variable of statistical decision theory is not easy to under-
stand, it is a challenge for undergraduate textbookauthors
to explain SDT at more than a superficial level. Second,
not only does the name of the theory (signal detection the-
ory) include the term “detection,” but the initial develop-
ment and validation of SDT was meant for a narrowly de-
fined task, the detection of an auditory signal embedded

in “white” (Gaussian) noise, with the dominant variabil-
ity or uncertainty of that specific application arising from
the noise. The applicationof principles from statistical de-
cision theory to this specific detection task actually con-
trasts with Wald’s theory (and with the many applications
of SDT to complex decision situations that began within
a few years after SDT’s origin; see, e.g., Egan, 1975;
Swets, 1964, 1996), where the distribution of evidence is
not known. However, one effective test of a theory that
claims to make no assumptions about underlying distrib-
ution is to evaluate its performance when the distribution
is known. Likewise, the initial test of a model that makes
specific distributional assumptions is to evaluate its per-
formance when the assumptions are known to apply. (We
will return to this question when we evaluate “nonpara-
metric” SDT measures.)

In the original detection task, two distributionsreflected
noise alone and signal added to noise. In that specific ap-
plication, the decision variable did reflect sensory infor-
mation, the two distributionsof evidencewere each Gauss-
ian, and the difference in distributionmeans did reflect the
difference in sensory information or magnitudeassociated
with the addition of the signal to the noise. This detection
task was an excellent choice for a tool to validate the ap-
plication of statistical decision theory principles to the
modeling of human decision performance. Unfortunately,
this specific application of G-SDT has become synony-
mous with SDT. The decision variable has been equated
largely with sensory activity. The G-SDT sensitivity sta-
tistic, d9, has been taken to reflect only sensory ability. This
unfortunate metamorphosis does appear to address the
problems associated with the need for a characterization
of the SDT decision variable that is understandable to un-
dergraduates, but it actually adds new problems associated
with an inaccurate specification of SDT and its decision
variable.

There are many examples of this simplified, incorrect
characterization of the SDT and its decision variable.
Coren, Ward, and Enns (1999), Levine and Shefner (1991),
and Schiffman (2000) all describe the decision axis (and
thus the decision variable) as being the level of sensory
activity, with the label “noise” (originally intended to re-
flect statistical variability) being interpreted literally and
thus described as being based largely on spontaneous
neural activity. For example, “the noise referred to by sig-
nal detection theory . . . is an ever-varying level of neural
activity of a type exactly like the nervous system’s re-
sponse to the signal. There is a background level of activ-
ity in the nervous system, and sensory signals are super-
imposed on this activity” (Levine & Schefner, 1991, p. 27).
Likewise, “signal detection theory assumes that any stim-
ulus must be detected against the background of endoge-
nous noise in our sensory systems” (Coren et al., 1999,
p. 20). Some authors allow that, in addition to (internal)
noise in the nervous system, noise may also come from an
external source (e.g., Haberlandt, 1994; Payne & Wenger,
1998). When higher level processes are mentioned, it is in
terms of additions to the noise. Specifically, noise reflects,
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“in addition to spontaneous sensory-neural activity, . . .
the unpredictable, random effects of fatigue and the ef-
fects of nonsensory response biases such as the observer’s
fluctuating level of attention and motivation to the detec-
tion task” (Schiffman, 2000, p. 28). Likewise, “these fluc-
tuations in noise level are caused by physiological, atten-
tional,and othervariablesin sensory and perceptualsystems
of the observer as well as by random fluctuations in the
environment” (Coren et al., 1999, p. 22). The decision
axis is thus labeled “level of sensory activity” (Schiffman,
2000, p. 28), “sensory activity level” (Coren et al., 1999,
p. 23), “level of activation of sensory system” (Levine &
Shefner, 1991, p. 28), “sensory evidence” (Payne &
Wenger, 1998, p. 82), “magnitude of sensory impression”
(Kantowitz, Roediger, & Elmes, 2001, pp. 170–174), “in-
tensity” (Haberlandt, 1994), or “perceptual effect.” Rare
exceptions specify the decision axis as “what the subject
experienceson each trial” (Goldstein, 1999, p. 557; 2002,
p. 587), or simplydo not label theaxis (Jahnke& Nowaczyk,
1998, p. 75). Sekuler and Blake even consistently change
the name of SDT to “sensory decision theory,” allowing
that the theory is “sometimes called signal detection the-
ory in recognition of its origins in electrical engineering”
(Sekuler & Blake, 1990, p. 497; 2002, p. 601). Undergrad-
uate textbooks are thus inaccurate sources of information
about SDT, and they should not be cited as an SDT source
in research articles (e.g., Norris, 1995).

Clearly, the decision variable is being described in very
limited, concrete terms, and the concept of noise is taken
almost literally, rather than as reflecting the uncertaintyor
variability associated with statistical processes. Further-
more, some researchers have equated sensitivityor ability
(the distribution of the decision variable) with sensory or
perceptual processes, and criterion placement with post-
perceptual processes. In the semantic priming literature,
this partitioning of sensory/perceptual decision statistic
processes and postperceptual criterion processes has then
been used in arguments about perceptual encapsulation
and cognitivemodularity (e.g., Rhodes, Parkin, & Treme-
wan, 1993), sometimes with the qualification that “the
claim that changes in measured sensitivity are a direct re-
flection of changes in the sensitivity of some early per-
ceptual process is only true under the specific set of as-
sumptionsmade by signal detection theory” (Norris, 1995,
p. 936; see also Norris, McQueen, & Cutler, 2000). Thus,
in parts of the modern psychologicalliterature, SDT is be-
lieved to be onlya very limitedmodel of sensory processes,
with this belief used to support broad, theoretical posi-
tions. SDT is not a model of sensory processing, and the
decision variable is not a simple, concrete physical or sen-
sory dimension. Rather, SDT is a general model of deci-
sion processing of evidence, and “the decision variable is
essentially unobservable” (Laming, 1986, p. 39). SDT defi-
nitely “does not require one to be specific about the axis
on which the decision is made” (Wickens, 2002, p. 150).

Specifying the decision variable. Even with an un-
derstanding of the actual nature and goals of SDT, the typ-
ical researcher still seems to want an answer to the ques-

tion, “What is the decision variable?” This question has
really been answered earlier. The decision axis provides
“some measure of evidence for (or against) a particular al-
ternative, . . . formulating it using a decision strategyknown
as likelihood-ratio testing” (Wickens, 2002, p. 150). SDT
does not explicitly assume that the decision variable is the
likelihood ratio, only that it is a monotonic transform of
the likelihoodratio. This means that as the value of the de-
cision variable is increased, the weight of evidence will
shift in a systematic fashion from strongly favoring one
alternative, to less strongly favoring that alternative,
through favoring neither alternative,and then from weakly
to strongly supporting the alternativevariable.Thus, in the
modeling of false memory decision processes using SDT
(Wixted & Stretch, 2000), or using both SDT and statisti-
cal decision theory (Wickens & Hirshman, 2000), the
decision variable is appropriately labeled “strength of ev-
idence.” A greater specification of the nature of the unob-
servable decision variable dependson the research design,
on the processing model being employed by the re-
searcher, and on assumptions about the nature of the rele-
vant evidence.For example, in studiesof recognitionmem-
ory, research manipulations are often designed to alter
variables that are assumed to be reflected in the concept of
either familiarity or perceptual fluency. With the further
assumption that the evidence is restricted to the specific
construct being manipulated, the decision axis is labeled
“familiarity” or “perceptual fluency.” This is appropriate if
the assumptions about the nature of evidence and the rel-
evance of the research manipulations are accurate.

The full implications of this discussion will become
even clearer when we turn again to common inferential
statistics (e.g., ANOVA, t test) and descriptive statistics
(e.g., mean, median, variance) for examples of generic ev-
idence variables. The simple use of an ANOVA or a t test
does not define the nature of the evidencebeing evaluated.
The theory being tested, the design of the experiments,
and the assumed nature of the independentand dependent
variables determine the labels that define the nature of the
evidence and allow interpretation of the inferential statis-
tical analyses. SDT is no more a theory of sensory or per-
ceptual process, or of familiarity or perceptual fluency,
than is an ANOVA or a t test.

Independence of Sensitivity and Bias
Everyone seems to understand that if there are severe

violations of the assumptions of G-SDT, then sensitivity
and criterion statistics will not be independent, and, as a
result, changes only in criterion in the absence of changes
in the underlying evidence distributions will result in
changes in measures of both criterion and sensitivity (e.g.,
b and d9). Stated more generally and in the positive, if the
assumptions of G-SDT are valid, or if “nonparametric”
SDT descriptive statistics are truly nonparametric, then
the model’s descriptive statistics for sensitivity (respec-
tively, d9 and A9) will be independent measures of the
model’s descriptive statistics for criterion (respectively, b
or c and B 0); the nonparametricmeasures are addressed in
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a separate section below. The meaning of independence
however, is easily misunderstood. In principle, the inde-
pendence of sensitivity and criterion measures should
mean that neither descriptive statistic is dependent on or a
function of the value of the other descriptive statistic. The
independence of these two descriptive statistics is some-
times (at least implicitly) interpreted as allowing an ex-
perimental manipulation to alter either sensitivity or cri-
terion, but not both descriptivestatistics (e.g., Rhodeset al.,
1993). In fact, neither of these statements is completely
accurate. This is both because the concept of criterion is
more complex than is typically realized and because the
relationship between the descriptive sensitivity and crite-
rion statistics is not necessarily symmetric or reciprocal.

The relationship that is simple to understand is that the
value of the criterion should not affect sensitivity. In sta-
tistical decision theory and in SDT, there is effectively an
ordered relationship between evaluating the evidence to
compute the value of the decision variable and the use of
the decision criterion. A change in criterion should not
alter the distribution of evidence that defines the decision
variable, and it is the distribution of evidence that limits
the optimal decision ability.5 Descriptive statistics for sen-
sitivityare designed to accurately reflect the magnitudeof
this ability, but such statistics need to be based on specific
assumptions about the distribution of the decision vari-
able. Thus, if the assumptions of G-SDT are reasonably
valid, the value of d9 reflects the underlying ability de-
fined by the distribution of available evidence, and it
should therefore be constant across changes in b or c. This
aspect of independence, alone, is important, since it al-
lows the researcher to identify conditionsthat involveonly
criterion changes.

The consequencesof change in the underlyingevidence
distributions that complicate the nature of independence.
A variety of decision strategies are available to the deci-
sion maker, and several different descriptive criterion sta-
tistics are available to the researcher (e.g., b and c), with
each related in a different way to the evidence distribu-
tions. Thus, the relationship between a descriptive deci-
sion statistic and the different types of descriptive crite-
rion statistics is not simple. As a result, changes in the
evidence distribution that produce a change in sensitivity
may not alter the criterion employed by the observer, but
they will often alter the value of the criterion statistic com-
puted by the researcher. A basic understanding of the var-
ious descriptive statistics for criteria and the nature of al-
ternativecriterion strategiesavailableto the decisionmaker
will allow an understanding of possible relationships be-
tween descriptive statistics for sensitivity and criterion.

Different criteria. A statistically optimal decision
maker, as described earlier, will adopt a decision criterion
based on the likelihood ratio. The descriptive statistic, b,
reflects the value of the likelihood ratio or the slope of the
receiver operating characteristic (ROC) curve (in simple
probability coordinate space) at the criterion. The de-
scriptive statistic, c, is the distance of the criterion from
the equal bias point measured in z-score units (Macmillan

& Creelman, 1991) and is not a direct transformation of b.
For fixed evidencedistributions(i.e., constant d9), there is
an isomorphic mapping between b and c, but that map-
ping is not invariant across changes in the evidence distri-
butions that result in a change in d9. Thus changes in the
evidence distributions that result in a change in d9 will
also alter the mapping between b and c.6 If the observer
establishes a criterion that is constant for one of these two
criterion statistics, then a change in the evidence distribu-
tions will not alter the observer’s criterion (we have stated
that it is held constant) or the value of the descriptive sta-
tistic for that specific type of criterion, but it will alter the
descriptive statistic for the other criterion. For example, if
d9 changes from 1.0 to 2.0, and then to 3.0 for an observer
whose decision strategy maintains c at 0.5, the values of b
will be 1.65, 2.72, and 4.48. The researcher, seeing a
change in both the sensitivity and criterion statistics,
might even conjecture that the apparent change in crite-
rion caused a change in sensitivity(e.g., Norris, 1995). For
a more detailed illustration, Stretch and Wixted (1998)
provide an excellent analysis of the effects of changes in
d9 on alternative confidence rating decision strategies in
recognition memory with six response categories, and
thus five criteria. They analyze three different decision
models: the likelihood ratio model with criteria at fixed
values of b; the lockstep model with criteria at fixed val-
ues of c; and the range model with an equal partitioning
of distance between endpoint criteria with constant values
of c.

The b and c descriptive criterion statistics, as well as
the decision criterion strategies reflected in these statis-
tics, are characterized by relationships between the two
evidence distributions being evaluated. However, a per-
fectly logical decision strategy is to specify the criterion in
terms of constant error rate (or accuracy) for one of the
two evidence distributions or decision outcomes. For ex-
ample, in inferential statistics, the decisioncriterion holds
constant the probability of a Type I error (e.g., .05). A dif-
ferent decision strategy is to use a criterion that holds con-
stant the probability of a Type II error. In principle, a re-
searcher’s descriptive criterion statistic could be the
probability(or z-score value) for either a Type I or a Type II
error. Modifyingour earlier example that compared b and
c, we now will have our hypothetical decision-maker
adopt a criterion that holds constant the probability of a
Type I error. A change in the underlying evidence distri-
butions will alter d9, and a researcher investigating the
decision-maker, using any criterion measure other than
P(Type I error) [e.g., the researcher might use b, c, c9, or
P(Type II error)], will report a change in criterion or bias,
yet the observer will have held his/her own criterion con-
stant.

From this analysis, it shouldbe clear that, unless the cri-
terion statistic measured by the researcher and the crite-
rion adopted by the observer are based on the same prin-
ciples, a change in the evidence distributions that alters
measured sensitivity (e.g., d9) will typically result in a
change in measured criterion or bias. With such findings,
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the researcher can accurately report that, for the type of
criterion defined by the researcher, there has been a
change in the criterion. However, the researcher cannot
make any stronger statement. The empirical finding of
changes in both sensitivity and criterion (bias) can mean
any of several things. There might be a severe violationof
the assumptionsof G-SDT that has resulted in a lack of in-
dependence in descriptive statistics, so that a change in
criterion has altered d9 in the absence of any change in un-
derlying distributions of evidence. Alternatively, the as-
sumptions of G-SDT might be reasonably valid, in which
case the findings could reflect a change in the underlying
distributions (change in d9) coupled either with an actual
change in the observer’s criterion or with the researcher’s
having used a criterion statistic that is different from the
observer’s invariantdecision strategy. To distinguishamong
these alternatives for tasks that require the placement of
multiple criteria, Stretch and Wixted (1998) appropriately
suggest analyzing the results in ROC space (described
below). Finally (for reasons that will be developed next),
the findingsmay reflect a flaw in the experimental design.
Thus, just as with inferential statistics, one needs to be
careful to consider possible procedural causes for patterns
of obtained results.

Procedural considerations for independence. Be-
yond the specific assumptions of the particular SDT
model being employed, there is another important statis-
tical aspect of independencefor d9 and either b or c. In the
computing of the SDT descriptive statistics, there are two
independent evidence distributions. In G-SDT (and other
operational models of SDT), the value of one statistic
[e.g., p (H or Hit) or p(F or False alarm)] is computed from
each of these independent distributions, and the two sta-

tistics are independent.The SDT descriptive statistics for
sensitivity and criterion are effectively the sum and the
difference of these two independentvariables(e.g., Macmil-
lan & Creelman, 1991). Since the sum and the difference
of two independent random variables are themselves in-
dependentof each other, the two SDT descriptive statistics
are independentof each other. The basis for this additional
statistical consideration is not the nature of the distribu-
tions, but rather the independence of the hit and false
alarm probability estimates. If one computes d9 and b (or
c) for several within-subjects conditions, the descriptive
statistics will be independent if both p(H) and p(F) are in-
dependently determined across conditions, but they will
not be independent if either probability is common across
conditions. Several examples will illustrate problems that
can occur when there is a failure to appreciate the impor-
tance of this computational component to independence.

In the false memory literature, there is typically the find-
ing of a higher false alarm rate to critical lures than to other
previously nonpresented items (e.g., Roediger & McDer-
mott, 1995, 1999). Miller and Wolford (1999) argued that
the difference in false alarm rate is due to a change in cri-
terion, not a change in sensitivity, and thus does not re-
flect a false memory. Both Wixted and Stretch (2000) and
Wickens and Hirshman (2000) present decision models
that address the criterion change explanation in terms of
the relationship between the underlying distributions and
descriptive statistics for sensitivity and criterion. Figure 1
illustrates some basic principles that reflect both general
procedural considerations about independence of the two
measures that we have just discussed and the specific
problem with Miller and Wolford’s conceptualization.The
solid curves in Figure 1 represent the distribution of evi-

Figure 1. Illustration of independence problems when two conditions (A1 and A2)
are evaluated together against a common decision alternative (B). For the decision-
maker, the A1 and A2 distributions, which the researcher treats as separate, are func-
tionally a single, combined distribution, A. When the decision-maker sets a fixed crite-
rion, b, defined by the relationship between the A and B distributions, the researcher
will measure four descriptive statistics (two values of d9 and two values of b) that are
not independent of each other.
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dence for two alternativeevent classes, here labeled A and
B. For a recognition memory task, A and B represent new
and old memory items, respectively. The decision axis
represents the relative amount of evidence favoring the de-
cision alternatives. The observer knows only that there are
two possible sets of items and thus is dealing conceptually
with only two underlyingdistributionsof evidence. In our
illustration, the observer uses an unbiased criterion, and
thus b, at the intersection of the two distributions, has a
value of 1.0. Sensitivity is reflected by the difference in
the means of the two distributions, and thus the distance
between mB and mA (in Figure 1, d951.3). The criterion
statistic is b, and thus the ratio of the ordinates of the two
distributionsat the criterion (b 5 .323/.3235 1.0). Prob-
ability estimates for hits and false alarms are from inde-
pendent distributions, and thus independencebetween the
criterion and sensitivity statistics requires only that the as-
sumptions of the SDT model be reasonably valid.

The researcher, however, has treated the critical lures
differently from other nonpresented items. Thus, the dis-
tribution of A actually consists of two distributions, with
a mean of mA1 for noncritical nonpresented items and mA2
for critical nonpresented items.7 From the perspective of
the observer, the fact that there are two different underly-
ing distributions for A is irrelevant, with the observer’s
criterion (at b 5 1) based on the combined distribution.
From the perspective of the researcher, A1 and A2 are dif-
ferent distributions. The computed d9 sensitivity measure
for the two nonpresented items is based on the distance
between the mean of each distribution and mB. The re-
sulting d9 values are 1.0 for A2 (nonpresented critical
lures) and 1.6 for A1 (noncritical nonpresented lures). Be-
cause there is a difference in location of the distribution
means for A1 and A2 (the mean for distribution B is con-
stant), the effective value of the criterion (at the overall lo-
cation of b) is decreased (b 5 .323/.375 5 0.86) for A1
and increased (b 5 .323/.254 5 1.27) for comparisons
based on A2. It would thus appear that the critical nonpre-
sented items have resulted in both reduced sensitivity and
a stricter criterion.

Our current example has really described only the basic
point (presented earlier) that changes in sensitivity can,
and typically do, alter criterion measures. However, there
is a more important lesson about independence in this ex-
ample. The researcher may be interested in two values of
sensitivity, or two values of criterion, or all four of these
values. However, with only three independent underlying
distributions, the four descriptive statistics are not inde-
pendent of each other. In fact, if there is any difference be-
tween mA1 and mA2, there will be an equal (z-score) dif-
ference in the values of d9, and the criterion value of b (or
c) will always be more liberal for the condition with the
higher value of d9. This is because one of the two para-
meters in the computation of these statistics is common
across the two values. Here, the hit rate z score is common
across the two values of d9 (and also the two values of the
criterion statistic, c), and the ordinate of the hit rate is the
numerator in the computation of both values of b.

Hicks and Marsh (2000) provide an example of an
equivalent lack of independence in their reported mea-
sures for three recognition memory experiments, but with
a reversal of the conditions described in Figure 1 (false
alarm rate is common, with two different hit rates). Each
memory item was presented in one of two conditions that
were assumed to result in different levels of encoding.
Recognition memory was then evaluated using a set of
stimuli that combinedone set of nonpresentedfoils (to de-
termine false alarm rate) and a mixture of the two sets of
previously presented items. As in our Figure 1 example,
the observer still has only two distributions (old and new
items) and adopts a single criterion, but (in contrast to the
Figure 1 example) the researcher determines one false
alarm rate and two different hit rates. Hicks and Marsh re-
port differences in hit rate and similar differences in d9,
with b becoming more lax for the larger d9 condition,dis-
cussing possible encoding-based reasons for the change
in criterion. From our earlier analysis, we know that for
conditionswith one of the component parameters in com-
mon (here, false alarm rate), the other component para-
meter (here, hit rate) and the computed descriptive statis-
tics, d9 and b, are not independent.Hicks and Marsh also
report RT, finding that RT is faster for conditions with
higher d9 values. If one posits that RT should be faster for
easier conditions, RT should also be at least partially cor-
related with these other statistics. Thus, all of the reported
descriptive statistics across encoding conditions are cor-
related, and separate discussions of causal factors for dif-
ferences in each measure are inappropriate.

Roles of Uncertainty
The concept of uncertainty is relevant to both the evi-

dence distributionsof the decision variable and the place-
ment of the criterion, and uncertainty is not the exclusive
attribute of either component to the decision process. In
statisticaldecision theory, the distributionof evidenceis un-
known and is specified statistically, thus implying consid-
erable uncertainty. The statisticallydefined evidencethat is
the basis of the SDT decisionvariable does not just appear,
but rather is the result of the individual observer’s evalua-
tion of the nature and quality of the available evidence; the
distribution of evidence thus reflects both the evidence
available and the observer’s knowledge about possible ev-
idence. Therefore, the statistical distributionsof evidence
and the decisionvariable that reflects the statisticaldistribu-
tion can be expected to differ across individuals. Further-
more, the separationof the contrastedevidencedistributions
is altered when the individual observer gains knowledge
about the dimensionsof evidence that are, and are not, rel-
evant to the decision, and when there is improved knowl-
edge about the distributionsof evidencevalues for each of
the relevant dimensions. A knowledgeable, and thus less
uncertain, observer will exhibit greater ability or sensitiv-
ity than a naive, highly uncertain observer. Therefore, un-
certainty is an important component of sensitivity.

Ideally, the observer implements a decision rule by es-
tablishinga fixed criterion. If the criterion is defined by a
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fixed likelihood ratio, one might assume that the criterion
could be invariant, but it is more realistic to assume some
degree of variability or uncertainty even in a likelihood
ratio criterion (i.e., b). If the criterion is specified as a
fixed value of c, or a constant Type I or Type II error prob-
ability, then, by its very nature, the criterion requires that
the observer possess some knowledge about the underly-
ing distributions that define normalized (z-score) dis-
tances for c and cumulative distribution functions that de-
fine the Type I or II error rate. Depending on the accuracy
and precision of such knowledge, there will be uncertainty
in the criterion specification. Uncertainty in the criterion
is equivalent to variability in the criterion.

In at least a portion of the literature on perceptual en-
capsulationor cognitive impenetrability, the notionsof in-
dependenceof the descriptive statistics and the role of un-
certaintyhave sometimes acquired special meaning.Here,
there is an implicit, and sometimes explicit, assumption
that sensory and perceptual processes are automatic, and
there is no place for uncertainty in automatic processes.
Thus, uncertainty is a property only of higher level or cog-
nitive processing (e.g., Norris, 1995; Norris et al., 2000).
In his checking model, for example, Norris argues that se-
mantic priming is purely postperceptual and is modeled
by a temporary altering of the criterion or threshold of
words. The conjectured,purely postperceptual,changes in
criterion alter uncertainty, and the changes in uncertainty
result in changes in SDT measures of sensitivity without
altering the decision variable. In a perceptually encapsu-
lated, cognitively impenetrable system (e.g., Norris et al.,
2000), recognitioncriterion “changes operate in a manner
which leads to changes in d9 as well as beta. This is due to
the fact that the priming . . . almost inevitably lead[s] to a
reduction in stimulus uncertainty” (Norris, 1986, p.126).
The assumption that uncertainty is only a property of the
decision criterion has been combined with the incorrect
assumption (discussed earlier) that d9 reflects only sen-
sory or perceptual processing (e.g., Norris, 1995; Rhodes
et al., 1993). The conjoined assumptions then are used in
the debate about whether changes in uncertainty that alter
d9 represent evidence against perceptual encapsulation
(Rhodes et al., 1993) or evidence that the multidimen-
sional nature of cognitiveprocesses are too complex to be
evaluatedusing G-SDT (Norris, 1995;Norris et al., 2000).

Criterion variability and sensitivity. G-SDT alone
has no inherent ability to distinguish between uncertainty
associated with the evidence variable and uncertainty as-
sociatedwith the criterion. Both forms of uncertainty rep-
resent variability in the decision process, and in G-SDT
variability is functionally lumped together as the denom-
inator in the theoretical formula for d9 (e.g., Green &
Swets, 1966). This is because d9 is a z-score distance, and
the z-score transformation is a normalization relative to
variance. In principle, this pooling of variance should be
a concern, but the effect of criterion variability on the
value of d9 may not be a great concern under many condi-
tions. In a broad sense, there is equivalence in d9 com-
puted for a single subject with criterion variability across

trials and d9 computed from data pooled across subjects
who are identical in underlying sensitivity but who differ
in criterion placement. A theoretical analysis of the latter
conditions by Macmillan and Kaplan (1985, p. 185) indi-
cates that criterion variability “underestimates true aver-
age d9 to only a small degree in most cases.” Finally, with
the appropriate procedures and a G-SDT–based theoreti-
cal model, one can evaluate the relative contribution of
different sources of variability (e.g., Berliner & Durlach,
1973; Braida & Durlach, 1972; Durlach & Braida, 1969;
Macmillan, Braida, & Goldberg, 1987; Macmillan,Gold-
berg, & Braida, 1988).

Nonparametric Model of SDT
It is not unusual in the modern research literature to

find researchers who express the belief that “nonparamet-
ric” SDT measures (A9 and B0) are functionally equiva-
lent to parametric descriptive SDT statistics [d9 or AZ (de-
fined below) and b, c, etc.], but are superior because they
are nonparametric.For example,Rhodeset al. (1993,p.157)
are fairly typical in describing these measures as being
“nonparametric in that no assumptions about the signal
and noise distributions are required (McNicol, 1972).”
Masson and Borowsky (1998) describe the “nonparamet-
ric” quality of these measures in terms of not requiring
strict adherence to the assumptions of equal-variance
Gaussian distributions. Similar beliefs have been ex-
pressed by Norris (1995), Goldinger (1998), and many
others. In this conceptualization, A9 and B0 would seem to
be ideal descriptive statistics that are far superior to d9 and
b, possessing attributes that seem to be (and, as we will
see, actually are) too good to be true.

Macmillanand Creelman (1996) provide a brief history
of “nonparametric”SDT measures, and this history allows
us to understand the origin of the “nonparametric” label.
The “nonparametric”SDT statistics are based on the ROC
curve that plots hit rate (correct acceptanceof the primary
hypothesis)on the ordinate and false alarm rate (incorrect
acceptance of the primary hypothesis) on the abscissa.
(Figure 2 is a plot of ideal ROC curves for parametric G-
SDT and nonparametric statistics that will be used below
to illustrate problems with the nonparametric measure of
sensitivity.) The complete operating characteristic for a
given observer (with fixed underlying distributionsalong
the decision variable) is the plot of all possible data points
as criterion is varied. The (complete) theoretical ROC
curve would be generated by systematically moving the
criterion along the decision variable, computing the area
in the upper tail of each underlying distributions (hits and
false alarms) for each decision variable value. With the
evidence variable distribution constant, the ROC curve
represents constant sensitivity. Macmillan and Creelman
(1996) attribute the initial conceptualizationof a nonpara-
metric measure based on the ROC curve to a paper pre-
sented by Green. Green (1964) reported, “in the 2-alter-
native forced-choice tasks all models agree that the
percent correct is equal to the area under the Yes–No ROC
curve.”8 In a two-alternative forced-choice (2AFC) task,
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the observer is presented with two stimuli that are exam-
ples of the two alternative decision states and is asked
which of the alternatives matches the specified state (e.g.,
in a lexical decision task, the observer is presented with a
word and a nonword stimulus and must decide which of
the two stimuli is a word). The observer is assumed to in-
dependently evaluate a separate likelihood ratio (e.g.,
word/nonword likelihood ratio) for each of the presented
stimuli and then to make a decision based on a compari-
son of the likelihoodratios. No assumptionsare needed to
compute the two likelihood estimators, and a decision
process based on comparison of the likelihood ratios al-
ternatives should tend to minimize bias (Green & Swets,
1966). Expanding on these ideas, Green & Swets (1966,
p. 50) state, “the area under the yes–no or rating ROC
curve . . . is distributionfree, since no assumptionabout the
form or character of the underlying distributions is made
by calculating the area.” Therefore, the area under a multi-
point ROC curve is a nonparametric measure of ability or
sensitivity that is easily interpretedbecause it corresponds
to optimal percent correct. In a multipointROC curve, the
shape of the curve is determined by the underlying distri-
butions, whatever the nature of those distributions.

A9 and B 0 descriptive statistics. Pollack and Norman
(1964; see also Pollack & Hsieh, 1969) developed a pro-
cedure for a descriptive statistic that reflects an estimate of
the area under an ROC curve that is specified by only a
single data point; a single data point in ROC space is not
an ROC curve. Their measure, A9, is the average area for
the two linear ROC curves that maximizes and minimizes
hit rate.9 B0 was developed by Grier (1971) as a corre-
sponding nonparametric, ROC-based measure of bias for
a single data point. The computation of A9 and B0 is non-
parametric in the sense that the computation requires no
a priori assumption about the underlying distributions.
This does not mean that these measures are an accurate
reflection of their theoretical origin (i.e., that A9 reflects the
area under a reasonable ROC curve) or that they are
distribution-free measures. Finally, it does not mean that
A9 and B0 are independent of each other.

The first concerns about these nonparametric SDT de-
scriptive statistics was actually quick in coming, though
largely ignored. McNicol (1972) used computer simula-
tions of possible theoretical distributionsto evaluate these
measures. He reported that the computational formula for
A9 “gives the same value as P(A) only if the observer is un-
biased and does not have a tendency to give a larger propor-
tion of S or N responses. The greater his response bias in
either direction, the more P(A) will underestimate the true
area under the ROC curve” (p. 39). Snodgrass and Corwin
(1988) independentlyreached the same conclusion.Thus,
A9 and B0 are not independent descriptive statistics, and,
when there is significant bias in criterion placement, A9 is
not even an accurate measure of area under the ROC
curve. “This means that P(A) can only be used safely as a
sensitivity estimate when response biases under the ex-
perimental conditions being examined are equivalent.”
McNicol (1972, p. 40). Despite this early (if somewhat ob-

scure) warning, A9 and B0 became popular as supposedly
independent, nonparametric, distribution-free SDT mea-
sures (Macmillan & Creelman, 1996). In a few instances,
the researcher may be aware of the McNicol warning and
thus may add a qualification,such as, “McNicol notes that
if there is a bias in either direction, A9 will underestimate
sensitivity” (Rhodes et al., 1993, p.157).

Macmillan and Creelman (1996) provide a more de-
tailed analysis of A9 and B0. They report that “area under
the one-point ROC, as estimated by Pollack and Norman’s
(1964)method, is consistent with logisticdistributionsfor
low sensitivities and rectangular distributionsat high lev-
els; in neither case does it deserve the label ‘nonparamet-
ric.’” (Macmillan & Creelman, 1996, p. 169). Logistic dis-
tributions are the basis for the a [or log(a)] and bL, the
sensitivity and criterion statistics in Luce’s choice model
(Luce, 1963). Rectangulardistributions, evident at higher
levels, are indicative of threshold behavior (Egan, 1975;
Macmillan & Creelman, 1990, 1991, 1996). We suspect,
however, that many researchers do not appreciate the im-
portance of Macmillanand Creelman’s conclusion.We will
try a different, and hopefully simpler, approach to demon-
strate that the “nonparametric”SDT statistics do make im-
plicit assumptions about the underlying distributions.

Comparing A9 and d 9. An ROC curve is not some ab-
stract entity that is devoid of underlying distributional at-
tributes, as is implied by any descriptive statistics that are
described as being nonparametric or distribution free. In-
stead, the shape of the theoretical isosensitivity contour
reflects the explicitly or implicitly assumed nature of the
distributionsthat define decision structure for hits (H) and
false alarms (F). Just as the shape of the theoretical isosen-
sitivity contour is determined by the assumed properties
of the distributionsunderlying the measure being plotted,
the shape of the empirical ROC curve reflects the actual
properties of the decision variable distributions. One can
(and should, but seldom does) test the validity of the
equal-varianceGaussian assumptionsof the d9 statistic by
evaluating the similarity between the theoretical and em-
pirical ROC curve; if the two curves are equivalent, the
assumptions of the measure are reasonable (e.g., Egan,
1975; Green & Swets, 1966; Pastore & Scheirer, 1974).
One can also use ROC curves to compare the nature of the
distributions underlying different descriptive statistics, as
is done throughout the excellent texts by Macmillan and
Creelman (1991) and by Egan (1975). Figure 2 provides
this comparison between the descriptive statistics of A9
and d9.

If A9 is truly a nonparametric measure of observer abil-
ity, it must make no assumptionsabout the underlyingdis-
tributions.The computational formula developed to com-
pute area from a single point in ROC space, however,
imposes implicit assumptions about the distribution that
must exist to generate a set of all points in ROC space that
exhibit the same value of A9. All points along an isosensi-
tivity contour for A9 yield the identical value of A9, and no
other points in ROC space generate that value of A9. Each
point along the isosensitivity contour represents a differ-
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ent criterion, with magnitude of bias increasing with in-
creasing distance from the negative diagonal.Ability, and
thus the value of A9, increases as the isosensitivitycontour
moves from the chance line (positive diagonal, where
A9 5 .5) to perfect performance [the upper left point in
ROC space; (F,H) 5 (1,1)]. Plotting A9 isosensitivity con-
tours for different values of A9 allows us to examine the
behavior of A9 as a function of ability and criterion.

In Figure 2, sets of theoretical isosensitivity contours
for A9 and d9 are plotted in ROC probability space, with hit
and false alarm probabilitieson the ordinate and abscissa,
respectively. For each descriptive statistic, a theoretical
isosensitivity contour is generated by holding sensitivity
(here, A9 or d9) constant, solving the computational for-
mula for hit rate as false alarm rate is systematically var-
ied. The positive diagonal in the ROC space always rep-
resents chance performance (A9 5 .5 or d9 5 0) and the
negative diagonal (not shown) represents zero bias (b 5
1, c 5 0, B0 5 0). Since each d9 contour is based on the
assumption of equal-variance Gaussian distributions, one
will obtain an equivalent isosensitivitycontour when these
underlying assumptions are reasonably met, and one will
see deviation from the theoretical contour when the un-
derlying assumptions are violated (see, e.g., Pastore &
Scheirer, 1974). The validity of the underlying assump-
tions for d9, or any other measure, can be tested by evalu-
ating the correspondence between the empirical and the
theoretical ROC curves.10

In Figure 2, the symbolswith broken lines represent the-
oretical isosensitivitycontours for A9 values ranging from
0.5 (the positive diagonal chance line) to 1.0 (the upper
left corner of the ROC space with coordinates of 1,1) in
steps of 0.1. For each of these isosensitivity curves, the
broken lines (with symbols) provide a systematic mapping
of all possible hit and false alarm rates for the given value
of A9 across the full range of possible criteria. The A9
isosensitivity curves indicate that A9 does imply underly-
ing distributionsand thus is parametric. The nature of the
distributions underlying A9 is not known, but aspects of
the behavior of this measure can be understood through
comparison with d9. The isosensitivity contours for d9 are
plotted for the values of d9 that have the identical hit and
false alarm rates at the zero-bias, minimum-error criterion
(negative diagonal; b 5 1.0 and c 5 0). For low levels of
sensitivity, the A9 and d9 contours are equivalent. Thus,
when sensitivity is poor (and bias is not extreme), both A9
and d9 reflect equivalent underlying distributions; both
will be independentof bias when the assumption of equal-
variance Gaussian distributions has been met. As sensi-
tivity is increased, the isosensitivity contours continue to
be equivalent when bias is low (around the negative diag-
onal in ROC space), but not for extreme bias. The differ-
ence at extreme bias is that the isosensitivity contour for
d9 (and most other measures) begins and ends at the ex-
tremes of the positive diagonal (at points 0,0 and 1,1);
however, the geometric-based averaging principle used to
estimate A9 from a single point results in isosensitivity
contours that begin with a hit rate that is greater than 0 and

end with a false alarm rate that is less than 1.11 Thus, when
estimated from a single point, A9 will have a lower value
than an unbiased d9 measure based on Gaussian distribu-
tions, as well as an unbiased a measure based on logistic
distributions (Macmillan & Creelman, 1996), or a mea-
sure based on any other distribution (McNicol, 1972).
Stated another way, because a constant value of A9 for in-
creasing bias (in either direction) requires that the hit rate
will have to be artificially inflated (or false alarm rate ar-
tificially reduced), A9 underestimates sensitivity.

Snodgrass and Corwin (1988) raised an additional con-
cern about independence for A9 and B0. They note that
these measures “show marked dependence of bias at low
levels of discrimination” (p. 39). This problem is not
unique to these “nonparametric” statistics, but rather is
shared with d9 and log(b) or ln(b), where the logarithmic
transform of b changes it from a ratio to interval measure.
However, Snodgrass and Corwin report that d9 and c (the
alternative criterion measure discussed above) do meet
their criterion for independentmeasures of sensitivity and
bias.

Final considerations about A9 and d9. It is useful, at
this point, to pull together information from our discus-
sion of the G-SDT descriptive statistics and about the
“nonparametric” SDT statistics. The G-SDT statistics for
sensitivity (d9) and bias [e.g., b, log(b), c] have the disad-
vantage of requiring specific assumptions about the un-

Figure 2. Isosensitivity contours for A9 (symbols with broken
lines) and d9 (solid lines) in ROC space. Contours for A9 are in .1
increments from A9 5 .5 (chance line) to A9 5 .9. Contours for d9
are based on d9 value computed from hits (H) and false alarms
(FA) for A9 at B 0 5 0 (the negative diagonal). When sensitivity is
low, there is a close correspondence in isosensitivity contours for
A9 and d9. With increasing sensitivity, A9 tends to underestimate
performance relative to d 9 for large biases; specifically, for a
given false alarm rate, A9 requires a higher hit rate to achieve
constancy.
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derlying distributions, but if those assumptions are rea-
sonably valid, then d9 and b or c are orthogonal or inde-
pendent. Since the explicit assumptions are no different
than the implicit assumptions of the most common infer-
ential statistics used in research, the typical researcher is
already assuming the reasonable validity of the assump-
tions. The A9 “nonparametric” SDT statistic has the ad-
vantage of being easily interpreted as percent correct, but
has the disadvantages of not being distribution free, not
being independent of bias, and underestimating ability by
an amount that is a function of magnitude of bias and de-
cision ability.The one advantage for A9 can be achievedby
either computingp(c)max (the unbiased proportion correct
that can be computed from d9; Macmillan & Creelman,
1991) or AZ , the best-fitting Gaussian ROC curve (Swets,
1986, 1996; Swets, Dawes, & Monahan, 2000).

More About ROC Curves
In the previous section,we used the ROC curve to eval-

uate, compare, and contrast alternative descriptive statis-
tics for sensitivity. Earlier, we discussed problems in inter-
preting whether an observer’s criterion, as opposed to the
researcher’s criterion statistic, has changed. These, and
other problems, such as a lack of reasonable validity to the
assumptions of G-SDT, are minimized when ROC curves
are generated. The behavior in ROC space of different de-
scriptive criterion statistics either has been documented
(e.g., Egan, 1975; Macmillan & Creelman, 1991)or is ob-
vious (a constant Type I or Type II error rate). The valid-
ity of the G-SDT assumptionscan be easily evaluated and,
if they are not reasonably valid, other descriptive statistics
are available (see, e.g., Green & Swets, 1966; Swets,
1996), including the truly nonparametric measure of area
under the ROC curve. The major disadvantage to ROC
analyses is the cost, in both time and effort, of generating
sufficient data. If the research suggests significant con-
cerns about the validity of the G-SDT assumptions, then
the researcher needs to be concernedabout any descriptive
and inferential statistics, and the extra costs of an ROC
analysis are probably justified. However, if the researcher
is confident enough to utilize standard inferential statis-
tics, then concerns about the assumptions of G-SDT also
should be minimal.

Ideal Observer
An important aspect of SDT is the ideal observer, a

model of the best possible decision performance based on
the information available (e.g., Tanner, 1961). Models of
SDT (e.g., G-SDT) provide a common basis for evaluat-
ing the performance of both ideal and actual observers.
There is greater uncertainty in the performance of human
observers, resulting in poorer performance than that of an
equivalentideal observer, but the pattern of abilities should
be similar when the actual and model observers utilize the
same information.Thus, ideal observer models provide an
important tool for evaluating the capabilities of the actual
observer. For example, in a detection task, the monaural

human listener can be modeled as phase insensitive, and
as sampling the signal-to-noise ratio output of a flexible
set of narrow-band filters. Likewise, the researcher can
develop ideal observer models that can be used to evalu-
ate the performance of groups of observers (e.g., a com-
mittee or jury) that must reach joint decisions (e.g., Sorkin
& Dai, 1994; Sorkin, Hays, & West, 2001). G-SDT also
provides a conceptual framework for analyzing and eval-
uating contrasting theoretical explanations for complex
concepts. The analyses of criterion change explanations
of memory (Stretch & Wixted, 1998; Wickens & Hirsh-
man, 2000; Wixted & Stretch, 2000), illustrated in Fig-
ure 1, are examples of the use of this important SDT tool.
Similarly, SDT has been used to model possible strategies
used by observers in what might seem to be simple ex-
perimental paradigms. For example, a same–different task
is far more complex than a yes–no task; the analysis by
Macmillan and Creelman (1991) demonstrates that the
task could be performed using two criteria and a bivariate
decision space, with Irwin et al. (2001) demonstrating al-
ternative decision strategies.

Some Concluding Remarks
SDT is a theory of decision making about the evidence

being evaluated.This theory offers the modern researcher
a wide range of excellent,powerful statistical tools, includ-
ing easily conceptualized descriptive statistics and a for-
mal structure for describing and analyzing alternative in-
formation processingstrategies.SDT has much in common
with modern inferential and descriptive statistics. Like
these more common statistical tools, the use of SDT, and
the reasonable interpretation of empirical results ex-
pressed as G-SDT descriptive statistics, requires a rea-
sonable (but not necessarily expert) understanding of the
underlying theoretical basis. A wide range of problems in
the modern use of SDT, and incorrect characterizationsof
SDT, reflect problems in that understanding. The major
goal of the present article is to provide the basis for the
needed understanding,describingSDT in a manner that is
deeper and more accurate than that found in modern text-
books, that is more understandable than the original liter-
ature and early texts devoted to SDT, and that has effec-
tively highlighted reasonable pragmatic concerns.
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NOTES

1. In Wald’s derivation, “the notions of Bayes solutions and a priori
distributionsare used here merely as mathematical tools to express some
results concerning complete classes of decision rules, and in no way is
the actual existence of an a priori distribution . . . postulated” (Wald,
1952/1955, p. 663). Alternatively, “every Bayes Strategy is a likelihood-
ratio test” (Mood & Graybill, 1963, p. 284).

2. A likelihoodratio is, by definition, a ratio scale. More important for
the analysis of data, b also is a ratio. Most descriptive and inferential sta-
tistics assume an interval, not a ratio, scale, and there are very different
permissible transformations for the two types of scale (e.g., arithmetic vs.
geometric mean; see Stevens, 1961). In contrast to b, log b and c are
both interval scales, and thus compatible with standard descriptive and
most inferential statistics.

If the likelihood ratio reflects the productof the weighted independent
probabilities of the specific observed value along a large number of in-
dependent dimensions, and if the decision variable approximates a log-
arithmic transformation of the likelihood ratio, then the distribution of
observations represents the sum of a large number of independent ran-
dom variables and thus should be Gaussian in nature. This was one the-
oretical basis for positing Gaussian distributions that became the basis
of the Gaussian models of SDT (e.g., Green & Swets, 1966).

3. If the decision variable is related to a likelihood ratio, the important
statistical properties are relative, rather than absolute. For example, in the
detection tasks used to validate SDT there are two probability density
functions, one for N and one for S1N. The likelihood ratio then reflects
the relative probability that the specific observation occurred due to
S1N relative to N being presented.

4. The general Gaussian model of SDT assumes that the underlying
distributionsare Gaussian, but does make the equal variance assumption
(e.g., Green & Swets, 1966), whereas even less common, alternative

models assume different underlying distributions (see Egan, 1975;
Swets, 1964). A different decision model, Luce’s choice model (Luce,
1963) assumes underlying logistic distributions. Finally, threshold deci-
sion models make no assumptions about underlying distributions other
than with regard to the number of discrete decision categories or states
(e.g., Green & Swets, 1966; Macmillan & Creelman, 1991).

5. Balakrishnan (1999)has argued that changes in criterion do alter the
variability of the decision variable. Evidence for his argument is from
rating tasks that are designed to create data sets with minimal, but non-
zero, entries. Theorists have argued that Balakrishnan’s findings are the
expected consequence of the analyses’ minimal data sets and the statis-
tics that Balakrishnan developed (Treisman, 2002).

6. One problem with c is that (except at c 5 0) its value often needs
to be interpreted relative to the distributionmeans as a function of d9, and
this can pose problems in interpreting bias magnitude (this is also true
for b). For this reason, Macmillan and Creelman (1991) suggest an al-
ternative descriptive statistic for criterion, c9, which equals c/d9; the c9
statistic is clearly not independent of d9.

7. All probabilitydensity functions in Figure 1 have been adjusted to
reflect the same total area; the difference in mean between A1 and A2 is
sufficiently small for the variance of the combined distribution,A, to be
similar to the component distributions.

8. Snodgrass and Corwin (1988)attribute the basis of A9 to an equiv-
alent statement by Green and Moses (1966).

9. An ROC curve can be plotted in simple probabilityspace (with lin-
ear probability coordinates) or in a space that reflects probability scaled
to assumed distributions. With normal or probit coordinate scales, the
probability axes reflect linear z-score distances. The geometric solution
for A9 is based on the ROC curve plotted in simple probability space.
There are two implicit points for all ROC curves, (0,0) and (1,1), the end-
points on the positive diagonal that represents chance performance. For
a point (F,H) in ROC space, the linear ROC curve that is a line from (0,0)
through this point represents minimum hit rate (and maximum false
alarm rate), whereas a line that ends at (1,1) represents maximum hit rate
(and minimum false alarm rate).

10. If the underlying distributions of possible event classes are not
equal in variance, d9 will not be independent of the criterion. SDT offers
the researcher alternative descriptive statistics (e.g., d 9a, d 9s, d 9e) derived
from ROC curves (e.g., Egan, 1975; Green & Swets, 1966; Macmillan
& Creelman, 1991), but use of these alternative statistics requires either
knowledge of the underlying variance ratio (e.g., see Green & Swets) or
the generation of an empirical multipoint ROC curve.

11. Our point is that, except for chance performance (A9 5 .5), all
isosensitivity contours for A9 never contain the extreme values of ROC
space, (0,0) and (1,1). When A9 . .50 (greater than chance), hit rate will
always be greater than 0 and false alarm rate will be less than 1.0. When
of A9 , .50 (less than chance), the isosensitivity would be equal to the
contour for 12A9, but rotated at (or flipped along) the positive diagonal
(the chance line .50).
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