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Timing accuracy under Microsoft Windows
revealed through external chronometry
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Recent studies by Myors (1998, 1999) have concluded that the Microsoft Windows operating system is
unable to support sufficient timing precision and resolution for use in psychological research. In the
present study, we reexamined the timing accuracy of Windows 95/98; using (1) external chronometry,
(2) methods to maximize the system priority of timing software, and (3) timing functions with a theo-
reticalresolution of 1 msec or better. The suitability of various peripheral response devices and the rel-
ative timing accuracy of computers with microprocessors with different speeds were also explored.
The results indicate that if software is properly controlled, submillisecond timing resolution is achiev-
able under Windows with both old and new computers alike. Of the computer input devices tested, the
standard parallel port was revealed as the most precise, and the serial mouse also exhibited sufficient
timing precision for use in single-interval reaction time experiments.

The accuracy of computer-based timing is a central
methodological issue in experimental psychology. Under
the MS-DOS operating system, several studies have shown
that millisecond precision timing is achievable by access-
ing a low-level system timer through various high-level
programming languages, such as QuickBasic (Graves &
Bradley, 1987, 1988), Borland C (Dlhopolsky, 1988; Emer-
son, 1988; Warner & Martin, 1999), and Turbo Pascal
(Bovens & Brysbaert, 1990; Creeger, Miller, & Paredes,
1990; Hamm, 2001; Heathcote, 1988). The timing reso-
lution of various input devices, including keyboard,
mouse, and game port is also well established under
MS-DOS (Beringer, 1992; Crosbie, 1990; Segalowitz &
Graves, 1990). Newer operating systems, such as Mi-
crosoft Windows, have now largely superceded the
MS-DOS architecture. The Windows interface provides
aesthetic and computational advantages, but opinion is
divided over the obtainable timing precision. Recent ev-
idence has suggested that the multitasking environment
of Windows may be unsuitable for psychological exper-
iments because the operating system controls the system
access necessary for precise timing (Myors, 1998, 1999).
Alternatively, McKinney, MacCormac, and Welsh-Bohmer

Parts of this paper were presented at the 28th Annual Australian
Experimental Psychology Conference, Melbourne, April 2001. We
thank Mark Williams, Jeff Hamm, Richard Plant, and Jon Vaughan for
helpful comments on an earlier draft of this manuscript. Correspon-
dence concerning this article should be addressed to C. D. Chambers,
Cognitive Neuroscience Laboratory, Department of Psychology,
University of Melbourne, Victoria, Australia 3010 (e-mail: c.chambers @
psych.unimelb.edu.au).

Copyright 2003 Psychonomic Society, Inc.

(1999) have proposed a method for achieving 0.1-msec
timing precision under Windows 3.1 with the addition of
extra hardware. In addition, a number of software pack-
ages are available either commercially (e.g., E-Prime) or
at no expense (e.g., DMDX) that claim to provide milli-
second precision timing under Windows 95/98 but either
remain untested.!

The studies by Myors (1998, 1999) have provided the
first evidence that the Windows environment, without
added hardware, may be unable to support sufficient tim-
ing accuracy for psychological research. Myors (1999)
took an internal time stamp before and after an event that
was expected to take 500 msec. In one condition, the
event was a keypress triggered every 500 msec; in the
other, the event was 35 screen refreshes at a refresh rate
of 70 Hz. Under different versions of the Windows oper-
ating system, the error variance of the elapsed time in-
creased to as much as 3,036 msec?, as compared with
submicrosecond variance under MS-DOS. Although
these results are striking, Myors’s method and interpre-
tation contain several potential flaws. First, all timing
measurements were internally generated and were not
compared with an external chronometer. Therefore, it is
not possible to determine what proportion of the mea-
sured variance under Windows originated from the sys-
tem timer and what proportion was due to variability in
the actual duration of the specified event. For example,
added variability in the time required to register a key-
press or perform a screen refresh would increase the vari-
ability of the elapsed time independently of any actual
variance in the system timer. Second, during the experi-
mental conditions employing Windows, it is unclear



whether background applications were closed down
prior to testing and whether the timing program was af-
forded maximum priority in the stream of operations
continually undertaken by a multitasking operating sys-
tem. Third, the program was written in C under MS-DOS
and executed through an MS-DOS prompt under Win-
dows, so the applicability of the interpretation to a pure
Windows environment may be limited.

We sought to clarify the best achievable timing preci-
sion of the Windows operating system over two experi-
ments. In Experiment 1, the precision of the system
timer was examined independently of other internal pro-
cesses. In Experiment 2, the timing accuracy of input de-
vices was investigated, including the standard serial
mouse, the PS/2 mouse, and the parallel port.

EXPERIMENT 1
Windows Timing Precision

It has been argued that accurate timing under Win-
dows 95/98 is complicated by software interruptions as
a consequence of multitasking and an inability to access
alow-level system timer (McKinney et al., 1999; Myors,
1999). However, the Windows programming environment
provides potential solutions to these problems. First, the
priority of a program within the multitasking stream can
be adjusted to prevent or minimize interruptions. Second,
a number of timing functions are available that, theoret-
ically, enable access to high-resolution timing.

In this experiment, we tested two timing functions that
run under the Windows 95/98 operating systems: timeGet
Time, which accesses a tick counter with a maximum
theoretical resolution of 1 msec; and QueryPerformance
Counter, which accesses a system timer with a maximum
theoretical resolution of 0.8381 usec. In addition, the pri-
ority of the test program was maximized. Both timers
were tested in each of two computers: a low-end 486 DX
and a high-end Pentium III, to examine whether the ac-
curacy of timing under Windows is affected by computer
configuration.

Method

Hardware

Test computers. The test machines were IBM-compatible PCs:
a 486 DX, with 66-MHz CPU, a 33-MHz Bus speed, running Win-
dows 95 with 16 MB SD RAM; and a Pentium III, with 666-MHz
CPU, 133-MHz Bus speed, running Windows 98 with 256 MB SD
RAM.

Preliminary verification of external chronometry. The ex-
ternal timer was a Tucker-Davis Technology System-II signal gen-
eration and analysis system (ExT). This apparatus enables real-time
recording of an input voltage at a maximum analog-to-digital (A/D)
sampling rate of 100 kHz. The ExT was controlled by a dedicated
hardware card (AP2) in the test computer, which was controlled
from the test program. Timing information was relayed to the ExT
A/D input by switching the voltage of the parallel port on the test
computer. The ExT digitized the parallel port voltage at a 100-kHz
sampling rate and, therefore, served as an external timer with a res-
olution of 10 usec.
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Prior to Experiment 1, a preliminary investigation was under-
taken to examine the latency associated with writing to the parallel
port from software and, hence, the suitability of using the parallel
port as an external time stamp. The initial test program was written
and compiled under Visual Basic 5 (VBY) for reasons outlined
below in the Software section. Under VBS5, read and write opera-
tions on the parallel port are supported by the dollx8.dll dynamic
link library.2 The write subroutine within dolix8.dll is declared as

Declare Sub WriteDOLLx8 Lib “dollx8.d1l” (ByVal x8Port As Integer,
ByVal value As Integer)

The x8Port argument of WriteDOLLXS is an 8-bit number that
identifies the port address. For these experiments, we used the Con-
trol port, which occupies Pins 1-7 of the parallel port. A constant
called ControllOPort was assigned as the address for the Control
port:

Const ControlIOPort As Integer = 890

Clearly, any variance of the delay associated with switching the
parallel port from software must be low if the Control port voltage
is to be regarded as a suitable time stamp. To examine this variance,
a series of write statements were executed serially while the ExT
recorded the voltage on Pin 1. The code statements were organized
so that the voltage was repeatedly switched between a high state
(+5 V) and a low state (0 V), as shown below.

Dim i as long
For i = 1 to 100000

WriteDOLLx8 ControllOPort, 2

--- Switch Control port low (Qv)
WriteDOLLx8 ControllOPort, 3
Next i

One loop of 100,000 trials was conducted. Following recording,
the number of A/D samples between each voltage maximum and
minimum was counted and multiplied by the EXxT sampling inter-
val (10 usec) to calculate the time between successive write execu-
tions and, hence, the parallel port write delay (see Figure 1). Across
the entire sample of trials, the average write delay was 21.6 usec
(SD = 0.05 usec) for the 486 and a constant 10 usec (SD = 0 usec)
for the PIIL.3 The low magnitude and, particularly, the low variance
of the write delay indicate that switching the parallel port voltage
provides a suitable time stamp for external analysis.

Software

Programming language. The test program was written in VBS.
This programming language was chosen for several reasons, many
of which are cited by McKinney et al. (1999). The language is na-
tive to the Windows environment and specifically engineered for
Windows programming. In addition, the software is user friendly
and enables easy handling of subsidiary packages that are conve-
nient for automated data analysis.

Thread priority code. The program or thread priority was ma-
nipulated in two phases. First, the base priority of the system re-
sources, or process, in which the thread operates was optimized.
Second, the priority of the thread was maximized relative to any
other threads within the same process.*

The procedure for implementing these changes is as follows. Ini-
tially, the application programming interface (API) functions,
GetCurrentProcess , GetCurrentThread , SetPriorityClass, and Set-
ThreadPriority must be declared, along with constants for maxi-
mizing the priority class (REALTIME_PRIORITY_CLASS) and
thread priority (THREAD_PRIORITY_TIME_CRITICAL):

Declare Function GetCurrentProcess Lib “kernel32” () As Long
Declare Function GetCurrentThread Lib “kernel32” () As Long
Declare Function SetPriorityClass Lib “kernel32” (ByVal hProcess As
Long, ByVal dwPriorityClass As Long) As Long
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Figure 1. A hypothetical ExT output from which the write delay on the Control port was calculated.
Recording begins at Record Time 0, with a sample taken every 10 [Lsec. At Point A, the initial write state-
ment is being implemented (WriteDOLL x8 ControlIOPort, 2), which sets the Control port to a high state
(+5 V). At Point B, this write statement has been implemented, which signifies the beginning of the delay
period for the next WriteDOLLx8 statement. At Point C, the second write statement has completed, and
the Control port has been returned to a low state (WriteDOLL x8 ControllOPort, 3). The write delay is cal-
culated as the time difference between the completion of the first write execution at Point B (350 [isec) and
the completion of the second write execution at Point C (390 Usec). Hence, the write delay in this example

is 40 Usec.

Declare Function SetThreadPriority Lib “kernel32” (ByVal hThread
As Long, ByVal nPriority As Long) As Long

Const REALTIME_PRIORITY_CLASS = &H100

Const THREAD_PRIORITY_TIME_CRITICAL = 15

The first stage in adjusting the priority then requires the handles
for the current process and current thread to be retrieved:

‘---Define the thread handling variables

Dim CurrentProcess As Long, CurrentThread As Long
Dim SetPC As Long, SetTP As Long

CurrentProcess = GetCurrentProcess()

CurrentThread = GetCurrentThread()

The priority class and thread priority are then maximized by assign-

ing the constants REALTIME_PRIORITY_CLASSand THREAD _

PRIORITY_TIME_CRITICAL to the function arguments. Both
SetPriorityClass and SetThreadPriority functions return zero if the
assignment failed, which allows an error trapping routine to be
added:

SetPC = SetPriorityClass(CurrentProcess, REALTIME_PRIORITY _
CLASS)
If SetPC = 0 Then
‘---SetPriorityClass returned zero so raise an error
Err.Raise 1, 0, “Cannot set the priority class!”
End If
SetTP = SetThreadPriority(CurrentThread, THREAD_PRIORITY _
TIME_CRITICAL)
If SetTP = 0 Then

¢

Err.Raise 1, 0, “Cannot set the thread priority!”
End If

Timing code: timeGetTime. The timeGetTime function ac-
cesses a system clock that registers the number of elapsed milli-
seconds since Windows was last initialized. The procedure for ac-
cessing timeGetTime is as follows. The function must first be
declared through the dynamic link library winmm.dll:

Declare Function timeGetTime Lib “winmm.dll” () As Long

The variables that receive time stamps must then be defined as
long integers, to receive the 32-bit number returned by the timeGet-
Time function:

Dim StartTime as Long, CurrentTime as Long, ElapsedTime as Long

To use timeGetTime, the clock count is simply taken before and
after a critical event, and the difference between the two time
stamps is calculated as the elapsed time:>

StartTime = timeGetTime()

2+ PERFORM CRITICAL EVENT HERE**

CurrentTime = timeGetTime()

ElapsedTime = CurrentTime — StartTime

Timing code: QueryPerformanceCou nter. The QueryPerfor-
manceCounter function accesses a system tick counter that incre-
ments at a constant frequency. To convert ticks into time intervals,
the frequency of the counter must be obtained using the QueryPer-



formanceFrequency function. For most machines, the tick fre-
quency is 1193180 Hz. The maximum theoretical resolution of this
timer (in usec) is, therefore, 1000000/1193180, or 0.8381 usec.6

The procedure for accessing the high-performance timer is as
follows. Initially, the appropriate API functions must be declared,
which use the 64-bit Currency data type to return the current tick
count and an Integer to return the operative status of the high per-
formance timer:”

Declare Function QueryPerformanceCounter Lib “Kernel32” (X As
Currency) As Integer
Declare Function QueryPerformanceFrequency Lib “Kernel32” (X As
Currency) As Integer

The variables that receive the tick frequency, the start tick count,
and the stop tick count are then defined, and the status of the high
performance timer is retrieved. The QueryPerformanceCounter
function returns zero if the high-performance timer is inaccessible
or nonexistent:

‘---Define the timing variables

Dim Freq as Currency

Dim StartCount As Currency, CurrentCount As Currency,
Elapsed Time as Currency

If QueryPerformanceCounter(StartCount) = 0 Then Exit Sub
QueryPerformanceFrequency Freq

The procedure for calculating the elapsed time is similar to the
timeGetTime method. A tick stamp is taken before and after a crit-
ical event, with the time interval calculated as the tick difference di-
vided by the tick frequency and multiplied by 1,000 to convert
to milliseconds:
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QueryPerformanceCounter StartCount

“** PERFORM CRITICAL EVENT HERE**
QueryPerformanceCounter CurrentCount

ElapsedTime = (CurrentCount - StartCount) / Freq * 1000

Procedure

For both timers, the EXT began recording the voltage on the Con-
trol port following the software trigger “DD1Go 1”. An initial time
stamp was then registered, and the Control port voltage was set
high, which was recorded by the A/D input on the ExT as a +5-V
rise and plateau. The code then entered a loop in which the elapsed
time was continuously measured until it was equal to the preset
delay (SetDelay). After exiting the loop, the Control port was im-
mediately set low. The number of recorded A/D samples between
ascending and descending voltage spikes was then counted and
multiplied by the A/D sampling interval to calculate the observed
duration in microseconds (see Figure 2). The two timing loops, as
implemented, are presented below.

Millisecond Timer Loop (timeGetTime):

‘--- Start Recording on ExT

DDI1Go 1

‘--- Set the Control port voltage high
WriteDOLLx8 ControlIOPort, 2

StartTime = timeGetTime()

¢

Do While ElapsedTime < SetDelay
CurrentTime = timeGetTime()
ElapsedTime = CurrentTime — StartTime

Loop

5.5

5.0 1
4.5 1
4.0 1
3.5 1
3.0 -
2.5~
2.0 -

Analog voltage (V)

1.5 1

1.0_ .

0.5 -

0.0

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Record Time (Usec)

Figure 2. A hypothetical ExT outputat a sampling rate of 100 kHz, from which the actual elapsed
time was calculated. The time stamp set by the first WriteDOLLx8 statement is recorded at Point A,
which signifies the start of the measured duration. The Control port remains high (+5 V) until the
preset delay on the Windows timer is reached, at which point the voltage is returned to ground.
Point B is the first observed return from the maximum plateau and is the finishing stamp of the du-
ration. The elapsed time is calculated by subtracting the time address at Point B (10,330 LLsec) from
the time address at Point A (310 Usec). This difference (10,020) is then divided by 1,000 to convert
the elapsed time into milliseconds. For this example, the elapsed time is therefore 10.02 msec.
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WriteDOLLx8 ControllOPort, 3

‘--- Stop recording on ExT
DD1Stop 1

High-Performance Timer Loop (QueryPerformanceCounter):

DD1Go 1

‘--- Set the Control port voltage high

WriteDOLLx8 ControllOPort, 2

‘--- Register the initial Tick Stamp

QueryPerformanceCounter StartCount

:--- Loop until elapsed time equals the preset delay

Do While ElapsedTime < SetDelay
QueryPerformanceCounter CurrentCount
ElapsedTime = (CurrentCount - StartCount) / Freq * 1000

Loop

:--- Set the Control port voltage low

WriteDOLLx8 ControllOPort, 3

‘--- Stop recording on ExT
DD1Stop 1

For each of the two timing functions, 24 preset delays ranging
from 5 to 50 msec in 5-msec increments, from 100 to 1,000 msec
in 100-msec increments, and from 1,250 to 2,000 msec in 250-msec
increments, were tested on each computer. One hundred thousand
trials were conducted at each preset delay, generating 4.8 X 10° tim-
ing estimates for each machine. Network cards were removed from
the test machines during testing. In addition, all memory-resident
programs, as visible in the Close Program dialog box (obtained by
pressing Ctrl-Alt-Del), were closed, except for Explorer and the
test program.

Results and Discussion

The dependent variables of interest in this experiment
were the precision and resolution of computer timing
across the various conditions, as measured externally by
the ExT. The precision of the timer can be regarded as
the maximum difference between the obtained duration
and the expected duration. Consequently, to achieve
millisecond precision, 100% of obtained durations within
each block of 100,000 trials must fall within 1 msec of
the corresponding preset duration (i.e., preset duration +
1 msec). The resolution of the timer is calculated as the
total range of obtained durations within each block and
includes the upper and lower limits of the obtained fre-
quency distribution. To achieve millisecond resolution,
the difference between maximum and minimum obtained
durations within each block must not exceed 1 msec.

Timing Precision

Figure 3 presents the average deviation of the obtained
durations from the corresponding preset (or expected)
durations as a function of the preset delay magnitude,
timer function, and test machine. The two errors bars
surrounding each data point are the standard deviation
(thick error bar with larger cap width) and the range (thin
error bar with smaller cap width). The upper panels of
Figures 3A and 3B, respectively, report data obtained with
the timeGetTime function in the 486 and the PIII. Across
all preset durations in the 486 condition, it is apparent that
the average difference between observed and expected
durations is consistently negative (M = —0.437 msec,
SD = 0.089 msec). This indicates that the timeGetTime

function underestimates the true elapsed time and is ef-
fectively running fast. It can also be seen that this sys-
tematic timing error increases as the preset delay is in-
creased, in accordance with a gradual accumulation of
error, or timing drift (see also Figure 4A). For preset du-
rations of 800 msec and greater, the expansion of sys-
tematic timing error exceeds the critical limit for milli-
second precision timing, as is shown by the range error
bars in Figure 3A, which cross the lower reference line.
As also is indicated by the filled circles of Figure 4A, the
poorest precision was obtained for the preset duration of
2,000 msec, at which the maximum difference between
observed and expected durations was 1.19 msec. However,
the standard deviation of the estimates remained consis-
tent (M =0.291 msec, SD = 0.013 msec), indicating that
the accumulation of systematic error was not paralleled
by an increase in random error.

For the PIII, timing error associated with the timeGet-
Time function was substantially reduced (Figures 3B and
4A), with all obtained durations falling within 1 msec of
the corresponding preset durations (maximum deviation =
0.72 msec). However, it can be seen that even under the
PII1, the timeGetTime function underestimated the elapsed
time by an average of 0.184 msec (SD = 0.019 msec).
The consistent direction of this error across both ma-
chines suggests that systematic underestimation of
elapsed time may be a feature of the timeGetTime func-
tion. Although these effects are minor in the present con-
text, it should be noted that for much longer preset dura-
tions than those reported here, cumulative timing drift
resulting from systematic timing error would be ex-
pected to increasingly widen the difference between pre-
set and actual durations. This problem would become
salient if the computer was required to synchronize
events with another machine or external apparatus over
an extended period.

Figures 3C and 3D report data obtained with the Query
PerformanceCounter function. For both the 486 and the
PIII, all obtained durations fell within 1 msec of the pre-
set durations and thus satisfied the requirements of milli-
second precision. The standard deviation of each estimate
was substantially reduced relative to the timeGetTime
function and averaged 0.021 msec (SD = 0.007 msec) for
the 486 and 0.009 msec (SD = 0.001 msec) for the PIIL.
From Figure 4A, it can be seen that the maximum depar-
ture from perfect precision was also much reduced relative
to the timeGetTime function, peaking at 0.61 msec for
the 2,000-msec duration on the PIII. At a finer level, the
QueryPerformance Counter function exhibited system-
atic timing error in both machines. For the 486, all aver-
age deviations slightly exceeded zero (M = 0.064 msec,
SD = 0.002 msec), whereas for the PIII the same trend was
apparent at a greater magnitude (M = 0.374 msec, SD =
0.077 msec). The QueryPerformanceCounter function
therefore appears to overestimate the elapsed time, in con-
trast to the direction of systematic timing error observed
for the timeGetTime function. Consistent with the time-
GetTime results, however, is the fact that the computer
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Figure 3. Timing results for the 486 and the PIII, using the timeGetTime (A, B) and the QueryPerformanceCounter (C, D) functions.
In each panel, the average difference between the observed and the expected durations is plotted as a function of the preset delay mag-
nitude. The thin error bars with smaller caps represent the range of obtained durations within each block, and the thick error bars
with larger caps are £1 SD. The horizontal reference lines in each panel indicate the thresholds for millisecond precision timing, de-

fined as +1 msec from the expected duration.

displayingthe greater overall systematic error also demon-
strated a more accelerated cumulative timing drift.

In summary, the timing precision for most conditions
was better than 1 msec. Both timers under the PIII met
the criteria for millisecond precision, as did the Query
PerformanceCounter function for the 486. The precision
of the timeGetTime function on the 486 was within
1 msec until the preset delay exceeded 800 msec. The ab-
sence of significant random timing errors indicates that
the thread priority manipulations were successful in pre-
venting software interruptions across all 9.8 X 106 trials.
Under these conditions, the precision of timing across a
range of low- and high-performance computers is suffi-
cient for most psychology experiments.

Timing Resolution

The resolution of the timer provides an indication of
the spread or variability of the obtained durations. The
resolution results are plotted in Figure 4B against the
preset duration, for both test machines and both timing
functions. Each resolution data pointis calculated as the
range of the deviation between observed and expected
delays and is equivalent to the length of the range error

bars presented in Figure 3. For the timeGetTime func-
tion, the average resolution, collapsed across preset du-
rations, was 1.25 msec for the 486 (SD = 0.107 msec,
maximum = 1.47 msec) and 1.01 msec for the PIII (SD =
0.018 msec, maximum = 1.05 msec). For the QueryPer-
formanceCounter function, the resolution significantly
improved, averaging 0.325 msec for the 486 (SD =
0.095 msec, maximum = 0.56 msec) and 0.088 msec for
the PIIT (SD = 0.028 msec, maximum = 0.16 msec). For
the purposes of psychological experimentation, the res-
olution of both timers on both machines is well within
requirements.

Recommendations

The results of this experiment suggest that precise,
high-resolution timing is achievable under Windows in
both low- and high-end computers, contrary to the con-
clusion of Myors (1998, 1999). Three important caveats
must be noted, however, with respect to the present re-
sults. First, the precision and resolution of timing mea-
surements could conceivably be affected by added oper-
ations occurring during a timing loop (and within the
same programming thread), particularly if these opera-
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tions place high demand on the operating system. Sec-
ond, as was mentioned in the Method section, all trials in
the present experiment were conducted with network
cards and drivers removed and with all memory-resident
programs closed, except for Explorer and the testing
software. Experimenters are therefore advised to repli-
cate these conditions closely to minimize the likelihood
of incurring timing interruptions. Finally, the present ex-
periment did not examine whether the precision and reso-
lution of timing measurements under Windows are pre-

served when the effects of inputdevices are included in the
examination. This question was explored in Experiment 2.

EXPERIMENT 2
Timing Accuracy of Peripheral Input
Registration

Many experimental paradigms in psychological re-
search adoptreaction time (RT) as a dependent variable.
At a broad level, the error variance associated with RT



measurements can be attributed to the sum of subject
variance and measurement variance. Measurement vari-
ance, in turn, can be partitioned into the variability as-
sociated with timing and the variability associated with
the computer registration of the response.

Experiment 1 indicated that if the Windows environ-
ment is properly controlled, the timing variance compo-
nent of measurement variance is relatively low, peaking
at 0.084 msec? for the timeGetTime function in the 486.
With the addition of an input device, an added variable
delay is introduced between the initiation of a response
and computer registration of the response. Unless the
variance of the registration delay is zero, the true mea-
surement variance will be higher than Experiment 1 sug-
gested, and the timing resolution will be concomitantly
lower. The purpose of Experiment 2 was to quantify this
added variance for various auxiliary input devices and,
thus, provide an estimate of the timing accuracy of Win-
dows directly applicable to RT experiments.

Several studies have examined the performance of the
keyboard, mouse, and game port under MS-DOS, rather
than Windows. Segalowitz and Graves (1990) reported a
combination of systematic and random timing error
when these devices were used on IBM XT and AT com-
puters. For the keyboard, a systematic 10-msec delay was
observed, along with a random variation of £7.5 msec
on an XT and +5 msec on an AT. For the serial mouse, a
constant delay of 31 msec was observed with a +2-msec
error, which increased to 45 msec (x15 msec) when the
mouse ball was moved prior to a buttonpress (see also
Crosbie, 1990). The PS/2 mouse was found to perform
less accurately, with a change in status reported only every
10 msec. Overall, the game port was found to be the most
accurate input device, with a precision of 1 msec and neg-
ligible variability (see also Graves & Bradley, 1987).

The mouse timing results of Segalowitz and Graves
(1990) and Crosbie (1990) have since been confirmed
and expanded by Beringer (1992). Beringer demon-
strated that the transmission rate of 1,200 baud on the se-
rial mouse results in a fixed minimum response delay of
22.5 msec, to which is added a 7-msec delay to overcome
bouncing button contacts. In addition, Beringer con-
firmed the higher variability of the PS/2 mouse and
noted that the status of the PS/2 interface is scanned at a
rate of ~60 Hz.

The results of these studies may, of course, have few
implications for the magnitude and variability of regis-
tration delays encountered on newer computers under the
considerably more complex and developed Windows op-
erating system. However, these experiments do suggest
that significant delays are to be expected in most devices
and that the variability of these delays should not be ig-
nored. In Experiment 2, we examined the response de-
lays associated with the serial mouse, the PS/2 mouse,
and the parallel port under Windows. We chose to ex-
amine the parallel port because of its widespread imple-
mentation as a printer interface in IBM-compatible com-
puters and ease of software control. We also included
four extensions on earlier work. First, all previous stud-
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ies have investigated only one mouse model from each
type. In the present experiment, multiples of the same
model of serial mouse were tested in order to examine
within-model performance variability. Second, all previ-
ous studies have triggered mice electronically, so the ob-
tained registration delays do not take into account me-
chanical influences of the apparatus. In the present
experiment, all the mice were tested manually, thus in-
cluding electronic variability resulting from mechanical
closing of the button switch (such as electrical bounce
from key contacts). Third, registration delays associated
with both left and right buttonpresses were compared in
the present experiment, unlike in previous reports. Fi-
nally, there has been no investigationinto the interaction
between registration delays and computer configuration.
This comparison was satisfied in the present experiment
by conducting timing tests on both a 486 and a PIII.

Method

Hardware

Test computers. The same test machines as those in Experi-
ment 1 were used.

Peripheral devices. A total of eight two-button mice were
tested. These included five Microsoft 2.0A serial mice (four with
Federal Communications Commission [FCC]ID No. C3KSS1, one
with FCC ID No. C3KKS2), one Microsoft 2.1A serial mouse
(FCC ID No. C3KKS8), one non-Microsoft serial mouse (Digicor
brand, Serial No. 9827267), and one Microsoft 2.1A PS/2 port
compatible mouse (FCC ID No. C3KKMP1). All the mice were
tested on both test machines, with the exception of the PS/2 mouse,
which was tested only on the PIII, owing to the absence of a com-
patible PS/2 port on the 486.

External chronometry. The design was similar to that in Ex-
periment 1, with the ExT used for all external timing. For the mouse-
timing tests, the rising edge of a TTL pulse resulting from a man-
ual buttonpress triggered the ExT to begin recording. Immediately
following computer registration of the buttonpress, the Control port
voltage was set high. The number of samples on the EXT record buffer
prior to the +5V edge was then counted and multiplied by the sam-
pling interval (10 usec) to calculate the duration of the mouse regis-
tration delay. This design is presented schematically in Figure 5.

For tests of the parallel port, a design was adopted similar to the
preliminary verification of the external time stamp conducted in
Experiment 1. However, in this experiment, the time taken to read
the status of the parallel port was included in the tests.

Software

Programming language. As in Experiment 1, the testing pro-
gram was written and compiled in VBS.

Thread priority code. The thread priority was maximized with
the same priority-class and priority-level procedures as those im-
plemented in Experiment 1.

Mouse registration code and Procedure. The buttonpress of
the mouse was coded in VBS through the MouseDown subroutine.
The stage of code executions leading to measurement of the delay
was as follows. First, the ExT was configured to receive the TTL
pulse from the voltage change across the mouse switch. The mouse
button was then depressed, and the ExXT commenced monitoring of
the Control port. The code then cycled continuously while the EXxT
was recording. This code, as implemented, is shown below:

‘--- Set up the EXT to begin recording on an external TTL trigger

DDlstrig 1
DDlarm 1

Do While DDIstatus(1) <>0
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Figure 5. A hypothetical ExT output at 100 kHz, used to calculate the mouse registration delay.
The TTL pulse resulting from the manual mouse buttonpress triggers the ExT to start recording at
Point A. When the computer registers the buttonpress, the Control port is set high (+5 V) through
the WriteDOLLx8 command. The delay between the buttonpress and the computer registration of
the buttonpress is calculated as the time address at which the first evidence of a change in port sta-
tus is apparent (Point B). Thus, in the above example, the registration delay would be 310 Lisec.

¢

the MouseDown subroutine
DoEvents
Loop

The DoEvents command within the DD 1Status(1) loop allowed the
program to register the buttonpress of the mouse through the Mouse-
Down subroutine. Immediately following registration of the mouse
event, the Control port was switched to a high state. The resulting
voltage edge was recorded on the ExT, providing a time stamp that
signaled the termination of the registration delay period. A total of
1,000 trials were conducted on each button of each mouse, for each of
the two test machines. All the mice were tested with the ball removed,
but with the cursor active and the drivers loaded. During testing, all
memory-resident programs, as visible in the Close Program dialog
box, were closed, except for Explorer and the test program.

Parallel port registration code and Procedure. Registration of
aresponse on the parallel port was detected with the ReadDOLLx8
function. Like the write operation, the read function is supported
and declared through the dollx8.dll dynamic link library as

Declare Function ReadDOLLx8 Lib “dollx8.dII” (ByVal x8Port As In-
teger) As Integer

The x8Port argument of ReadDOLLx8 is assigned depending on
which pin(s) are to be read. As with Experiment 1, we used the Con-
trol port and the ControllOPort address of 890 as the x8Port argu-
ment. The procedure for estimating the time required to detect a
change on the parallel port was as follows. The ExT initially began
monitoring the voltage on the Control port. A buttonpress was then
simulated by setting the Control port high. The first 0.5-V incre-
ment above 0 V was taken as the start stamp of the read delay pe-
riod, thus including the rise time of the simulated buttonpress in the
registration delay estimate. Once the status of the Control port had
been retrieved, the voltage was returned to ground. The termination

stamp of the read delay was taken as the first recorded sample after
the start of the delay period at which the voltage on the Control port
dropped more than 0.5 V below the maximum plateau (see Fig-
ure 6). The start and termination stamps for the read delay thus bor-
dered, as closely as possible, the initiation of the simulated button-
press with the termination of the port status retrieval accomplished by
ReadDOLLXx8. The calculated registration delay therefore represents
the time from the closing of the switch on a parallel port button box
to the registration of change on the parallel port through software.

To confirm that the voltage on the port had been switched by the
time the ReadDOLLXx8 function had executed, the status of the
Control port was entered into an array on each trial and was output
to file at the conclusion of testing. The primary code, as described
and implemented, is presented below:

‘--- Start recording on Control port

DDlgo 1

‘--- Simulate button press on Control port
WriteDOLLx8 ControlIOPort, 2

--- Immediately read value on Control port and assign to variable
ResponselO = ReadDOLLx8(ControllOPort)

‘--- Simulate button release on Control port
WriteDOLLx8 ControlIOPort, 3

A total of 100,000 trials were conducted on each machine. Dur-
ing data collection, all memory-resident programs, as visible in the
Close Program dialog box, were closed, except for Explorer and the
testing program.

Results and Discussion

Mouse Timing Results

Descriptive statistics for mouse registration delays in
the 486 are presented in Tables 1 and 2, and for the PIII
in Tables 3 and 4. Across both test machines and mouse
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Figure 6. A hypothetical ExT output,similar in many respects to that presented in Figure 1, from
which the read delay on the parallel port was calculated. Recording begins at time zero on the x-axis.
At Point A, the simulated buttonpress is executed, setting the Control port high (+5 V). Once the
voltage has reached the maximum plateau, the port status is read through the ReadDOLLx8 func-
tion. The second write execution returns the Control port to a LOW state, and the first evidence of
a voltage reduction (Point B) signals the termination of the read delay period. The read delay is cal-
culated as the time difference between Points A and B and, therefore, includes the rise time associated
with the simulated buttonpress. In the above example, the delay is 370 [Lsec — 310 [isec, or 60 |Lsec.

buttons, the minimum and maximum registration delays
for a serial mouse were 28.93 msec [right buttonpress,
PIII, M-Serial 2.0A(2); see Table 4] and 46.60 msec [left
buttonpress, 486, M-Serial 2.1A; see Table 1], respec-
tively. Within serial mice, the maximum range of regis-
tration delays was 9.63 msec for the right button of the
M-Serial 2.1A model in the 486 (see Table 1). The max-
imum variance of the registration delay across serial
mice was 2.42 msec? for the left button of the M-Serial
2.0A(2) model in the 486 (see Table 1).

From the serial mouse results across both test ma-
chines, four general observations may be made. First, the

registration delay is not constant across multiples of the
same mouse model, with left and right buttonpresses of
the M-Serial 2.0A(2) mouse registered consistently faster
and with greater variability than the other 2.0A serial
mice. Although nondistinctive in external appearance,
M-Serial 2.0A(2) had a different FCC ID number and
circuit board configuration from the remaining four 2.0A
serial mice. Caution must therefore be exercised in draw-
ing generalizations across mice with the same model
number. Second, the presence of comparable registration
delays in the alternative brand serial mouse indicates that
the registration delay is not unique to Microsoft hardware.

Table 1
Mean, Maximum, Minimum, and Variance of Registration Delays
for Left Mouse Buttonpresses on the 486 Test Computer,
as a Function of the Various Models of Serial Mouse

Mean Delay Max. Delay Min. Delay Variance

Model (msec) (msec) (msec) (msec?)
M-Serial 2.0A (1) 41.33 42.96 39.57 0.38
M-Serial 2.0A (2) 34.07 37.99 30.41 2.42
M-Serial 2.0A (3) 41.21 43.17 39.62 0.39
M-Serial 2.0A (4) 40.96 42.53 39.38 0.35
M-Serial 2.0A (5) 41.25 42.98 39.78 0.36
M-Serial 2.1A 41.86 46.60 38.00 2.02
Serial Alt Brand 41.16 43.12 39.66 0.37
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Table 2
Mean, Maximum, Minimum, and Variance of Registration Delays
for Right Mouse Buttonpresses on the 486 Test Computer,
as a Function of the Various Models of Serial Mouse

Mean Delay Max. Delay Min. Delay Variance

Model (msec) (msec) (msec) (msec?)
M-Serial 2.0A (1) 41.08 42.67 39.43 0.37
M-Serial 2.0A (2) 34.14 38.21 29.93 2.40
M-Serial 2.0A (3) 41.18 42.94 39.63 0.39
M-Serial 2.0A (4) 41.15 43.01 39.47 0.38
M-Serial 2.0A (5) 41.21 42.87 39.66 0.37
M-Serial 2.1A 41.34 45.76 36.13 1.96
Serial Alt Brand 41.22 43.18 39.58 0.39

Third, there appears to be little difference in the regis-
tration delays between left and right buttonpresses, with
a maximum difference across all mice of 0.52 msec for
M-Serial 2.1A in the 486 and an overall mean difference
of 0.06 msec (SD = 0.24 msec). Fourth, the registration
delay for serial mice (collapsed across both buttons) was
consistently shorter in the PIIT (M = 38.30 msec, SD =
2.57 msec) than in the 486 (M = 40.22 msec, SD =
2.6 msec), perhaps reflecting faster execution of the
mouse driver. Overall, the serial mouse registration de-
lays are similar to those reported under the MS-DOS op-
erating system, with the exception that under Windows,
there appears to be an added component to the delay of
approximately 5—10 msec (see Beringer, 1992; Crosbie,
1990; Segalowitz & Graves, 1990).

Registration delays for the PS/2 mouse were substan-
tially shorter and more variable than the delays associ-
ated with serial mice (see Tables 3 and 4). These results
are consistent with the data reported by Segalowitz and
Graves (1990) and Beringer (1992) and reflect the dif-
ferent registration detection mechanisms for PS/2, as
compared with serial, hardware.

Parallel Port Timing Results

For the 486, the mean registration delay for the paral-
lel port was 22.7 usec (SD = 0.08 wsec), and for the PIII,
it was a constant 10 usec (SD = 0 usec). In addition, the
ReadDOLLx8 function was 100% successful in cor-
rectly detecting a change in the port status across all
200,000 trials. These results indicate that a button box

connected to the parallel port is an ideal response device
for RT experiments.

Recommendations

Across all the tested input devices, the parallel port
appears to be the only apparatus capable of preserving
the precision and resolution of the timeGetTime and
QueryPerformanceCountertimers tested in Experiment 1.
The added timing variance of the mice, however, is not
substantial and can easily be corrected. For example, the
highestinput variance within serial mice was 2.42 msec2.
The loss of statistical power associated with added error
variance rises as the proportion of added variance, relative
to the remaining error variance, is increased (see Ulrich
& Giray, 1989, for a review). Hence, even for a simple
RT experiment with a low subject variance of 225 msec?
(SD of 15 msec), the experimenter would need add only
[2.42/225 X 100], or 1.08%, more independent observa-
tions to maintain statistical power. In an experiment with
much higher subject variance, such as choice RT, the cor-
rection is so minor as to be ignored (e.g., 2.42/6400 X
100 = 0.04%). The serial mouse, with ball removed, can
therefore be regarded as an adequate input device for
single-interval RT experiments. If absolute RTs are re-
quired, individual testing of hardware is recommended
so that the magnitude of the registration delay can be
subtracted from obtained RTs.

The added error variance of the PS/2 mouse we tested
is capable of substantially reducing statistical power in
paradigms with low subject error variance. However, if

Table 3
Mean, Maximum, Minimum, and Variance of Registration Delays
for Left Mouse Buttonpresses on the PIII Test Computer,
as a Function of the Various Models of Serial Mouse

Mean Delay Max. Delay Min. Delay Variance

Model (msec) (msec) (msec) (msec?)
M-Serial 2.0A (1) 39.34 40.63 38.09 0.24
M-Serial 2.0A (2) 32.23 35.50 29.35 2.08
M-Serial 2.0A (3) 39.27 40.84 38.16 0.28
M-Serial 2.0A (4) 39.11 40.23 37.97 0.23
M-Serial 2.0A (5) 39.46 41.60 38.10 0.32
M-Serial 2.1A 39.74 4348 35.96 1.85
Serial Alt Brand 39.38 40.88 38.11 0.31
PS/2 27.24 39.88 15.62 47.97
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Table 4
Mean, Maximum, Minimum, and Variance of Registration Delays
for Right Mouse Buttonpresses on the PIII Test Computer,
as a Function of the Various Models of Serial Mouse

Mean Delay Max. Delay Min. Delay Variance

Model (msec) (msec) (msec) (msec?)
M-Serial 2.0A (1) 39.22 40.9 38.16 0.21
M-Serial 2.0A (2) 32.24 35.41 28.93 2.39
M-Serial 2.0A (3) 39.25 40.64 38.17 0.27
M-Serial 2.0A (4) 39.15 40.37 38.04 0.23
M-Serial 2.0A (5) 39.21 40.40 38.12 0.23
M-Serial 2.1A 39.32 43.01 35.56 1.78
Serial Alt Brand 39.28 40.42 38.02 0.26
PS/2 27.73 40.71 15.04 53.29

the predicted subject SD is equal to or less than 73 msec,
the power correction for the PS/2 mouse we tested is
only 1% or less. Consequently, even this input device
need not seriously impact statistical comparisons. We
recommend individual testing of PS/2 mice prior to test-
ing, since only one model was examined in the present
experiment.

CONCLUSIONS

The principal objective of the present study was to de-
termine the achievable timing precision and resolution
of the Windows operating system, the impact of various
response devices on timing accuracy, and the nature of
any interaction between timing accuracy and computer
configuration. Across two experiments, our main results
may be summarized as follows. First, the external timing
tests of Experiment 1 disproved the assertions of Myors
(1998, 1999) that Microsoft Windows is incapable of
supporting reliable high-resolution timing. The dispar-
ity between our results and those of Myors perhaps high-
lights the importance of employing external chronome-
try in computer timing experiments, thus avoiding a sole
reliance on internal timer consistency checks. In Exper-
iment 1, both the QueryPerformanceCounter and the
timeGetTime functions were found to support a baseline
precision and resolution that is adequate for psycholog-
ical research, when combined with methods that maxi-
mize the thread priority of the experimental program. In
addition, no substantial difference was observed be-
tween the timing accuracy of a 486 test machine and that
of a PIIL. In Experiment 2, the parallel port was revealed
as the most accurate device for receiving responses, with
registration delays that preserve the precision and reso-
lution of the timer across both test machines. Serial mice
also performed consistently and can be regarded as ade-
quate RT instruments under Windows. The most accu-
rate combination of system and response timing is ob-
tained by using the QueryPerformanceCounter timer
with an input device on the parallel port.
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NOTES

1. For further information on E-Prime and DMDX, the reader is directed
to the Psychology Software Tools, Inc. Web site at http://www.pstnet.com/
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E-Prime/e-prime.htm and the DMDX home page at http:/www.u.arizona.
edu/~kforster/dmdx.htm.

2. The dollx8.dll file is a dynamic link library (DLL) developed by
AkiraSoft, and may be downloaded as shareware from the manufactur-
er’s Web site (see http:/www.audiotwister.com/more_dollx8.cfm for
more information). According to the developers, the DLL is written in
Assembly language and compiled in C++. Although fully functional
under Windows 95/98, the DLL is not currently supported by Windows
NT/2000/XP.

3. A constant 10-usec delay indicates that the voltage was elevated
above ground for only one sample before being reset by the next write
statement. This probably indicates that the delay was consistently less
than 10 usec (and, therefore, beyond the resolution of the external
timer), rather than equaling exactly 10 usec each time. The true vari-
ance of the write delay is, in all likelihood, a nonzero value, but low
enough to be unimportant in the present context.

4. For further details on processes, thread priority classes, and thread
priority levels, the reader is directed to on-line information available at
http:/msdn.microsoft.com/library/en-us/com/htm/aptnthrd_8po3.asp.

5. The timeGetTime counter cycles every 232 msec, or approximately
49 days and 17 h. The cyclical nature of the clock can present problems
for timing measurements if the operating system runs continuously for
longer than this time. If an initial time stamp were taken at the end of

the clock cycle and the finishing stamp at the beginning of the next
cycle, the magnitude of the calculated elapsed time would be erro-
neously large. A further problem is that the long integer data typein Vi-
sual Basic is signed and cannot store values higher than 23!1—1 (total
range spanning —23! to 231 —1). Thus, if the operating system has been
running continuously for longer than 23! —1 msec, or approximately
24 days and 20 h, the statement StartTime = timeGetTime() might fail,
owing to either an overflow error or an arithmetic error. The simplest
way to circumvent both these problems is to ensure that the Windows
operating system is reinitialized at least once every 24 days, thus pre-
venting rollover of the clock counter and confining the value returned
by timeGetTime to the positive range of the signed long integer data
type.

6. For further information on both timer functions used in the pres-
ent experiment, the reader is directed to on-line information available
at http://support.microsoft.com/support/kb/articles/Q172/3/38.asp.

7. Because it uses a 32-bit Windows API, the high-performance timer
should be accessible from all 32-bit Windows interfaces, including
Windows 95/98/2000/XP.
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