
While inspecting complex natural scenes, human ob-
servers sequentially allocate attention to subsets of the 
stimulus (James, 1890). Under natural conditions, shifts 
in attention are typically associated with shifts of gaze 
(Rizzolatti, Raggio, Dascola, & Umiltà, 1987). Several 
factors guide this overt attention (Buswell, 1935; Yarbus, 
1967), such as the task, the observer’s experience, and 
the features of the stimulus. Models of the latter, bottom-
up factors are often based on the concept of a so-called 
saliency map (Koch & Ullman, 1985): Various feature 
channels (luminance, color, orientation, etc.) are analyzed 
independently, local center–surround filters yield maps 
of differences (contrasts) in these features, and these 
maps are added up. Following the saliency map literature, 
such maps in a single feature are referred to as conspi-
cuity maps. These conspicuity maps are then added lin-
early across features to obtain the saliency map, which 
represents the likelihood that a location will be attended. 
Various studies have demonstrated that implementations 
of this model predict human fixations in natural scenes at 

levels above chance (Itti & Koch, 2000; Parkhurst, Law, & 
Niebur, 2002; Peters, Iyer, Itti, & Koch, 2005; Tatler, Bad-
deley, & Gilchrist, 2005). In addition, luminance contrast 
(LC) is significantly elevated at fixation points (Krieger, 
Rentschler, Hauske, Schill, & Zetzsche, 2000; Mannan, 
Ruddock, & Wooding, 1997; Reinagel & Zador, 1999). 
This correlative effect of contrast depends, however, on 
spatial frequency (Mannan et al., 1997; Tatler et al., 2005) 
and acts mostly indirectly through correlations with higher 
order scene structure (Einhäuser & König, 2003), which 
may include texture contrast (Parkhurst & Niebur, 2004), 
edge density (Baddeley & Tatler, 2006), or objects (Ein-
häuser, Spain, & Perona, 2008; Elazary & Itti, 2008) and 
faces (Cerf, Harel, Einhäuser, & Koch, 2008). In sum, the 
predictions of saliency map models can correlate with the 
actual fixations of human observers freely viewing natural 
scenes under laboratory conditions (Parkhurst et al., 2002; 
Peters et al., 2005). Such correlation is, however, absent 
under some conditions (e.g., during search; Einhäuser, 
Rutishauser, & Koch, 2008; Henderson, Brockmole, 
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also are exploited by the visual system (Golz & MacLeod, 
2002)—remains to be investigated. When it comes to 
natural scenes, stimulus features are not independent but 
highly correlated. In the context of overt attention, Bad-
deley and Tatler (2006) showed that conditional on edge 
density, other feature maps have little predictive power; 
that is, one feature can “explain away” the effect of others. 
Consequently, when attention in natural scenes is mea-
sured directly, such stimulus-inherent correlations need 
to be considered.

Here, we combined the usage of natural scenes with 
modifications that were independent along the two stimu-
lus dimensions under investigation (color and luminance). 
We adopted a previously proposed paradigm (Einhäuser, 
Rutishauser, et al., 2006) to bias attention by increasing 
contrast toward one side of the stimulus ( feature gradients). 
We compared effects on fixated locations of gradients in 
color contrast (CC), which was modulated by varying satu-
ration, and in LC to the effect of the feature gradients ap-
plied simultaneously. This allowed us to test directly how 
well a linear interaction of CC and LC would predict their 
combined effect against a natural scene background.

METHOD

Participants
Eight students at the Philipps University Marburg (3 of them fe-

male and 5 male; age, 20–27 years, M  22.3) participated in the 
study. All the participants had normal or corrected-to-normal vision 
and normal color vision, as assessed by the Ishihara 16-plate color 
blindness test. They were naive as to the purpose of the study and 
had not previously viewed the stimuli used. All the procedures con-
formed to national and institutional guidelines for experiments on 
human observers and to the Declaration of Helsinki. All the partici-
pants gave informed written consent for participation in this study 
and received paid compensation.

Experimental Setup
The experiments were conducted in a dark room with negligible 

ambient light levels. The stimuli were presented using a 19.7-in. 
EIZO FlexScan F77S CRT monitor located at an 85-cm distance 
from the participant, and the stimulus subtended an angle of 26º 
18º. The display resolution was set to 1,280  1,024 pixels, and its 
refresh rate to 100 Hz. The monitor was characterized (calibrated) 
using a PR-650 spectrometer (Photo Research, Chatsworth, CA) 
and, for low luminance values, an S370 photometer (UDT Instru-
ments, San Diego, CA). Gun CIE coordinates of the monitor were at 
x  0.610, y  0.339 (red), x  0.282, y  0.601 (green), and x  
0.151, y  0.065 (blue); the maximum luminance was at 36.9 cd/m2; 
and the luminance of the dark screen (black) was at 0.001 cd/m2.

During the experiment, the observers’ eye position was recorded 
at 2000 Hz, using an infrared, noninvasive Eyelink-2000 eyetrack-
ing system (SR Research Ltd., Mississauga, ON, Canada). Stan-
dard procedures, as recommended by the manufacturer, were used 
to calibrate the eyetracker and to validate the eye position. In brief, 
13 fixation points were presented before each experimental block 
in order to compute the mapping from eyetracker signal to screen 
coordinates. The calibration was then verified with a similar display 
and was 0.4º root mean square on average and never larger than 1º. 
Before each trial, the observers were asked to fixate a fixation point 
in the center of the screen for at least 300 msec. If they failed to do 
so within 5 sec, the eyetracker was recalibrated.

All stimulus presentation and eye position recording was pro-
grammed in MATLAB (MathWorks, Natick, MA), using its psycho-
physics and eyelink toolbox extensions (Brainard, 1997; Cornelis-

Castelhano, & Mack, 2007). More and more evidence has 
accumulated that the saliency map’s fixation prediction is 
mostly indirect, which undermines the causal and mecha-
nistic implications of the model. In spite of this absence of 
a direct causal effect of low-level features on fixation loca-
tions, understanding the indirect correlative link (through 
objects or another higher order structure) will nonethe-
less benefit from knowledge as to how low-level features 
interact. Independently of existing models, such data will 
constrain future approaches toward a better mechanistic 
understanding of the neural basis of attention.

Despite a large body of data on the neural representa-
tion of saliency (Gottlieb, Kusunoki, & Goldberg, 1998; 
Horwitz & Newsome, 1999; Kustov & Robinson, 1996; 
Mazer & Gallant, 2003; McPeek & Keller, 2002; Posner 
& Petersen, 1990; Robinson & Petersen, 1992; Thomp-
son, Bichot, & Schall, 1997), the mechanistic principles 
underlying its computation are less well understood. 
Koch and Ullman’s (1985) model was founded on neural 
principles but did not make any explicit reference to the 
nature of interactions between feature channels. In con-
trast, most later saliency map implementations (Itti, 2005; 
Itti & Koch, 2000; Peters et al., 2005) made the critical 
assumption that feature effects added linearly. First, the 
conspicuity maps for each feature are linearly summed, 
and second, possible dependencies between features are 
neglected when obtaining the final saliency map. In ad-
dition, most models of visual attention that are not based 
on the saliency map still implicitly share the assumption 
of linearity (Wolfe, Butcher, Lee, & Hyle, 2003). Several 
studies have tested this assumption, using well-controlled, 
albeit artificial, stimuli. Using grids of bars in a match-
ing task, Nothdurft (2000) found that different features 
are additive, although their interaction may be sublinear. 
Along these lines, for the features of color and orienta-
tion, Li (2002) contradicted the assumption of linearity 
and, instead, proposed that the overall saliency of an item 
is defined by the most salient feature alone. This implies 
a maximum operation, rather than a linear summation 
across features, to compute saliency. Recently, research 
from the same lab has suggested that this maximum op-
eration might also apply to human overt attention in natu-
ral scenes (Lewis & Zhao ping, 2005) and has suggested a 
computation of saliency as early in the visual hierarchy as 
V1. In contrast, Navalpakkam and Itti (2005) argued that 
linear summation is more compatible with performance 
in conjunction search experiments. Complementary to 
the question of under which conditions low-level features 
influence fixations at all, it has remained open how the ef-
fects of different features interact. Irrespective of whether 
the features’ effects are causal or correlative, the answer 
will constrain models of attention.

In addition to linearity, the second major assumption 
of most saliency models is the independence of differ-
ent feature channels. In a discrimination task on grating 
stimuli, Morrone, Denti, and Spinelli (2002) found that 
the features of color and luminance recruited independent 
attention channels. However, the extent to which such re-
sults can be transferred to natural stimuli—where higher 
order dependencies between features not only exist, but 
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a color depth of 24 bits in RGB format. To fit the screen resolution, 
images were down-sampled to 1,280  960 pixels, using bicubic 
interpolation in MATLAB, and were presented at the center of the 
1,280  1,024 pixel screen. Without clearly nameable objects in the 
images, the influence of higher order structures (objects) was reduced, 
while at the same time, a realistic, naturalistic “background” was pre-
served, on which saliency manipulations could be superimposed.

Color Space
Stimuli were characterized and modified in the DKL color space 

(Derrington, Krauskopf, & Lennie, 1984; see Figure 1B). This space 
is defined physiologically, using the relative excitations of the three 
types of retinal cones. It is spanned by the orthogonal axes of lumi-
nance, constant blue (cb; the difference between L and M cone exci-

sen, Peters, & Palmer, 2002, psychtoolbox.org; Pelli, 1997). The data 
were preprocessed in Python 2.5 (www.python.org), and statistical 
analysis was performed in R 2.5.1 (www.r-project.org).

Stimulus Database
All the stimuli were based on a set of 90 photographs of natural 

scenes selected from the Zurich Natural Image database (Einhäuser, 
Kruse, Hoffmann, & König, 2006), which are available from the 
authors at www.klab.caltech.edu/~wet/ZurichNatDB.tar.gz. The im-
ages depict natural outdoor scenes, which only rarely contain isolated 
nameable objects or man-made artifacts (Figure 1A). The images 
were captured using a digital camera (3.3 Mega pixel color mosaic 
CCD, Nikon Coolpix 995, Tokyo, Japan) with high-quality settings. 
The stimuli were stored at a resolution of 2,048  1,536 pixels and 

Figure 1. Stimuli. (A) The 90 stimuli from the Zürich Natural Image database used for the 
experiment. (B) Schematic representation of the DKL color space. (C) Columns: Modifica-
tion of luminance contrast; increase to left, no increase, increase to right. Rows: Modification 
of color contrast; increase to left, no increase, increase to right. Letters denote condition ab-
breviation (gradient increasing to left [L] or right [R] or neutral [N]; first letter, color; second, 
luminance contrast). tc, tritanopic confusion; cb, contrast blue.

cb

tc

Luminance

A

B C LL LRLN

NL NRNN

RL RRRN
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Notation for modifications. As a shorthand notation, we will 
denote conditions by two-letter abbreviations, where the first char-
acterizes the color modification, the second the luminance modi-
fication, with “L” implying a contrast increase to the left, “R” an 
increase to the right, and “N” no modification. For example, LN 
denotes a stimulus modified solely in color, with the gradient in-
creasing to the left and no changes in luminance, and NN denotes 
an unmodified stimulus (Figure 1C). Where there is no risk of am-
biguity, the same abbreviations will also be used to denote the cor-
responding effect sizes. We will refer to the conditions in which a 
single gradient is applied (LN, NL, RN, NR) as single-feature condi-
tions and to the conditions in which two gradients are superimposed 
(LL, RR, LR, RL) as dual-feature conditions. For part of the analy-
sis, we considered the effects of each modification relative to the 
modulation of eye position in the unmodified condition (NN). As 
a short-hand notation, we used brackets [.] to denote subtraction of 
NN (e.g., [LN] :  LN NN).

Paradigm
For all observers, each of the 90 images was presented in each 

of the nine conditions exactly once. The experiment was split into 
nine blocks of 90 trials. Trials were balanced such that, per block, 
each image appeared once and each condition 10 times. Since pilot 
experiments had demonstrated little change in effect after 2 sec, each 
stimulus was presented for 2 sec. A trial started with a fixation cue at 
the center of the screen. As soon as the participant’s gaze was steady 
on this cue for at least 300 msec, stimulus presentation was triggered. 
The observers were instructed to “study the images carefully,” be 
“free to move [their] eyes naturally,” and “reduce head movements 
as much as possible.” None of our previous studies, which used the 
same instruction of “studying images carefully,” showed any evi-
dence that this induced a top-down bias. To the contrary, eye move-
ment patterns were indistinguishable from an explicit instruction of 
“free viewing” (Steinwender & König, 2007).

Data Analysis
Fixations. The main body of the analysis was based on periods 

of fixation, which accounted for 77.3% of the total data (see Ap-
pendix B for an analysis based on raw eye-position data). Fixations 
were defined by the default algorithm implemented in the Eyelink 
system as periods between saccades. Saccades were defined as 
movements that exceeded an acceleration threshold (9,500 deg/
sec2) and a velocity threshold (35 deg/sec). Although no explicit 
lower limit for the duration of a fixation was used, 96.1% of the 
fixations lasted longer than 100 msec. The initial central fixation 
for each stimulus originated from the fixation cue and was not used 
for any analysis. 

Statistical analysis. Since, in 64.5% of the 2-sec trials, there were 
at least five fixations, but six or more fixations were reached only 
in 35.2%, we restricted fixation analysis to the first five. For each 
observer, the average horizontal coordinate of each of the first five 
fixations was calculated. A linear model ANOVA was performed 
with this dependent variable, using fixation number (1–5), CC con-
dition (L, N, R), and LC condition (L, N, R) as factors. Linear model 
ANOVAs were also performed over the two sets of single-feature data 
in which the data with manipulations in the other feature were left out 
(using only the data from LN, NN, and RN or from NL, NN, and NR). 
To see how the effect of the single-feature manipulations developed 
over time, post hoc t tests were done on the average horizontal coordi-
nate for each fixation, comparing LN with RN and NL with NR.

RESULTS

Number of Fixations
We recorded the eye movements of 8 observers while 

they were viewing natural scenes upon which a gradient 
in LC, CC, or both had been superimposed. For each of 

tations), and tritanopic confusion (tc; L  M  S cone excitations). 
Hue in DKL space is given by the azimuth, luminance by the respec-
tive axis, and saturation by the projection on an isoluminant plane.

In DKL space, we defined LC as variation along the space’s lumi-
nance axis. CC—as used in saliency map models—is inspired by the 
excitation of color-opponent cells in the retina and thalamus. Hence, 
it scales linearly with saturation, and we modified CC by varying 
saturation. The mapping from DKL space used the known param-
eters of the screen’s guns—in particular, correcting for their nonlin-
earities (gamma). Since the camera parameters were unknown, they 
were assumed to be the inverse of the screen. This guaranteed that an 
unmodified stimulus looked natural and all the stimuli fitted within 
the gamut of the screen.

Stimulus Modification: Feature Gradients
To modify the stimulus features of interest (LC and CC) with-

out introducing novel local image structure, we adapted the fea-
ture gradient technique introduced in Einhäuser, Rutishauser, et al. 
(2006). Here, images were first converted into DKL color space. 
To modify luminance contrast, we first subtracted the mean image 
luminance I0  from the luminance values I0(x,y) of the original 
image. We then multiplied the luminance with a value depending on 
the horizontal position (gradient). For contrast increase to the right 
(“R”), this factor ranged linearly from 0 on the left to 1 on the right, 
and the converse held for contrast increase to the left (“L”). Finally, 
the original mean value was added:

 Modification “R”:  I(x,y)  x/w[I0(x,y)  I0 ]  I0

 Modification “L”:  I(x,y)  (1 x/w) [I0(x,y)  I0 ]  I0 ,

where w denotes the image width (w  1,280 pixels). Intuitively, the 
low end of the gradient reduced the contrast to 0, since it clamped 
all luminance values to the mean image luminance [for an “R” gra-
dient, I(x 0,y)  I0 ; for an “L” gradient, I(x w,y)  I0 ]. 
At the other side of the image (the gradient’s high end), the con-
trast remained unaffected [I(x w,y)  I 0(x w,y) or I(x 0,y)  
I0(x 0,y), for “R” and “L” gradients, respectively]. Both extremes 
are most easily exemplified by an image consisting only of an equal 
number of black and white pixels. In Appendix A, we provide a de-
tailed analysis as to how the gradient definition relates to common 
definitions of luminance contrast. As a consequence of the orthogo-
nality of the DKL space, this modification did not affect physical 
color at any point (neither hue nor saturation).

To modify color contrast, we similarly subtracted the means along 
the tc and cb axes, multiplied the result by the gradient from 0 to 1 
(“R”) or 1 to 0 (“L”), and shifted back to the original mean:

Modification “R”:

 T(x,y)  x/w [T0(x,y)  T0 ]  T0

 C(x,y)  x/w [C0(x,y)  C0 ]  C0

Modification “L”:

 T(x,y)  (1 x/w) [T0(x,y) T0 ]  T0

 C(x,y)  (1 x/w) [C0(x,y) C0 ]  C0 ,

where C and T denote the values along the cb and tc axes, respec-
tively, superscript 0 the original image, and .  the image mean as 
above. This varied the saturation of each pixel from 0 to its original 
value across the image. Intuitively, the usage of saturation as a proxy 
for CC can be understood by considering an isoluminant red–green 
grating, which, at 0 saturation, would be a mere gray patch (0 CC) 
and would take maximum color contrast whenever saturation is at 
100%. To formalize this, we demonstrate in Appendix A that this 
modification affected color conspicuity in the expected way.

Taking advantage of the orthogonality of DKL space, both gradi-
ents could be combined without interaction on the physical stimulus. 
The modified stimuli were converted back to RGB space, using the 
screen gun’s specifications.
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compare different conditions on the basis of fixation 
locations.

Fixation Maps
In the image of Figure 2A, CC increased to the right 

(the RN condition). In this example, the observers’ fix-

the nine conditions defined by the directions of those gra-
dients, we recorded 90 trials for each observer. On aver-
age, the observers made 5.2 fixations on each stimulus. 
We did not find evidence that this number was dependent 
on the luminance condition, the color condition, or their 
interaction (all ps  .07). Consequently, we could directly 

Figure 2. Effect of modifications. (A) Example stimulus with a color contrast increase 
to the right (RN). The fixations of all the observers are superimposed; color identifies the 
observer. (B) Average fixation maps (spatial distribution of fixated location) for each con-
dition, sorted as in Figure 1C. For display, maps are smoothed with a 27-pixel-wide (0.5º 
at the center) Gaussian kernel; the extension of each map corresponds to the full image 
size. Dashed lines indicate midlines, cyan crosses the center-of-mass locations.

A

B LL LRLN

NL NRNN

RL RRRN

0 MaxFixation Probability
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(Figure 3B). Considering the NL, NN, and NR condi-
tions, there was a main effect of LC [F(2,105)  24.29, 
p  .0001] and of fixation number [F(4,105)  9.04, p  
.0001] and no interaction [F(8,105)  0.50, p  .86]. 
Post hoc paired t tests showed a significant effect starting 
at the first fixation [first, t(7)  2.49, p  .042; second, 
t(7)  2.70, p  .03; third, t(7)  2.99, p  .02; fourth, 
t(7)  4.38, p  .003; fifth, t(7)  5.76, p  .0007]. This 
showed—consistent with our earlier results (Einhäuser, 
Rutishauser, et al., 2006)—that gradients in LC induced 
robust biases in fixated locations.

Normalized analysis. The NN condition showed a 
modulation with fixation number (Figure 3B). To mea-
sure the effects that gradients had on top of this general 
bias, we normalized horizontal fixation locations by sub-
tracting the respective values of the NN condition. The 
normalized data showed the reported effects as even more 
pronounced, for both CC (Figure 3C) and LC (Figure 3D). 
In all cases and for all fixations, single-feature gradients 
biased the condition in the direction of higher (color or 
luminance) contrasts, relative to the general bias, which is 
revealed by the NN condition.

Average position. So far, we had analyzed the data 
separated by fixation number. The mean positions exhib-
ited the biases in the direction consistent with the gra-
dient (rightmost data points in each panel of Figure 3), 
whose significance had already been quantified by the 
aforementioned two-way-ANOVA main effects of CC and 
LC, respectively. Other averaging schemes (e.g., weight-
ing fixations with their duration or using all data including 
periods of saccades) yielded the same result.

In sum, the single-feature gradients induced robust bi-
ases, especially relative to a neutral (NN) condition, which 
held for the average eye position but also for individual 
fixations.

Dual-Feature Conditions
In the dual-feature conditions, the interaction between 

the effects of CC and LC was examined. If the effects of 
LC and CC add linearly, there will be the following predic-
tions as to how the effects of superimposed gradients can 
be computed from the single-feature gradients with a cor-
rection for the unmodified (NN) condition:

 (1) [LL] ~ [LN]  [NL],

 (2) [RR] ~ [RN]  [NR],

 (3) [RL] ~ [RN]  [NL],
and
 (4) [LR] ~ [LN]  [NR], 

where the shorthand notation [.] for NN subtraction was 
used. In terms of raw data, these relations can be equiva-
lently expressed by adding NN on each side as

 (1 ) LL ~ LN  NL NN,

 (2 ) RR ~ RN  NR NN,

 (3 ) RL ~ RN  NL NN,
and
 (4 ) LR ~ LN  NR NN.

ations exhibited a bias toward the right, the side of in-
creased CC. To visualize this effect across all observers 
and images, we computed an average fixation map for 
each condition. That is, we computed the histograms of 
fixated locations and aggregated the histograms over all 
fixations (excluding the initial, central one), observers, 
and images (Figure 2B). In all the conditions, the center 
of mass of these maps was slightly (1.2º–1.5º) above the 
midline. That is, the horizontal gradient had little effect on 
vertical eye position. In contrast, the horizontal location 
depended on the condition. For unmodified images, there 
was a slight (0.3º) bias to the left. If both gradients pointed 
to the left (LL), however, the center of mass was shifted 
2.5º to the left; if both gradients pointed to the right (RR), 
the shift was 2.7º to the right. For single-feature gradients 
(LN, RN, NL, NR), the center-of-mass shifts were smaller 
but always to the higher (color or luminance) contrast side 
(0.5º, 0.9º, 1.5º, and 1.7º, respectively). The incongruent 
gradients showed a slight bias toward the higher LC, con-
sistent with the somewhat larger effect of this feature, as 
compared with color. This first qualitative and aggregate 
analysis of horizontal eye position was suggestive of a su-
perposition between the effects of CC and LC gradients 
on horizontal eye position, on which the further quantita-
tive analysis was based.

Overall Effect of Gradients
We performed a three-way ANOVA to characterize 

the dependence of average horizontal fixation location 
on fixation number (1–5), LC condition (L, N, R), and 
CC condition (L, N, R). Each factor had a significant ef-
fect [F(4,315)  33.3, F(2,315)  78.0, and F(2,315)  
20.5, respectively; all ps  .0001]. There were no two-way 
interactions between LC and CC [F(4,315)  0.18, p  
.95], between CC and fixation number [F(8,315)  0.38, 
p  .93], or between LC and fixation number [F(8,315)  
1.31, p  .24]. There was no three-way interaction be-
tween all three factors [F(16,315)  0.063, p  1]. Hence, 
we could analyze the effects separately.

Single-Feature Conditions
Color contrast. First, we analyzed the effect of single-

 feature modifications: whether CC and LC gradients alone 
induced biases in fixated locations. To quantify this bias, 
we compared the average horizontal eye position at each 
fixation in the RN condition with that in the LN condi-
tion (Figure 3A). Taking the NN, RN, and LN conditions 
into account, there were main effects of color [F(2,105)  
5.38, p  .006] and of fixation number [F(4,105)  17.30, 
p  .0001], but there was no interaction [F(8,105)  0.21, 
p  .99]. Post hoc paired t tests comparing the effects of 
gradients to the left (LN) and gradients to the right (RN) 
by individual showed a significant effect for all the fixa-
tions tested [first fixation, t(7)  3.24, p  .01; second, 
t(7)  6.61, p  .0003; third, t(7)  3.75, p  .007; 
fourth, t(7)  4.68, p  .002; fifth, t(7)  3.00, p  .02]. 
This demonstrated a robust and prolonged effect of the 
CC gradient on fixation location.

Luminance contrast. For the gradients in LC, we 
observed a pattern similar to that for CC modifications 
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the dual-feature data were consistent with linear summation 
of single-feature effects, for both congruent (Figures 4A 
and 4C) and incongruent (Figures 4B and 4D) gradients.

When the average fixation location rather than indi-
vidual fixations (rightmost data point in each panel of 
Figure 4) were considered, even the remaining deviations 
from a linear model vanished: For all the conditions, the 
linear model’s prediction was indistinguishable from the 
corresponding data ( pmin  .20; see Table 1, rightmost 
column).

Linearity now predicts that the left-hand sides (data) are 
statistically indistinguishable from the right-hand sides 
(model). The difference between model and data was tested 
by means of a two-sided paired t test over observers, first 
considering the average effect over all images, but separated 
by fixation number. The right-hand sides of all the relations 
were indistinguishable from the respective left-hand sides for 
any of Fixations 2–5 ( pmin  .25; see Table 1, gray shaded 
rows). Furthermore, for Relations 1 and 4, this also held for 
the first fixation ( p  .81 and p  .55, respectively). Hence, 

Figure 3. Single-feature gradients. (A) Effect of color contrast gradients. Mean SEM over participants 
of horizontal fixation location, positive values to the right, negative values to the left of screen center. Black, 
the RN condition; gray, the LN condition. The 0th (initial) fixation, which starts before stimulus onset is 
central by instruction, was not used for analysis. Note that all statistics are based on paired tests, and the 
standard errors of unnormalized locations include differences in general observer biases. Overlap in error 
bars thus does not contradict a significant effect in paired tests. (B) Effects of luminance contrast gradients. 
Black, NR; gray solid, NL; gray dashed, general bias without modification (NN) for comparison (omitted in 
panel A). (C) Normalized effect of color contrast gradients. Black, [RN]  RN NN; gray, [LN]  LN NN. 
(D) Normalized effect of luminance contrast gradients. Black, [NR]  NR NN; gray, [NL]  NL NN.
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As for the linear model, we tested whether the mean 
fixation location in the dual-feature gradients was distin-
guishable from this max-norm prediction, using paired 
t tests across observers:

 (6) [LL] ~ smax([LN],[NL]),

 (7) [RR] ~ smax([RN],[NR]),

 (8) [RL] ~ smax([RN],[NL]),
and
 (9) [LR] ~ smax([LN],[NR]).

In all but one case, we found significant differences be-
tween the model and the data: [LL], t(7)  6.53, p  
.0003; [RR], t(7)  2.71, p  .03; [RL], t(7)  1.36, p  
.22; [LR], t(7)  6.56, p  .0003. In conclusion, whereas 
the linear combination of single-feature effects was indis-
tinguishable from the dual-feature data in all four cases, 
the maximum norm was significantly different in three out 
of four. This not only confirmed that our statistical power 
sufficed to exclude alternative models, but also clearly 
demonstrated that a linear addition of single- feature effects 
explained the data better than did a max-norm model.

Image-by-Image Results
Up to here, we have considered aggregate data across 

images. This was motivated by the fact that the images 
primarily served as “background” and image structure by 
itself probably has had a substantial effect on fixation al-
location. To quantify this, we analyzed data averaged over 
participants and fixations for each image individually. For 
the congruent gradients 85/90 (LL) and 89/90 (RR), im-
ages showed a bias to the left and right (relative to NN), 
respectively. For the single-feature conditions, this bias to 
the higher contrast side was slightly less pronounced (LN, 
60/90; RN, 60/90; NL, 75/90; NR, 82/90), but the fraction 
was still significantly above chance (all ps  .003, sign 

To evaluate our statistical power, we tested the indi-
vidual right-hand side summands as alternative models 
(white rows in Table 1). For these controls, the average 
fixation location was always statistically different from 
the left-hand sides. This indicates that we had sufficient 
statistical power to find a deviation of model from data, 
if there were any. For the analysis of individual fixations, 
the results were less clear, especially in the case of in-
congruent gradients. Nonetheless, with few exceptions, 
the linear model was in general more consistent with the 
dual-feature data than with any individual single-feature 
effect, even for individual fixations (Table 1). Hence, the 
compatibility between the linear summation model and 
the dual-feature data cannot be attributed to a lack of sta-
tistical power.

Alternative Model: Max Norm
So far, we have argued merely that a linear model was 

consistent with our data and that we would have had suf-
ficient power to discriminate linearity from each feature 
alone. A maximum operation presents a frequently pro-
posed alternative model. It predicts that the combined ef-
fect of two features corresponds to the larger individual 
effect. That is, the combined effect is predicted to have the 
magnitude of the larger individual effect and also to point 
in the direction of the effect with larger magnitude. Let a 
and b be the individual normalized effects (e.g., a  [LN], 
b  [NL]); then, the predicted combined normalized ef-
fect f (e.g., f prediction for [LL]) is given by

 (5a) f (a,b)  max(|a|,|b|) sign(a) if |a|  |b|
and
 (5b) f (a,b)  max(|a|,|b|) sign(b) if |b|  |a|,

where sign(x)  1 f. x  0 and sign(x)  1 f. x  0. 
For ease of notation, we will denote f (a,b), as defined in 
Equation 5, as smax(a,b) (for signed maximum).

Table 1 
Analysis of How Well the Linear “Model” From the Single-Feature Conditions 
Deviates From the “Data” Obtained in the Respective Dual-Feature Conditions

 
Data

  
Model

 First 
Fixation

 Second 
Fixation

 Third 
Fixation

 Fourth 
Fixation

 Fifth 
Fixation

  
Mean

[LL] [LN]  [NL] .81 .27 .53 .85 .51 .20
[LN] .07 .08 .04 .003 .006 .004
[NL] .005 .002 .007 .66 .25 .0003

[RR] [RN]  [NR] .006 .94 .57 .56 .27 .46
[RN] .01 .009 .02 .01 .004 .006
[NR] .0007 .16 .15 .02 .046 .02

[RL] [RN]  [NL] .005 .94 .55 .70 .71 .48
[RN] .75 .41 .16 .001 .007 .03
[NL] .005 .055 .056 .001 .043 .001

[LR] [LN]  [NR] .55 .25 .9997 .51 .71 .74
[LN] .02 .02 .01 .02 .002 .005
[NR] .04 .0004 .02 .23 .994 .0003

Note—Each entry denotes the p value of a paired t test. Linearity predicts that there is no 
evidence for differences of data from model in the gray-shaded rows. Significant effects in the 
other rows (control models) show that we would have sufficient power to recognize a deviation 
if it occurred. Note that there were two equivalent ways of testing, using either the normalized 
or the raw positions. For example, the distance between [LL] and [LN]  [NL] is equivalent to 
the distance between LL and LN  NL NN, as is directly seen by adding NN on each side 
of the latter relation.
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a linear addition of single-feature effects in all the con-
ditions. In contrast, a max-norm was consistent with the 
data only when individual effects were too small to clearly 
distinguish between the models. Our results therefore pro-
vided clear evidence that the interaction of CC and LC on 
a natural scene background is more consistent with linear 
summation than with a maximum operation.

DISCUSSION

The present study has investigated human overt atten-
tion on a natural scene background. We have demonstrated 

tests). Consequently, the biases were robust across images. 
Finally, we tested the predictions of the two models (lin-
ear addition and max-norm) on these imagewise data. In 
all cases, the linear model was indistinguishable from the 
data—[LL], t(89)  1.65, p  .10; [RR], t(89)  1.02, 
p  .31; [RL], t(89)  0.77, p  .45; [LR], t(89)  0.89, 
p  .38—whereas the max-norm model showed signifi-
cant differences for the congruent dual-feature gradients—
[LL], t(89)  6.08, p  3 10 8; [RR], t(89)  5.70, p  
1 10 7; [RL], t(89)  0.05, p  .96; [LR], t(89)  0.67, 
p  .51. Hence, the image-by-image analysis confirmed 
the main finding: Dual-feature effects were consistent with 

Figure 4. Dual-feature gradients. (A) Mean SEM for dual-feature conditions with same direction of 
gradients (congruent gradients). Solid black, RR; solid gray, LL. Dashed lines denote predictions from  
single-feature trials; dashed black, RN  NR NN; dashed gray, LN  NL NN. (B) Mean SEM for 
dual-feature conditions with opposing directions of gradients (incongruent gradients). Solid black, LR; solid 
gray, RL. Dashed lines denote predictions from single-feature trials; dashed black, LN  NR NN; dashed 
gray, RN  NL NN. (C and D) Analogous to A and B, using normalized data instead. These normalized 
representations more evidently visualize the time course over fixations, relative to the general bias (NN).
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success of predictions on the system level neither implies 
causality nor provides support for the model’s mechanis-
tic assumptions. This raises the question of the extent to 
which individual features are indeed correlated with overt 
attention. With respect to LC, various studies (Krieger 
et al., 2000; Reinagel & Zador, 1999) showed this feature 
to be elevated at fixation points. Depending on presenta-
tion conditions, however, the correlative effect of LC was 
observed only after correcting for general biases in fixa-
tion pattern and depended on spatial frequency (Einhäuser 
& König, 2003; Mannan, Ruddock, & Wooding, 1996, 
1997; Tatler et al., 2005); its size depended on the image 
material used (Parkhurst et al., 2002; Privitera & Stark, 
2000). In addition, the effect of LC was often small, as 
compared with other luminance-related features, such as 
edge density (Mannan et al., 1996), texture contrast (Ein-
häuser & König, 2003; Parkhurst & Niebur, 2004), higher 
order geometric kernels (Privitera, Fujita, Chernyak, & 
Stark, 2005), and image-category-specific features (Pri-
vitera & Stark, 2000). With respect to the relative effects 
of the features under investigation here, Tatler et al. (2005) 
found LC and “edge-content” to contribute consistently 
more strongly to human fixation location than “chroma-
ticity” and luminance itself. Since measuring the additiv-
ity of features had been the main aim of the present study, 
our single features had to fulfill two conditions: They 
had to be sufficiently large and robust to allow statisti-
cal analysis of their interaction (in the limit of no effect, 
all summation schemes are equally valid), but to be suf-
ficiently small that image boundaries did not artificially 
cut the dual-feature effect. Therefore, we chose gradients 
that induced a robust effect for single-feature conditions. 
The fact that at least the effect of luminance gradients is 
linear in gradient slope (Einhäuser, Rutishauser, et al., 
2006) renders it likely that our results on linearity can be 
generalized to weaker contrast changes, as found in natu-
ral contrast variations.

Most of the aforementioned studies measured the influ-
ence of each feature in its natural context. This, however, 
did not allow the isolation of the effects of each feature. If 
a feature were correlated with a higher order structure in 
natural scenes, increased fixation probability might result 
from the higher order structure or from correlation with 
other features, rather than from the feature itself (Badde-
ley & Tatler, 2006). To overcome this confound, Einhäuser 
and König (2003) locally increased or decreased LC in 
natural scenes. They found that reduced local contrast 
attracts human attention and concluded that this was in-
consistent with saliency map model predictions. Although 
Parkhurst and Niebur (2004) reconciled this particular 
finding with saliency map models by incorporating higher 
order contrasts, local modifications were suboptimal in 
the present experimental context.

Strong local modifications introduce local deviations 
from global context, which are likely to attract attention. 
This is most evidently seen in the phenomenon of pop-
out (Treisman & Gelade, 1980) and has recently entered 
the saliency map literature as the notion of surprise, an 
information- theoretic measure of deviations from the 
temporal context (Itti & Baldi, 2005). This issue of local 

that LC and CC gradients that are superimposed over a 
scene affect the selection of fixation points: Fixations 
were biased toward regions of high contrasts. Most no-
tably, the combined effects of LC and CC gradients were 
consistent with a linear summation of feature effects, but 
not with a maximum operation.

The effects of gradients operated on top of a general 
bias in viewing direction when unmodified stimuli (the 
NN condition) were inspected, which started to the left 
and then rebounded to the right of the midline. Although 
this had not been the aim of the present study, it might be 
interesting to speculate whether this bias reflects a general 
strategy, possibly related to reading direction, as has been 
observed for other attentional phenomena, such as inhibi-
tion of return (Spalek & Hammad, 2005).

In order to encourage participants to pay attention to 
the stimuli, we asked them only to “study the images 
carefully.” We had used this instruction in earlier studies 
and expected it to bias fixation allocation in a bottom-up 
driven mode and to operate in sharp contrast to explicit 
top-down tasks, such as search (Einhäuser, Rutishauser, & 
Koch, 2008; Henderson et al., 2007). A recent experiment 
(Steinwender & König, 2007) indeed showed that “study 
carefully” yielded the same result with respect to low-
level features as the explicit instruction of “free-viewing,” 
whereas, for example, “subjective assessment” yielded 
distinct fixation behavior. Although we cannot exclude the 
possibility that the size of the effects for single-feature con-
ditions depended on the particular choice of instruction, 
we clearly saw a bottom-up (i.e., feature-driven) compo-
nent. In the present context, we built on this observation of 
a systematic shift of fixation locations induced by single-
feature gradients. The prediction of linear interaction of 
different features was tested by comparing these measured 
single-feature shifts with those measured in dual-feature 
conditions. This test was therefore independent of the size 
of single-feature effects, as long as single-feature effects 
were different from 0 and sufficiently small to avoid hav-
ing the image boundaries come into play: If single-feature 
effects were too large, combined effects could run out of 
room before hitting the left or right edge of the image. In 
particular, the test did not depend on whether or not the 
effect of LC and/or CC modification itself was linear in 
gradient strength, although we had observed linearity, at 
least for LC, earlier (Einhäuser, Rutishauser, et al., 2006). 
Consequently, as long as the instruction allows for shifts 
in the single-feature conditions that are sufficiently robust 
for the comparison with dual-feature effects, their precise 
size is not critical, nor is the exact choice of instruction.

Since Koch and Ullman’s (1985) original proposal, the 
saliency map model has repeatedly been used to predict 
fixation behavior in natural scenes (Itti & Koch, 2000; 
Parkhurst et al., 2002; Peters et al., 2005; Tatler et al., 
2005). In all these studies, however, prediction remained 
well below the theoretical optimum for any bottom-up 
model (i.e., a model taking into account only the current 
stimulus’s features); this upper limit is given by the inter-
observer prediction—that is, by the prediction derived 
from the fixation locations of a (large) set of other ob-
servers (Peters et al., 2005). Furthermore, the reasonable 
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(2005) suggested that this model might also be applicable 
to the interaction of color and orientation in human overt 
attention for natural scenes. Given the different features 
and different methodology, our data do not contradict these 
findings directly. Instead, it will be an interesting issue, 
for future research, whether our results can be extended to 
other features, such as color and orientation, on a natural 
scene background. For the case of CC and LC, however, 
our data clearly falsify the max-norm hypothesis.

Since the saliency map model was originally designed 
as a purely bottom-up model of attention, by construc-
tion, it does not capture top-down influences such as the 
observer’s experience or the task. The task plays a deci-
sive role for human overt attention in inspecting pictures 
(Buswell, 1935; Yarbus, 1967) or search displays (Bacon 
& Egeth, 1997) or in everyday activities (Land & Hayhoe, 
2001). When memorizing objects, for example, observers 
tend to replicate their own scan-paths, a feature not ad-
equately captured by bottom-up saliency alone (Foulsham 
& Underwood, 2008).

Visual search constitutes a task frequently used to 
quantify the performance of attention models. Predic-
tive performance of the original bottom-up saliency map 
model reduces or vanishes in search tasks (Einhäuser, 
Rutishauser, & Koch, 2008; Henderson et al., 2007), but 
inclusion of contextual or task-dependent information 
can improve the predictions of saliency map algorithms 
(Navalpakkam & Itti, 2005; Oliva, Torralba, Castelhano, 
& Henderson, 2003; Torralba, 2003). For evaluating the 
performance of saliency-map-type models in predicting 
search in natural scenes, the intuitive strategy of fixat-
ing the point of highest saliency is usually suboptimal; 
instead, the discriminability between target and distractor 
on the basis of the full map should be utilized (Gao, Maha-
devan, & Vasconcelos, 2008; Vincent, Troscianko, & Gil-
christ, 2007). For specific search tasks, such as searching 
for a pedestrian in a street scene, the task-modulated prior 
alone may predict search patterns better than do bottom-up 
signals (Torralba, Oliva, Castelhano, & Henderson, 2006). 
This approach, however, requires the prior distribution of 
potential target locations to be nonuniform and known. 
Such knowledge may be learned from scene statistics, and 
joint learning of bottom-up and top-down saliency in a 
Bayesian framework seems a promising approach (Zhang, 
Tong, Marks, Shan, & Cottrell, 2008).

Visual search models often use the selective up-
 regulation of target features (Pomplun, 2006; Wolfe, 
Cave, & Franzel, 1989), of the corresponding visual filters 
(Rao, Zelinsky, Hayhoe, & Ballard, 2002), or statistical 
knowledge of target location (Najemnik & Geisler, 2005) 
to predict human performance. Rao et al.’s model bears 
some similarity to Itti and Koch’s (2000) saliency map, but 
instead of adding different feature maps linearly, it com-
putes a single map, which is modulated on the basis of the 
distance to the target template, rather than treating features 
individually. As Navalpakkam and Itti (2005) pointed out, 
this approach predicts that search for targets differing in 
one feature (pop-out) should be as efficient as conjunction 
search, contrary to experimental evidence (Treisman & 
Gelade, 1980). Although not contesting the approach of 

deviations from context becomes especially prominent 
when the applied modifications extend beyond the natu-
rally occurring range of the feature. To avoid this potential 
confound in analyzing the interaction between features, 
we used large-scale gradients rather than local modifica-
tions. This procedure neither introduced local deviations 
nor modified higher order contrasts locally.

Obviously, the contrast gradient did not leave higher 
order structure unaffected; for example, reducing contrast 
also reduced edge density (if there is zero contrast, there 
are also no edges) and affected texture contrast. In any 
case, since we compared the effects of LC and CC in iso-
lation from their combined effects, correlations to higher 
order structure within a feature channel would not con-
found our findings. One needed to ensure, however, that 
modifying LC did not affect CC and vice versa. By using 
definitions of LC and CC that were orthogonal in DKL 
space, this requirement was fulfilled, although it is con-
ceivable that perceived LC varied with CC and vice versa. 
Although our gradients may affect higher order structure 
to some extent, their large scale, as well as the physical 
independence of the modified features, means that the 
linearity of LC and CC effects is also likely to hold in the 
natural context.

The rationale for using natural scenes as a quasi-
 background for the observed effects is twofold. First, the 
effect of the gradients is independent as to whether the 
scene is perceived as natural, at least as long as the ampli-
tude spectrum is conserved (Einhäuser, Rutishauser, et al., 
2006). Second, if we used a noise background instead, 
it could be argued that the interaction would be differ-
ent if objects distract from the superimposed low-level 
effects. Hence, observing a linear interaction of CC and 
LC on—or maybe despite—the natural scene background 
strengthens our argument. Our data do, however, not ad-
dress the issue of whether or not feature biases that are 
inherent in a scene affect fixated locations. Tatler (2007) 
found that those biases do not influence fixation. Simi-
larly, our data are agnostic with respect to whether fea-
tures such as color and luminance naturally occurring in 
natural scenes drive attention causally and, thus, do not 
contradict the large body of recent work that has failed to 
show a causal effect under realistic conditions.

Any model of attention that incorporates different fea-
tures needs a mechanism to appropriately combine those 
features. Contemporary implementations of saliency maps 
usually solve this issue by using a sophisticated normal-
ization scheme to achieve comparable saliency measures 
for each individual feature (see Itti & Koch, 2000, for 
a thorough discussion of normalization schemes). Sub-
sequently, these models linearly combine the resulting 
conspicuity maps into the final saliency map. Here, we 
directly measured the individual effects (conspicuities) 
of each feature by using single-feature conditions and 
then tested whether linearity between these effects would  
hold. We found that CC and LC interacted linearly. Using 
a model based on psychophysical and physiological data, 
Li (2002) proposed that the saliency of an item was given 
by “the salience of its most salient component” (p. 12). 
This implied a maximum operation. Lewis and Zhaoping 
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We are well aware that the seeming mechanistic impli-
cations of the saliency map model have to be interpreted 
with care. In fact, we consider it likely that its predictive 
power for fixations stems entirely from correlations of its 
constituents with higher order structure inherent in natural 
scenes, such as interesting objects (Einhäuser, Spain, & 
Perona, 2008; Elazary & Itti, 2008). Furthermore, we are 
just beginning to understand how context and top-down in-
formation can be integrated in computational models of at-
tention. Nevertheless, the original, purely bottom-up model 
is widely used and, up to now, other models that reach 
similar correlations with fixation probability (under the 
constraints of free viewing, laboratory setup, etc.) are rare. 
Independently of the precise model and its prediction on a 
systems’ level, a sound understanding of human attention 
on a mechanistic level will always require a rigorous test of 
its assumptions. Irrespective of the exact nature of a future 
model that finally supersedes the saliency map for fixation 
prediction, it will be constrained by the present finding: 
Effects of CC and LC—under laboratory conditions and 
on a natural scene background—add linearly. The extent 
to which this finding transfers to other low-level features 
and to spatial distributions of higher order scene structures 
thus remains an exciting issue for future research, no mat-
ter one’s take on the original saliency map.
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APPENDIX A 
Effects of Modifications on Luminance Contrast, Saliency, and Color Conspicuity

Here, we will address the relation of our proposed modifications to common definitions of contrast, feature 
conspicuity, and saliency. There are plenty of possible ways to define LC (Peli, 1997). Most definitions are 
originally based on the comparison of a single foreground intensity with a single background intensity, such as 
the Weber contrast (the difference of foreground and background, divided by the background) or the Michelson 
contrast (the difference of foreground and background, divided by their sum; Michelson, 1927) and have been 
extended to account for arbitrary stimuli. Among the possible variants, we here will focus on those that are of 
common use in the context of eyetracking and attention studies.

1. The standard deviation of luminance in a local patch, divided by the image mean (e.g., Reinagel & Zador, 
1999).

2. The standard deviation of intensity in a local patch, divided by the patch mean (also suggested, and dis-
missed as suboptimal in the present context, by Reinagel & Zador, 1999).

3. The difference of maximum and minimum in a local patch, divided by their sum in the same local patch. 
This is a definition most closely related to the Michelson contrast. Note that Mannan, Ruddock, and Wooding’s 
(1996) usage of the mean of intensity in a local patch as foreground and the mean of the image as background in 
their calculation of Michelson contrast is a measure of luminance, rather than of LC, in the present context. The 
denominator is also commonly scaled or replaced by the mean (akin to the Weber contrast) or by the maximum 
alone.

We computed all these contrasts for the luminance channel of our images in DKL space, which we shifted 
and scaled to a range from 0 to 1 (rather than from 1 to 1), and for squared patches with a width of 24 pixels 
(corresponding to 0.5º at the screen center). Comparing the conditions in which luminance contrast increased 
to the left or right or remained unmodified for a single image (the one in Figure 2A) and averaging over rows, 
we saw the intended effect of modification clearly, and the differences between the various contrast definitions 
were minute (Figures A1A–A1C). Note that, by definition, the LC profile was not affected by modifications to 
the CC; for example, the LL, NL, and NR conditions had the same LC profile. The example profiles show that 
highly noticeable structures, such as the tree on the left-hand side of the example image, are still visible, although 
the modification dominates this contrast profile.

To quantify how “unnatural” the contrast modifications were, we assessed the additional variation of contrast 
introduced by the gradients, using the Contrast Definition 1 above. In the unmodified condition, the mean 
contrast within an image amounted to 0.61 0.13 (mean SD across images). As one would expect by con-
struction, this value was about halved for modifications, no matter whether the increase was to the left (LL, NL, 
RL) or to the right (LR, NR, RR), with values of 0.30 0.07 in both cases. It should be noted, however, that 
a large-scale single-feature modification of contrast always biased toward the higher contrast side, no matter 
whether the gradient decreased or increased the contrast, relative to unmodified (Einhäuser, Rutishauser, et al., 
2006), which was different from local modifications (Einhäuser & König, 2003). More important, the gradients 
lowered the variation of contrast within each image, quantified as standard deviation of contrast values, only by 
about 25% (0.33 0.10 for unmodified, 0.25 0.06 for gradients to the right, and 0.25 0.07 for gradients to 
the left). This indicated that a sufficient amount of image-inherent variability remained in the low-level features, 
which could, in principle, drive attention. The fact that the gradient nonetheless dominated the fixation alloca-
tion was consistent with a minute (or absent) effect of image-inherent low-level features.

Next, we considered the effect of our LC modifications on the Itti and Koch (2000) model for visual saliency. 
For the model, we used the implementation provided at ilab.usc.edu with no normalization, but otherwise, 
default parameter settings. To be closer to the typical scenario for the application of these algorithms, we here 
used the image in the RGB version sent to the screen, rather than the original DKL definition; that is, luminance 
was nonlinearly scaled. By performing the same analysis as that for the contrast definitions, we found that our 
LC modifications strongly modulated model saliency in the expected direction: Saliency increased to the right 
in the NR condition and increased to the left in the NL condition (Figure A1D).

Finally, we addressed the effect of our color modification on the color channel of the saliency map model 
with the same settings as above. As was expected, we found color conspicuity to increase to the right in the RN 
condition and to the left in the LN condition (Figure A1E). The original image structure, however, was conserved 
more than in the luminance case, and the luminance conspicuity dominated the overall saliency map with default 
weighting (not shown). That is, the effect of color modification on image structure was weaker, consistent with 
the slightly weaker bias induced by color. Although this bias difference is worth investigating—in particular, 
with respect to feature-weighting schemes for saliency maps—it was not of relevance for the present article. 
When both gradients induced a robust fixation bias (Figure 3), we could compare their effects (Figure 4). Here, 
we verified that the modifications leading to these effects were indeed consistent with common definitions of 
LC and color conspicuity. 
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APPENDIX A (Continued)

Figure A1. Effect of gradients on common definitions of contrast, conspicuity, and saliency. (A–C) Effect 
of luminance contrast gradient on different definitions of luminance contrast along horizontal scanline 
for the example image in Figure 2A, averaged over image rows. (A) Standard deviation of luminance in a 
1º  1º patch, divided by image mean. (B) Standard deviation of luminance in a patch, divided by patch 
mean. (C) Difference between maximum and minimum luminance in a patch, divided by their sum. (D) Sa-
liency according to Itti and Koch (2000), maps linearly normalized to unit integral. (E) Color conspicuity 
according to Itti and Koch, maps linearly normalized to unit integral. Note that the maps in panels D and E 
have a lower resolution and additional cutoff at the image boundary.
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APPENDIX B 
Raw Eye Position

In order to be independent of the fixation definition, we repeated our main analysis, using 1-msec bins instead 
of individual fixations. Since subsequent time points fell on the same fixation and were thus not independent, we 
could not perform the equivalent statistical analysis. Instead, we used paired t tests to test for the significance of 
difference but adjusted the alpha level to match an expected false discovery rate (FDR) of 5%, using the procedure 
proposed by Benjamini and Hochberg (1995). A result was called significant if it fell below this adjusted level 
(denoted as FDR.05). For color-only gradients, we found a significant difference between LN and RN ( p  .019  
FDR.05) on 773 sample points between 364 and 1,198 msec. Similarly, for LC-only gradients, there was a signifi-
cant difference between NL and NR ( p  .036  FDR.05) on 1,435 sample points between 117 and 2,000 msec. 
This confirmed that during the majority of the presentation time, gradients affect eye position. At an expected 
FDR of .05, LL was at no time point different from LN  NL NN (Figure B1A, gray). Subtracting the NN 
condition on both sides by construction did not alter the results; that is, [LL] was not different from [LN]  [NL] 
(Figure B1C). Neither was [RR] different from [RN]  [NR] anywhere (Figures B1A and B1C, black). Similarly, 
the incongruent gradient data did not exhibit significant differences from their respective models at any time 
point; [LR] was indistinguishable from [NR]  [LN] (Figures B1B and B1D, black) and [RL] from [NL]  [RN] 
(Figures B1B and B1D, gray). In sum, the analysis of the raw eye position data confirmed the fixation analysis, 
ruling out the possibility that the observed effects depended on the definition or timing of fixations. 

Figure B1. Analysis over time. Analogous to Figure 4, time into trial, rather than fixation number, is used 
as parameter. Shaded areas denote SEM of data.
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